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Machine-learned interatomic potentials for alloys and alloy
phase diagrams
Conrad W. Rosenbrock 1✉, Konstantin Gubaev2, Alexander V. Shapeev 2, Livia B. Pártay3,4, Noam Bernstein 5, Gábor Csányi6 and
Gus L. W. Hart7

We introduce machine-learned potentials for Ag-Pd to describe the energy of alloy configurations over a wide range of
compositions. We compare two different approaches. Moment tensor potentials (MTPs) are polynomial-like functions of interatomic
distances and angles. The Gaussian approximation potential (GAP) framework uses kernel regression, and we use the smooth
overlap of atomic position (SOAP) representation of atomic neighborhoods that consist of a complete set of rotational and
permutational invariants provided by the power spectrum of the spherical Fourier transform of the neighbor density. Both types of
potentials give excellent accuracy for a wide range of compositions, competitive with the accuracy of cluster expansion, a
benchmark for this system. While both models are able to describe small deformations away from the lattice positions, SOAP-GAP
excels at transferability as shown by sensible transformation paths between configurations, and MTP allows, due to its lower
computational cost, the calculation of compositional phase diagrams. Given the fact that both methods perform nearly as well as
cluster expansion but yield off-lattice models, we expect them to open new avenues in computational materials modeling for
alloys.
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INTRODUCTION
The technology frontier relies on the exceptional performance of
next-generation materials. First-principles calculations of material
properties provide one way to discover new materials or optimize
existing ones. However, calculating properties from a first-
principles approach is resource-intensive, restricting its applic-
ability. For example, molecular dynamics simulations using density
functional theory (DFT) are currently capable of handling fewer
than a thousand atoms at picosecond time scales. However, many
interesting materials science problems and technologically
important processes can only be described with millions of atoms
on micro- to millisecond time scales.
Conventional interatomic potentials (IPs), such as

Lennard–Jones, embedded atom method (EAM), modified EAM,
Tersoff, Stillinger–Weber, and so on, typically provide six to eight
orders of magnitude speed-up compared to DFT calculations, and
due to their simple, physically motivated forms, they are some-
what robust in the sense that their predictions for low energy
structures are plausible. However, their quantitative accuracy is
typically quite poor compared to DFT, especially in reproducing
macroscopic properties. Machine-learned IPs tend to be much
more accurate, but they are typically three to four orders of
magnitude slower than conventional IPs. Importantly, the range of
their applicability may be quite restricted. In typical parlance, their
transferability can be limited. This transferability problem requires
researchers to take care of constructing, applying, and validating
IPs, and in particular makes it a rather tenuous proposition to use
them to discover and predict new structures and novel properties.
In 2010, the Gaussian approximation potential (GAP)1 was

introduced as an approach to create IPs with ab initio accuracy,
using kernel regression and invariant many-body representations

of the atomic neighborhood. Since their introduction, they have
been effective at modeling potential energy surfaces2–4 and
reactivity5 of molecules6 and solids7,8, defects9, dislocations10, and
grain boundary systems11. Recently Bartók et al.12 showed that a
GAP model using a smooth overlap of atomic position (SOAP)
kernel can be systematically improved to reproduce even complex
quantum-mechanical effects13. SOAP-GAP has thus become a
standard by which to judge the effectiveness of numerical
approximations to ab initio data. There are a number of other
machine-learned potentials that also perform well and have
overlapping applications with SOAP-GAP, although applications of
several of these methods to alloys are still nascent14–31. While
recent work32 compares the performance of multiple methods for
alloy systems, it does not address dynamical quantities such as
phonon dispersion or temperature-composition dependence in
phase diagrams. Note that although the GAP framework can be
used with arbitrary kernels, for simplicity we will use the GAP
abbreviation to mean SOAP-GAP exclusively in the rest of
this paper.
The moment tensor potential (MTP)33 is another approach to

