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We determine the couplings of the graviscalar radion in Randall-Sundrum models to Standard Model
fields propagating in the bulk of the space, taking into account effects arising from the dynamics of the
Goldberger-Wise scalar that stabilizes the size of the extra dimension. The leading corrections to the radion
couplings are shown to arise from direct contact interactions between the Goldberger-Wise scalar and the
Standard Model fields. We obtain a detailed interpretation of the results in terms of the holographic dual of
the radion, the dilaton. In doing so, we determine how the familiar identification of the parameters on the
two sides of the AdS/CFT correspondence is modified in the presence of couplings of the bulk Standard
Model fields to the Goldberger-Wise scalar. We find that corrections to the form of the dilaton couplings
from effects associated with the stabilization of the extra dimension are suppressed by the square of the
ratio of the dilaton mass to the Kaluza-Klein scale, in good agreement with results from the CFT side of the
correspondence.
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I. INTRODUCTION

The unambiguous discovery of a new scalar resonance
with the properties expected of the Standard Model (SM)
Higgs represents a milestone in the history of elementary
particle physics. A careful study of the properties of this
Higgs particle is expected to shed light on the dynamics
that drives electroweak symmetry breaking. At present, an
important open question is whether this state is an elemen-
tary particle, or a composite made up of more fundamental
constituents held together by some form of new strong
dynamics. Compositeness of the Higgs would allow a
simple resolution of the hierarchy problem, provided the
new strong dynamics kicks in at energies close to the weak
scale, and therefore constitutes a very compelling theoreti-
cal possibility. However, the generation of fermion masses
in composite Higgs scenarios is a challenge. The simplest
models involve new sources of flavor violation close to the
weak scale and are therefore disfavored by experiment.
An interesting class of composite Higgs models that can

resolve this flavor problem are those where the new strong
dynamics is conformal in the ultraviolet (UV). Strong
conformal dynamics allows the flavor scale in these
theories to be well separated from the weak scale, allowing
the stringent experimental limits on flavor changing neutral
currents to be satisfied. This scenario is closely related to
earlier proposals for suppressing flavor violation in tech-
nicolor models [1], (see also [2–5]). In this class of theories

the conformal symmetry is spontaneously broken at low
energies. As a consequence, if the conformal symmetry were
exact, the low energy spectrum would contain a massless
Nambu-Goldstone boson (NGB), the dilaton [6–10]. In this
limit the form of the dilaton couplings to the SM fields can
be completely determined from the requirement that the
conformal symmetry be realized nonlinearly.
In the theories of phenomenological interest, however,

the conformal symmetry is only approximate. It is explic-
itly violated by operators that are small in the UV but grow
large in the infrared (IR), thereby driving the breaking of
conformal symmetry. Provided the operator primarily
responsible for this breaking has a scaling dimension close
to marginal, the theory can remain approximately con-
formal for enough decades in scale for the flavor problem to
be addressed. However, as a consequence of the explicit
breaking, the dilaton is not massless and its couplings
receive corrections. It is important, therefore, to understand
the exact circumstances under which the dilaton can remain
light and to determine the size and form of the corrections
to its couplings.
Recently, several authors have studied the conditions

under which the low energy spectrum contains a light
dilaton [11–13]. The general picture that has emerged is
that if the operatorO primarily responsible for the breaking
of conformal symmetry is close to marginal at the breaking
scale, the mass of the dilaton can naturally lie below the
scale of the strong dynamics. This result is explained by the
fact that the extent of explicit conformal symmetry viola-
tion at the breaking scale depends not just on the size of the
deformation associated with O, but also on the deviation
from marginality of the operatorO. In particular, the theory
will retain an approximate conformal symmetry if the
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operator O is very close to marginal, independent of the
size of the deformation. In such a scenario, even if the
deformation is large, the dilaton can naturally be light
provided O is close to marginal at the breaking scale.
Unfortunately, unless the theory possesses some special
feature, this condition is not expected to be satisfied and the
dilaton is not light. The underlying reason for this is that,
even if the operatorO that drives the breaking of conformal
symmetry is indeed close to marginal in the UV, as in the
theories of phenomenological interest, its scaling behavior
is expected to receive big corrections when the deformation
grows large. Therefore, in general O does not remain
marginal near the breaking scale where the deformation is
large. As a consequence, the presence of a light dilaton in
the spectrum is not a robust prediction of the class of
theories of interest for electroweak symmetry breaking.
One special class of theories where the dilaton can