learning quantum-mechanical potential energy surfaces. Due to
the efficiency of its polynomial basis of interatomic distances and
angles, MTP is significantly faster than GAP and has already been
shown to be capable of reaching equivalent accuracy for
modeling chemical reactions34, single-element systems35,36,
single-phase binary systems37, or ground states of multicompo-
nent systems25. In this work, we demonstrate that both GAP and
MTP are capable of fitting the potential energy function of a
binary metallic system, the Ag-Pd alloy system, with DFT accuracy
across the full space of configuration and composition for solid
and liquid systems. In addition to reproducing energies, forces,
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and stress tensor components with near-DFT accuracy, we show
that these potentials can also approximate phononic band
structure quite well and can be used to model compositional
phase diagrams. These new capabilities of quantum-accurate IPs
for alloys would pave the way to accelerated materials discovery
and optimization.
The Ag-Pd system provides a stringent test for a machine-

learned IP that shows whether it can compete with the cluster
expansion (CE) method despite the much simpler “lattice gas”
formalism of the latter. The chemical similarity of silver and
palladium and their similar atomic sizes (leading to small atomic
mismatch)38 make it an ideal system for CE and a challenging test
for competing methods. Ultimately, the challenging aspect for
competing methods is handling both the structural and composi-
tional degrees of freedom. For a system with matched atom sizes,
the structural degrees are less of an issue for CE and it shines
because of its effectively compositional basis functions. Since
methods that use continuous basis functions, like the ones we
test, typically perform better for structural rather than composi-
tional variation, this system is a challenging test.
Phonon band structures directly describe phase stability at

moderate temperatures via the quasi-harmonic approximation.
We first show that both SOAP-GAP and MTP potentials can
accurately reproduce DFT-calculated phonon band structures for
alloy configurations that are not in the training set. As a
demonstration of speed and transferability, we use the MTP
potential to calculate melting lines and transition temperatures for
the Ag-Pd phase diagram using the nested sampling (NS)
method39–41. We then compare the performance of GAP and
MTP across a low energy transition pathway between two stable
configurations to demonstrate the importance of regularization
and active learning.

METHODS
Datasets
In this section, we describe the datasets used to fit and validate the
potentials. Both the MTP and GAP potentials were fitted to the same
active-learned dataset, while a liquid dataset provided validation for
energies, forces, and “virials” (volume-weighted coefficients of the stress
tensor). Although only the active-learned dataset was used for building the
models, there was some overlap between the seed configurations in the
active-learned dataset and the configurations for which phonons are
predicted (discussed later), both having their origin in enumerated42

supercells.

Active-learned dataset
We use the MTP potential and its associated tools to create a database via
active learning25,43 as described below. We start with a catalog of small fcc-
and body-centered cubic (bcc)-based derivative superstructures. The
energies, forces, and virials of these structures are computed by DFT and
are then used to fit an MTP potential. This potential is then used to perform
structural relaxation for all structures in the database. Active learning25,43 is
based on a geometric criterion determining whether extrapolation was
attempted while predicting energies, forces, and virials. If, during the
relaxation of a particular structure, the estimated degree of extrapolation
of the potential is too large, then that (partially relaxed) structure is
computed with DFT and added to the training set. When the potential can
reliably relax all structures in the enumerated database, the database is
expanded to include larger unit cells, and the process is repeated.
For this work, an initial catalog of 58 enumerated structures42 with bcc

and fcc derivative superstructures containing four atoms or less were
calculated. We iterated the active-learning process until the MTP was able
to successfully relax all enumerated structures with cell sizes up to 12 (a
total of 10,850 structures). This final active-learning dataset has 774
configurations.
All the DFT data for these potentials were calculated with the Vienna Ab

initio Simulation Package (VASP)44–48 using the PBE functional49. The k-
points were selected using either Monkhorst-Pack50 or WMM51 schemes as

described below. PREC= Accurate and EDIFF= 1e− 4 were used for
all calculations unless otherwise specified.
During active learning, we used a k-point density setting of MINDI-

STANCE= TRUE and an energy convergence target of EDIFF= 1e - 4
for the self-consistent loop. However, for the final fit, we found it necessary
to recompute the DFT for this dataset with higher k-point density and a
tighter EDIFF setting in order to get good convergence of phonon
dispersions. In our experience, a linear k-point density of 0.015 k-points per
Å−1 is a reliable density for alloy fits.
The final dataset for training the GAP and MTP potentials used the

original 774 configurations discovered through active learning but
computed with MINDISTANCE= 65 in Mueller’s scheme and EDIFF=
1e− 8.

Liquid dataset
We built a dataset of liquid-like configurations by performing MD
simulations using VASP at a high temperature. These calculations were
performed at compositions of 25, 50, and 75 at.% Ag in cells with 32 atoms.
The temperature for each simulation was set around the theoretical
melting point (linearly interpolated from atomic melting points). Thus,
2766, 3063, and 3360 K were set as target temperatures for the MD runs
and the thermostat parameters were SMASS= 3 and POTIM= 1.0. The
simulation ran for 100,000 fs with snapshots taken every 50 fs. NELMIN= 4
ensured sufficient electronic steps were taken at each MD step. For this MD
data, only the k-point at Γ was used. After the MD runs, each independent
snapshot was evaluated again with VASP, but using a 4 × 4 × 4 MP k-
point grid.

Potential fitting
The GAP model was fitted to the active-learned dataset using the QUIP
package available from https://github.com/libAtoms/QUIP, using a sum of
a two-body term with Gaussian kernels of pairwise distances and a many-
body term with a SOAP kernel, a combination that has produced successful
fits of materials in the past52–55. Parameters for the two- and many-body
parts of the GAP model are summarized in Tables 1 and 2, and are broadly
in line with what were used in the previous works. The σ values control
regularization in the GAP model, and can be broadly thought of as target
accuracies; they were set to 10−3 eV for energies (per atom), 10−3 eV/Å for
forces, and 0.02 eV for virials (per atom). Their relative magnitudes also
control the trade-off between the fit accuracies in energies, forces, and
virials.
The MTP model with polynomial degree up to 1625 with 188 adjustable

fitting parameters was trained on the same dataset as GAP. Table 3
summarizes the parameters needed to recreate the MTP model. The fitting
weights (roughly corresponding to σ parameters of GAP) were 10−3 eV,
1.4 × 10−2 eV/Å, and 0.04 eV for energy, force, and stress, respectively. This
is somewhat different from the parameters used for GAP; however, as we
verified, this does not significantly affect the results.

NS: dataset augmentation
As described below, NS simulates atoms at extremely high temperatures
that are well outside of the typical active-learned dataset described above.
The MTP potential used for NS had to be trained using a slightly
augmented dataset, to avoid the formation of dimers in the
gaseous phase.
As the first step to constructing the augmented dataset, we identified

67 structures that are within 5meV/atom from the convex hull of stable
Ag-Pd structures. These structures were periodically repeated to form
supercells with 32–64 atoms. These structures were used as initial

Table 1. Parameters for the two-body GAP term.

Parameter Value Comment

Kernel Gaussian Functional form of kernel

θ 1.0 Kernel length scale

rcut 6.0Å Cutoff distance

Cutoff_transition_width 1.0Å Cutoff smoothing length scale

δ 2.0 eV Typical contribution to energy

nsparse 25 Number of basis functions
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configurations for molecular dynamics, running for 0.1 ns, while the MTP
potential was trained on-the-fly25,43 at the range of temperatures from
nearly zero to temperatures ensuring melting.

NS: methodology
The constant pressure NS method40,41 was used to calculate phase
diagrams by sampling the entire potential energy surface with corre-
sponding configuration space volumes to calculate the isobaric-isothermal
partition function. The specific heat, which is the second derivative with
respect to the temperature of the partition function, shows peaks at phase
transitions, and we use temperatures of specific heat maxima as estimates
of the corresponding transition temperatures. While the NS method has
previously been applied to multicomponent systems, those simulations
assumed constant composition. However, it is possible for phase
separation to occur in temperature-composition space, which would be
neglected by this constraint. Here we have extended the constant pressure
NS method to a semi-grand-canonical (sGC) version56, where the total
number of atoms is constant, but the numbers of the individual species are
allowed to vary. This is implemented by carrying out the NS procedure on
a free energy F defined as