naturally remain light are those which possess not just a
single isolated fixed point, but an entire line of fixed (or
quasifixed) points. This feature, which is quite common in
supersymmetric theories, allows the deformation to remain
marginal at the breaking scale. Other constructions which
admit the possibility of a naturally light dilaton are gauge
theories that lie near the edge of the conformal window
[14]. One scenario which allows the spectrum of light states
to contain a dilaton, albeit at the expense of mild tuning,
arises if the breaking of conformal symmetry occurs before
the deformation associated withO reaches its natural strong
coupling value. In this limit, because the size of the
deformation is small, the corresponding corrections to
the scaling behavior of the operator O at the breaking
scale are also suppressed, allowing it to remain close to
marginal. Then, the limited extent to which conformal
symmetry is violated allows the dilaton to remain light. In
general, however, the conformal symmetry is not expected
to break until the deformation becomes large, so this
scenario is associated with tuning. This tuning is mild,
however, scaling only linearly with the mass of the dilaton
[11,12]. Therefore, the presence in the low energy spectrum
of a dilaton with a mass just a factor of a few below the
compositeness scale is associated with only modest tuning.
From this discussion we see that a light dilaton can arise in
several different realistic scenarios, and therefore the
dynamics of theories with a light dilaton remains a problem
of phenomenological interest.1

The form of the dilaton couplings to the SM states has
been determined in the limit that effects that explicitly
violate conformal symmetry are neglected. Both the case
when the SM matter and gauge fields are composites
emerging from the strong dynamics [19,20], and the case
when they are external elementary states [11,12,21], have
been studied. Corrections to the form of the dilaton

couplings arising from explicit conformal symmetry vio-
lating effects have also been studied [11], and found to
scale as the square of the ratio of the mass of the dilaton to
the strong coupling scale. A physical understanding of this
result may be obtained by noting that in the theories of
interest with a light dilaton, the operator O is close to
marginal at the breaking scale, even though the deformation
associated withOmay be large. IfO were exactly marginal
the conformal symmetry would be exact, and independ-
ently of the size of the deformation, the dilaton couplings
would be of the form dictated by nonlinearly realized
conformal invariance. In this limit, the corrections to the
dilaton couplings that arise from the deformation do not, in
general, vanish. However, these effects can be exactly
absorbed into corresponding changes in the low energy
parameters, leaving the form of the interactions unchanged.
The size of the corrections to the form of the dilaton
couplings is therefore dictated not just by the size of the
deformation, but also by the deviation from marginality of
the operator O at the breaking scale. However, as noted
above, it is precisely these two effects that also determine
the dilaton mass. Therefore, the size of the corrections to
the form of the dilaton couplings is correlated with the mass
of the dilaton. These corrections are therefore small and
under good theoretical control if the dilaton is light. If,
however, the deformation is large and the scaling behavior
of the operator O deviates significantly from marginality,
the dilaton mass is raised to the strong coupling scale, and
the corrections to the form of the dilaton couplings become
of order one.
The AdS/CFT correspondence [22–25] relates theories

of strong conformal dynamics to theories of gravity in
higher dimensions. Theories of phenomenological interest
where the strong conformal dynamics is spontaneously
broken giving rise to a composite Higgs are dual [26,27]
to Randall-Sundrum (RS) models [28] where the extra
dimension is negatively curved and finite, with a brane at
either end. In this correspondence, the dilaton is dual to
the radion, the excitation corresponding to fluctuations in
the size of the extra dimension [26,27]. In the original RS
model, the hierarchy between the Planck and weak scales
depends on the brane spacing, which is a free parameter.
In this limit the radion is massless. The brane spacing, and
the associated Planck-weak hierarchy, can be stabilized
using the Goldberger-Wise (GW) mechanism [29]. This
mechanism introduces a bulk scalar field Φ which is
sourced on the two branes, and has a potential in the bulk.
It therefore acquires a vacuum expectation value (VEV)
which varies as a function of position in the extra
dimension, and contributes to the vacuum energy.
Consequently, the brane spacing is stabilized and the
radion acquires a mass. Since the RS model is one of the
most promising candidates for physics beyond the SM, it
is important to obtain an understanding of the mass and
couplings of the radion in this framework.

1String motivated constructions that can give rise to a light
dilaton have been considered, for example, in [15–18].
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By holography the GW scalar Φ is dual to the CFT
operator O, whose dynamics drives the breaking of
conformal symmetry. Sourcing the GW field corresponds
to a deformation of the CFT by this operator, with the VEV
of the GW field corresponding to the size of the deforma-
tion. The bulk mass term for the GW field is related to the
scaling dimension of O, while the self-interaction terms in
the bulk potential for Φ correspond to corrections to the
scaling behavior of O that are important when the defor-
mation grows large.
The conditions under which the low energy spectrum of

the RS model contains a light radion after stabilization
have been studied, and found to agree with the results for
the dilaton from the CFT side of the correspondence
[13,30,31]. The desired large hierarchy of scales can
naturally arise if the mass term for the GW scalar is small.
This corresponds to the scaling dimension of the dual
operator O being close to marginal. However, for the
spectrum to naturally contain a light dilaton, the coeffi-
cients of the self-interaction terms for the GW scalar must
also lie below their natural strong coupling values. From
the dual perspective this ensures that the corrections to the
scaling behavior of O from the deformation remain small,
even when the deformation itself is large, so thatO remains
close to marginal at the breaking scale. However, unless the
5D construction possesses some special feature, in general
the self-interaction terms are not small and this condition is
not satisfied. Therefore, the presence of a light radion in the
low energy spectrum below the Kaluza-Klein (KK) scale is
not a robust feature of RS models [30].
One special class of theories where the radion can

naturally remain light are those where the GW scalar arises
as the pseudo-Nambu Goldstone boson (pNGB) of an
approximate global symmetry. In this case the mass and
self-interaction terms in the potential for the GW scalar can
naturally be small, thereby allowing the radion mass to lie
below the KK scale. Several authors have considered this
limit and found that the radion is indeed light, its mass
scaling as the mass of the GW scalar [30,32,33]. Careful
studies have shown that the inclusion of gravitational
backreaction does not alter this conclusion [13,31,34,35].
This corresponds in the dual theory to the case when the
CFT possesses a line of quasifixed points. An alternative
scenario which allows the spectrum of light states to contain
a radion, albeit at the expense of mild tuning, arises if, after
stabilization, the VEV of the GW scalar in the neighbor-
hood of the IR brane lies below its natural strong coupling
value. This is dual to the 4D operator corresponding to O
being below its strong coupling value at the breaking scale.
In this limit, the overall contribution of the GW field to the
potential for the radion and the effects of the self-interaction
terms are both suppressed, allowing the radion to remain
light. Although such a scenario is associated with tuning,
the tuning is mild, scaling only linearly with the ratio of the
mass of the radion to the KK scale [30].

Since the radion is the graviscalar excitation of the metric
[28], the form of its interactions follows from general
covariance [29]. The radion couplings to SM fields have
been determined, both in the case of brane-localized matter
[36–39], and in the case of matter in the bulk [40,41]. The
dynamics associated with stabilization of the extra dimen-
sion leads to corrections to these couplings. Previous work
to determine the form of these corrections was restricted to
the technically simpler case of brane-localized fields [30].
In the dual picture, this corresponds to the case when all
the SM fields are composites of the strong dynamics. The
results obtained are in good agreement with those from the
CFT side of the correspondence. The goal of this paper is to
extend this analysis to the case when the SM matter and
gauge fields reside in the bulk of the space. This scenario,
which admits an elegant solution to the SM flavor problem
[42–45], corresponds in the dual picture to the SM fermions
arising as partial composites of elementary particles and
CFT states [46].
In what follows, we consider a scenario where the SM

gauge bosons and fermions propagate in the bulk of the RS
geometry, but the Higgs is localized to the IR brane. We
stabilize the brane spacing by employing a GW scalar Φ
that is sourced on the branes and determine the radion
couplings to the bulk SM fields. This construction allows
direct couplings of the GW scalar to SM fields in the bulk.
To leading order in Φ, these couplings take the schematic
form ffiffiffiffiffiffiffi

jGj
p

OSMΦ: ð1:1Þ

Here G is the determinant of the 5D RS metric, and OSM is
a gauge invariant operator composed of bulk SM fields.
Brane localized interactions between the GW scalar and the
SM fields are also expected to be present. The operators in
(1.1) affect the masses and interactions of the fields in the
low energy effective theory. We find that the leading
corrections to the radion couplings to the SM fields arise
from such terms, and perform a careful calculation to
determine their effects. One might expect that the effects of
the stabilization mechanism on the radion profile would
lead to corrections to the radion couplings, even in the
absence of direct couplings of the GW scalar to the SM
particles. However, we show in Appendix A that these
effects are much smaller than the corrections obtained from
operators of the form (1.1).
We obtain a detailed interpretation of our results in terms