F ¼ E þ
X

i

Niμi ; (1)

where Ni and μi are the number of atoms and chemical potential of species
i, respectively, and the sum is carried out over all species. To explore these
degrees of freedom, we also added Monte-Carlo steps that propose the
changing of the species of a randomly selected atom. Note that since the
procedure is invariant to shifts in the total energy, the total number of
particles is conserved, and only two species are present; the simulation is
entirely characterized by the difference in chemical potentials Δμ.
To calculate the phase diagram in temperature-composition space, as it

is usually plotted, we carry out sGC NS runs at a range of values of Δμ. In
the sGC framework, the composition is an output of the simulation, and its
value can be calculated as a function of temperature using the same
ensemble average (with NS phase space volumes and Boltzmann weights)
as any other quantity in the NS approach. For phase transitions that cross
phase-separated regions, we would in principle expect discontinuous
changes in composition (analogous to discontinuous changes in structure,
internal energy, etc.) across the transition, but these will be broadened by
finite-size effects. We also compare these results to constant composition
NS runs, where a single transition temperature is identified with the peak

of the Cp(T) curve. For one composition, 50%, we continue one of those NS
runs to a sufficiently low temperature to search for solid-state phase
transitions. The parameters used for both types of NS runs are listed in
Table 4 in the notation of ref. 41, and in all NS simulations one
configuration per NS iteration was removed (Kr= 1).

RESULTS
Energy, force, and virial predictions
We now compare the performance of GAP and MTP models for
the Ag-Pd system. Both the MTP and GAP models were validated
against the liquid dataset for energy, force, and virial predictions.
Table 5 summarizes the root mean square error (RMSE) in each of
these properties for both GAP and MTP. No liquid data were
included in the original active-learned dataset. Thus, these
predictions represent severe extrapolation. The fact that both
machine-learned IPs perform so well in this dataset is evidence of
their transferability. The relatively simple approach to building the
training set (iterative fitting and relaxing of enumerated super-
structures) resulted in IPs that would be reliable in most solid or
liquid simulations.
In Fig. 1, a cumulative probability distribution of errors for

energy, force, and virial predictions are plotted for GAP and MTP,
where errors are calculated relative to DFT. For energy, MTP has a
lower cumulative probability of error overall. This difference is less
pronounced for the force errors where MTP is only marginally
better. Interestingly, the probability of error for virial predictions in
MTP deviates significantly from GAP at larger errors. These error
statistics are consistent with the ratio of energy, force, and virial
weights (σ parameters) for the two models: on the one hand, MTP
has >10× higher weights (lower σ values) for energies relative to

Table 2. Parameters for the GAP-SOAP (many-body) term.

Parameter Value comment

rcut 4.5Å Cutoff distance

Cutoff_transition_width 0.5Å Cutoff smoothing length scale

δ 0.2 eV Typical contribution to energy

nsparse 500 Number of basis functions

nmax 8 Radial basis truncation

lmax 8 Angular basis truncation

ζ 2 Power SOAP kernel is raised to

σatom 0.5Å Smoothing of atoms in neighbor
density

Table 3. Parameters for the MTP model.

Parameter Value

Radial functions 4

Radial basis size 6

Fitting parameters 188

Cutoff 5.0Å

Stress weight 5 × 10−4

Force weight 5 × 10−3Å2

BFGS iterations 500

Table 4. Nested sampling parameters in the notation of ref. 41 for
constant composition and sGC NS runs.

Parameter Constant

Compos. sGC

Total number of particles N 96 64

Number of configurations K 1080 1152

Number of evaluations per walk L 640 1166

Positions steps (number × length) 3 × 8 1 × 8

Cell steps (volume:shear:stretch) 3:3:3 16:8:8

Swap steps 6 8

Composition steps 0 8

sGC semi-grand canonical.
Swap steps exchange the species of a pair of atoms, while composition
steps change the species of a single atom (sGC only).

Table 5. Model validation for GAP and MTP models using the liquid
dataset.

RMS error GAP MTP

Energy (meV/atom) 15.4 10.9

Force (meV/Å) 224 241

Virial (meV/Å3) 8.3 12.7

Root mean square error of energy, force, and virial predictions for GAP and
MTP interatomic potentials validated against the Ag-Pd dataset of ~6000
liquid configurations subsampled from ab initio molecular dynamics using
VASP. The models were both trained using the same active-learning
dataset.
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forces, whereas GAP uses the same; meanwhile, GAP uses twice
the weights (half σ) for the virials.

Phonon predictions
The phonon eigenvalues computed from a force-constants matrix
for a crystal structure describe the energy required to excite a
specific vibrational mode within the crystal. For a potential to
closely reproduce a phonon spectrum, it must accurately
approximate the curvature of the potential energy surface for
small deformations from its relaxed geometry. Thus, while energy
and force validation provides useful insights into the accuracy of a
potential for specific points and their slopes on the potential
energy surface, validating against phonons gives insight into the
second derivatives of the energy surface. Historically, potentials
have successfully reproduced phonon spectra for certain compo-
sitions and configurations, but not generally for an entire alloy
system. To demonstrate the ability of our potentials to produce
accurate phonon band structures, we compare DFT- and IP-
calculated band structures for face-centered cubic (fcc)-type
derivative superstructures42 of cell sizes from 2 to 6; there are
65 of these cells.

DFT phonon dispersion curves
First, with DFT, we relaxed each configuration twice using
IBRION= 2 and ISIF= 3, which allows both cell shape and
volume to change during relaxation.
We then used phonopy to generate frozen phonon displace-

ments. For selecting the supercell, we enumerated the list of all
possible hermite normal form (HNF) matrices for each structure
and selected the HNF in each case that maximized the distance
between periodic images with a supercell size of >32 atoms. When
two HNFs were equivalent for both size and distance metric, we
selected the one with the larger point group. This procedure
allowed us to choose the smallest possible supercell with the
highest symmetry subject to the constraint of the maximal
distance between periodic images. See the discussion in the
appendix of ref. 57 for the utility of using HNF matrices in this
context.
Each of the displaced structures from phonopy were computed

using EDIFF= 1e− 8, ADDGRID= TRUE, ENCUT= 400, and
MINDISTANCE= 55 in Mueller’s k-point scheme.

Machine-learned phonon dispersion curves
Using both GAP and MTP, we demonstrate here that a single,
machine-learned potential can simultaneously approximate

phonons across the full compositional space for many configura-
tions, and with good accuracy. In Supplementary Figs. 1 –11, we
include additional phonon plots that cover a broad structure-
composition range. In this section, we have chosen two that are
interesting for discussion purposes.
In Fig. 2, we plot a typical phonon spectrum for a 50 at.% Ag

configuration with four atoms. For this structure, both GAP and
MTP approximate the eigenvalues along the special path well. The
RMSE, reported within parentheses, is the integrated error across
all eigenvalues in the Brillouin zone (BZ), sampled on a 13 × 13 ×
13 grid. Figure 3 shows a structure with a dynamic instability (i.e.,
negative phonons), as reported by DFT. For this structure, both
GAP and MTP learn and reproduce this instability, albeit with
different accuracies. Both figures demonstrate that the ability of
the IPs predicts dynamic changes due to small perturbations. In
Supplementary Figs. 1–11, we similarly plot 65 phonon spectra.
Table 6 provides statistics for the integrated error across all

65 structures for GAP and MTP. Both GAP and MTP predictions for
integrated error are close to 0.1 THz across the full validation set.
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Fig. 1 Cumulative probability of error plots for the liquid dataset. The liquid dataset consists of ~6000 configurations from a subsampled
MD run. From left to right, energy, force, and virial error probabilities are plotted, where the error is calculated relative to DFT. Mean errors are
given in Table 5.

Fig. 2 Prediction of the phonon dispersion curves for a 4-atom
structure with 50 at.% Ag. Both the RMS errors within parentheses
represent the integrated error across all eigenvalues sampled on a
13 × 13 × 13 grid in the Brillouin zone. GAP and MTP both provide
good approximations to the curves along the special path, although
each makes different errors in over- and underestimating the
eigenvalues at different k-points. Note that this configuration was
not included in the fitting dataset (“Prediction” in the plot title).
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Similar training and prediction errors indicate a good bias/
variance trade-off (not over-fitting). Importantly, these aggregated
results show that across a broad range of alloy compositions and
structures for Ag-Pd, machine-learned IPs are in good agreement
with DFT in the harmonic approximation for vibrational modes.

Transition pathway
As discussed in the “Introduction,” reduced transferability is the
price we pay for approximating quantum mechanics with high
accuracy. In general, a machine-learned IP is only valid within the
subspace in which it was trained. Although it is possible to apply
an IP outside of that space, the results will not be trustworthy. We
demonstrate this by computing the energy along a smooth, but
high energy, transition pathway between two structures. Figure 4
shows two Ag-Pd structures that are connected by a smooth
transition (essentially these two structures are identical, except
that the upper two atoms switch places). Although the cell must
enlarge slightly and distort, the atoms have a clear path to
transition from the starting configuration (index 1) to the final
configuration (index 11) without colliding. The total energy along
the path is also shown in Fig. 4. Note that in the figure, the y-axis is
the total energy, not the energy difference between distorted and
undistorted cases. Also note that y-axis scale is linear between −1
and +1 eV and logarithmic elsewhere in the upper plot. In the
starting configuration, the total energy is ~−16 eV. At its highest
point on the transition path, the energy is ~9.5 eV, a total

difference of ~25 eV. Such a high energy structure is not
problematic for DFT, but it is a big ask to expect a machine-
learned IP to accurately extrapolate to this kind of a structure if
similar structures were not included in the training dataset.
Nevertheless, the GAP does quite well. Although the absolute
error of its prediction for the top of the barrier is several eVs, the
qualitative behavior is correct.
Due to its more local basis functions and built-in regularization,

the GAP model provides reasonable physical behavior for the
transition between the starting and final configurations. MTP, with
its global polynomial basis functions, relies on active learning to
ensure that its predictions fall within the interpolation regime. As
part of its framework, MTP (like GAP) provides the extrapolation
grade25,43 to distinguish between configurations that can be
evaluated reliably and configurations that should be added to the
training set to avoid large extrapolation errors. In our test, MTP
correctly detects extrapolation, but has a much poorer extrapola-
tion behavior compared to GAP, and this is the price one pays for
using unregularised global basis functions. The active-learning
approach is general and could be applied to GAP too (using the
predicted variance of the underlying Gaussian process as a proxy

Fig. 3 Phonon dispersion curves for a 6-atom structure with 16 at.
% Ag. Both the RMS errors within parentheses represents the
integrated error across all eigenvalues sampled on a 13 × 13 × 13
grid in the Brillouin zone. According to DFT, this structure is not
dynamically stable. Both GAP and MTP recover this dynamic
instability, although GAP is more accurate. Note that this seed
configuration was included in the active-learned dataset that the
potentials were fitted to.

Table 6. Mean RMSE for phonon predictions when integrating errors
over the entire Brillouin zone.

Training error (THz) Prediction error (THz)

GAP 0.13 ± 0.05 0.13 ± 0.04

MTP 0.12 ± 0.03 0.11 ± 0.01

Eigenvalues were sampled at 13 × 13 × 13 k-points for 65 structures. Bands
for each of the 65 structures are plotted in the Supplementary information.
Both GAP and MTP have good agreement with DFT across the full phonon
spectrum.

Fig. 4 GAP and MTP predictions for the transition pathway. Since
there were no configurations in the training set along the middle of
the path, the MTP prediction is purely extrapolative and presents a
false, deep, local minimum. Because of its tight regularization, the
GAP prediction for this transition is reasonable. It underestimates
the barrier significantly due to the lack of training data, but does not
introduce a false minimum. Note the symmetric log scale (linear
between −1 and +1) on the y-axis in the upper plot. Above the plots
are configurations along the pathway. The upper Pd atom (blue)
at index 1 moves further into the page as the unit cell distorts. The
furthest Ag atom (red) simultaneously moves out of the page.
The lowest panel plots the expected variance of the GAP model and
the extrapolation grade of the MTP model. Predictive variance is
essentially the expected error per atom (in eV) along the transition
pathway and the extrapolation grade is a dimensionless quantity
indicating that if it exceeds ~10, then a configuration must be added
to the training set because the prediction of its energy is not
reliable.
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for extrapolation52), which would be expected to make its
predictions better too. This demonstration should be seen as a
warning in the application of machine-learned IPs generally. Using
such models safely requires understanding the properties of the
basis functions, how the training set was built, which parts of the
configuration space were included, and on. In the case of MTP, the
extrapolation grade should be used to check against representa-
tive samples from the configurations that are expected to be
encountered before embarking on large-scale molecular dynamics
simulations.

Phase diagram results
The success of the models in learning basic properties and
phonons motivates examining the temperature–concentration
phase diagram for the alloy system. We used NS with the MTP
model to find the liquidus–solidus line, calculate order–disorder
transition temperatures, and so on. The MTP model is significantly
faster than the current implementation of GAP, and this makes the
exploration of the phase space more practical. With respect to
speed, the final GAP potential uses 1075 basis functions vs. 569 for
the MTP potential. Note that MTP basis functions are polynomial,
whereas in our current GAP-SOAP, basis functions require the
calculation of an overlap integral. For example, investigation of a
single temperature slice of the phase space (for fixed composition
and pressure) requires >2 billion evaluations of the potential. This
cost is presently prohibitive for GAP but reasonable with MTP.

Liquid–solid transition
Inasmuch as NS cools down from a high-temperature gas phase,
we first reproduce the liquid transition behavior as a function of
temperature. Each solid line in Fig. 5 shows a trace of the
ensemble-averaged composition as a function of temperature that
results from a NS run at fixed Δμ= μAg− μPd. In the high-
temperature liquid and low-temperature solid regions, the
composition varies smoothly with temperature. The solid–liquid
transition is indicated by a sharper horizontal (along the
composition x-axis) jump, which we expect would become
discontinuous in the large system size limit. The width of the
approximate discontinuity indicates the width of the phase-
separated region.
As is clear from Fig. 5, the melting behavior of our MTP potential

qualitatively matches the experimental line58–62. However,
although the entire line has roughly the same shape, it is shifted
from the experimental results by ~200 K. The liquidus–solidus
gaps are also in reasonable agreement with experimental data
when the same shift of 200 K is included (added in Fig. 5 to
facilitate comparison). This shift in temperature is expected for
DFT with a Perdew–Burke–Ernzerhof (PBE) functional and has
been discussed in the context of other ab initio studies63–65. Since
the shift does not appear to be composition-dependent, the
trends are still reliable.
To further verify our NS results, we have also performed a

coexistence simulation of an equimolar Ag-Pd system with 16,384
atoms (8 × 8 × 64 four-atom cubic fcc cells). We ran a combined
molecular dynamics and Monte-Carlo simulation to model the
disordered phase. The coexistence simulations predicted the
melting point of ~1315 K as compared to ~1380 K as predicted by
our NS simulations. This is consistent with previous work showing
that for NS simulations the finite-size errors in the melting
temperature estimated using the full-width at half-maximum of
the heat capacity peak was ~200 K for 64 particles and 100 K for
128 particles (see the Supplementary information of ref. 40).

Solid–solid transition
Another stringent test of the potential is whether it can recover
the transition from a disordered solid solution to an ordered

phase. Experimentally, it appears that ordered phases are
kinetically inhibited by low transition temperatures and would
be unlikely to appear in experimental constitutional phase
diagrams. All reported phase diagrams59,66–68 typically show just
solidus and liquidus lines and indicate a solid solution below the
solidus (see Fig. 5), although one proposed phase diagram
guesses two solid–solid transitions, based on some reports of
ostensibly ordered phases58, reliable evidence for first-order
transformations in the solid state is lacking69. A careful review of
relevant experimental literature70–76 since 1961 (after ref. 58)
suggests that, when Ag-Pd samples are annealed in the air or
otherwise exposed to oxygen, the formation of oxide phases can
be misinterpreted as the effects of ordering. The experimental
literature does not agree on the stoichiometry of these oxide
phases, such phases have not been reported in samples not
exposed to oxygen, and no structural information for these phases
(e.g., from X-ray diffraction (XRD) studies) have been reported. It
seems reasonable that there is no formation of intermetallic
phases in the temperature ranges reported in the phase diagrams.
Since the melting transition was underestimated, we expected

that any disorder–order transition would also take place at a
reduced temperature, hence for the 1:1 composition system we
continued the sampling well below the melting temperature. As
shown in Fig. 5, which includes a region of the phase diagram
outside the experimental data, the order–disorder transition does
exist at 125 K for this system. Other computational works find the
transition temperatures to be similar to what we report here77–80.
In Fig. 6, we show the atomic ordering before and after this
transition. While the atomic views in panels (a) and (b) clearly
show ordering in the stacking planes, we also show simulated XRD
in panel (c) where the ordering is clearly discernible.

Fig. 5 Phase diagram determined by a semi-grand canonical
(sGC) and fixed-composition ensemble nested sampling (NS).
Solid lines show sGC NS composition as a function of temperature
for each Δμ= μAg− μPd, with approximately horizontal jogs indicat-
ing finite-size broadened discontinuities associated with the
liquidus–solidus (L–S) gap. Dotted lines indicate experimentally
observed L–S gap. Circles indicate constant composition NS specific
heat maxima corresponding to liquid–solid and solid–solid phase
transition temperatures. We have shifted all simulation results in this
figure up by 200 K to make it easier to compare the width of the L–S
gap with the experiment. The experimental liquidus and solidus are
adapted from several sources, refs. 66–68. The slight difference
between the NS results and coexistence results can be explained by
the system size: 64 atoms for NS and 16,384 atoms for coexistence.
Error bars for fixed-composition NS are the full-width half-maximum
obtained from the heat capacity peaks.
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Comparison to CE
As a reference, we include a comparison of the GAP and MTP
models to a state-of-the-art CE of the same Ag-Pd system81. Table
7 compares the training and validation errors of the GAP, MTP,
and CE models on the validation dataset used while building the
CE model. Note, however, that the training error reported for each
model is with respect to the training set used for that model. Since
CE does not train on off-lattice data, its training dataset is
different. We also include the number of basis functions in each
model. Because the CE basis is well suited to the configurational
degrees of freedom, relatively few basis functions are needed
compared to GAP and MTP. However, it is worth remembering
that the computational cost in evaluating a basis function in each
method is different so that these values are only somewhat
representative of computational cost.

DISCUSSION
CE has been a go-to tool for computing energies across
configuration space for alloys. Because of its speed and
applicability over the full range of compositions, it is useful for
performing ground-state searches, and even for temperature-
dependent phase mapping in certain systems. However, it cannot
address dynamic processes that involve structural perturbations,
which often limits its usefulness.
This work demonstrates that machine-learned IPs are nearly as

good as CE for on-lattice computation of energies81. Nevertheless,
for on-lattice systems where the atomic displacements are small,
CE is still the best choice. Ref. 38 discusses metrics to determine

when CE performs well as a function of atomic displacement. But
unlike CE, the machine-learned IPs can compute forces, virials, and
hessians across the compositional space as well. These additional
derivatives of the potential energy surface are sufficiently accurate
to approximate dynamic properties like phonon dispersion curves,
as well as map out the temperature-composition phase diagram
for an alloy. Software for creating datasets and fitting potentials is
readily available and easy to use. These potentials, therefore, offer
a viable alternative to CE models, and arguably represent the
future direction of first-principles computational alloy design.
Although the fitting errors are a factor of 2–3 larger for the GAP

and MTP on-lattice predictions, this could be due to lower k-point
errors in the DFT data for the CE work, where an “equivalent k-
point” scheme was used to provide fortuitous cancellation for
some of this error (but this is only possible in systems with small
lattice mismatch38). The predictions in all three methods are nearly
at DFT accuracies and sufficient for many practical alloy questions.

DATA AVAILABILITY
Data and models are available at https://github.com/msg-byu/agpd.
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