of the holographic dual of the radion, the dilaton. In doing
so, it is important to take into account the fact that the
familiar identification of the parameters on the two sides of
the AdS/CFT correspondence is modified in the presence of
couplings of the bulk SM fields to the GW scalar. This is
because one class of corrections to the radion couplings can
be completely absorbed into changes in the parameters of
the dual theory, and do not affect the form of the dilaton
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interactions. As in the case of brane-localized SM fields, we
find that all corrections to the form of the dilaton couplings
are suppressed by the square of the ratio of the dilaton mass
to the KK scale, in good agreement with results from the
CFT side of the correspondence.
These results have implications for phenomenological

studies of the radion. Several authors have investigated the
possibility that the resonance observed at 125 GeV is not
the SM Higgs, but a dilaton/radion, for example [47–54].
Studies have also been performed using LHC data to place
limits on the mass of the radion in RS models [55–59], and
investigating the prospects for detecting the radion at the
LHC [60] and future colliders [61]. The dilaton has been
investigated as a possible mediator of the interactions of
dark matter with the SM [62–65]. It has been shown that in
certain theories the presence of a light radion can help
explain the baryon asymmetry [66]. In all these cases, an
understanding of the size of the corrections to the radion
couplings is necessary to understand the robustness of the
conclusions.
The outline of this paper is as follows. In Sec. II we

provide the details of the GWmechanism that stabilizes the
extra dimension and results in the radion acquiring a mass.
We also explain the origin of the corrections to the radion
couplings. In subsequent sections, we consider in turn the
massless gauge bosons, massive gauge bosons, and fer-
mions of the SM. For each case we determine the radion
couplings and interpret the results from a holographic point
of view. Details of the calculation are presented in the
appendices.

II. RADION DYNAMICS

In this section, we outline the steps involved in obtaining
the mass and couplings of the radion in the presence of
the GW mechanism. The discussion in this section closely
follows [30], and only the most relevant features are
presented here. We begin with the 5D action for the RS
model in the absence of stabilization,

S ¼
Z

d4xdθ½
ffiffiffiffi
G
p
ð−2M3

5R½G� − ΛbÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi−GUV

p
δðθÞTUV

− ffiffiffiffiffiffiffiffiffiffiffi−GIR

p
δðθ − πÞTIR�: ð2:1Þ

Here M5 is the 5D Planck mass, Λb is the bulk cosmo-
logical constant, and TUV, TIR are the brane tensions on the
UV and IR branes. The extra dimensional coordinate θ is
compactified over S1 and the region ½−π; 0Þ is identified
with ½0; πÞ by a Z2 symmetry. The locations θ ¼ 0; π
correspond to the locations of the UV and IR branes
respectively. The static metric2 that describes the geometry
of the two brane RS model is obtained as the solution to the
5D Einstein equations and can be written as

ds2¼ e−2krcjθjημνdxμdxν− r2cdθ2 −π ≤ θ< π: ð2:2Þ

Here k is the inverse curvature and the constant rc is
proportional to the distance between the two branes. The
parameter k is related to the bulk cosmological constant and
5D Planck scale by

Λb ¼ −24M3
5k

2: ð2:3Þ

A condition for the existence of a static solution of this
form is that the brane and bulk cosmological constants
satisfy the relation Λb ¼ kTIR ¼ −kTUV. The value of rc is
a free parameter, corresponding to the fact that the brane
spacing in the RS solution is undetermined. When we
include a stabilization mechanism for the size of the extra
dimension, we can detune the tension of the IR brane away
from the RS value and still obtain a static solution [29].
When fluctuations about this background are considered,

the low energy spectrum is found to contain, in addition to
the massless 4D graviton, a massless radion field associated
with the fluctuations of the brane spacing. To obtain the low
energy effective theory for the light fields, we replace in the
5D metric ημν by the dynamical field gμνðxÞ and rc by rðxÞ.
These fields are identified with the 4D graviton and the
radion fields respectively. The metric is then substituted
back into the 5D action. After integrating over the extra
dimension, the resulting 4D action describes the low energy
effective theory of the graviton and the radion,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

2M3
5

k
R½gμν� þ

1

2
∂μφ∂μφ

�
: ð2:4Þ

Here φ represents the canonically normalized radion field
and is related to rðxÞ by

φðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
24M3

5

k

s
e−kπrðxÞ: ð2:5Þ

The absence of a potential for φ reflects the fact that the
value of rc is undetermined. Stabilization of the extra
dimension is accomplished by adding a bulk GW scalar Φ
to the theory. This scalar acquires a θ dependent VEV,
Φ̂ðθÞ, from potentials on the branes and in the bulk. Its
VEV is also a function of rc. The Lagrangian for the 4D
effective theory, including the contribution of the GW field,
may be obtained in the same manner as before. Specifically,
after replacing rc by rðxÞ, Φ̂ is substituted back into the
action and the integration over the extra dimension is
performed. The resulting 4D action includes the contribu-
tion of the GW scalar to the low energy theory. This effect
generates a potential for φ that, when minimized, fixes rc
and gives mass to the physical radion field.
To understand this in more detail, consider the action for

the GW scalar,2We use (þ − − − −) signature.
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SGW ¼
Z

d4xdθ

� ffiffiffiffi
G
p �

1

2
GAB∂AΦ∂BΦ − VbðΦÞ

�

− X
i¼IR;UV

δðθ − θiÞ
ffiffiffiffiffiffiffiffiffi−Gi

p
ViðΦÞ

�
: ð2:6Þ

Here VUV and VIR are the potentials on the UV and IR
branes and Vb is the potential in the bulk. For simplicity, we
choose to work with a linear potential on the IR brane,

VIR ¼ 2αk5=2Φ: ð2:7Þ

This is a consistent choice if Φ is not charged under any
symmetries, and the qualitative features of our results do
not depend on the specific form of this potential. On the UV
brane we do not specify a form of the potential but require
that the value of Φ is k3=2v. This requirement is satisfied for
many choices of potentials including the one considered in
the original GW proposal [29]. In order to generate a
sizable hierarchy, the size of the extra dimension must be
large in units of the curvature. To accomplish this, we
require that v be somewhat smaller than its natural strong
coupling value.
The bulk potential for Φ is of the general form

VbðΦÞ ¼
1

2
m2Φ2 þ 1

3!
ηΦ3 þ 1

4!
ζΦ4 þ � � � : ð2:8Þ

The bulk mass parameter m2 of the GW scalar must be
small in units of the inverse curvature k to address the large
Planck-weak hierarchy. However, there are no such require-
ments on the cubic and higher order terms. This can be
understood from the holographic perspective. AdS/CFT
relates the extra dimensional coordinate θ to the renorm-
alization scale μ in the dual 4D theory, logðk=μÞ ∼ krcθ.
The duality also relates the value of the GW field ΦðkrcθÞ
at any point θ in the bulk to the size of the coefficient of the
operator that deforms the dual CFT at the corresponding
scale μ. Therefore, requiring that the value of v on the UV
brane be small corresponds to requiring that the size of the
deformation be small at high scales μ ∼ k. Then, if the bulk
mass term is also small, the initial growth in the value of Φ
is slow, allowing a large hierarchy to develop. In the dual
picture, the mass of the GW scalar is related to the scaling
dimension of the dual operator. A massless scalar corre-
sponds to an exactly marginal deformation, while a
negative mass squared for Φ corresponds to a relevant
operator in the dual CFT. Note that a negative mass squared
for Φ in AdS space is free from any instabilities for jm2j ≤
4k2 [67] and corresponds to the scaling dimension of the
operator in the dual theory being relevant. If the mass term
is small and negative, the deformation is relevant, but close
to marginal. This allows the coefficient of this relevant
operator to start at a small value at high energies and grow
slowly, leading to a large hierarchy before it eventually

becomes strong enough to trigger breaking of the con-
formal symmetry. This is the scenario we shall focus on.
Higher order terms in the bulk potential correspond to

corrections to the scaling behavior of the dual operator that
become important when the deformation grows large. As
the value of Φ becomes large close to the IR brane, the
higher order interaction terms are expected to dominate
over the suppressed mass term unless they are also small
from symmetry considerations, as in the case where Φ is a
pNGB. For simplicity, we consider a scenario where the
detuning of the IR brane tension away from the pure RS
solution is slightly below its natural strong coupling value
by a factor that could be as small as a few [30]. This allows
the extra dimension to be stabilized when the VEV of the
GW field in the neighborhood of the IR brane is also
slightly below its natural strong coupling value. This limit
captures the qualitative features we are interested in, but
allows the gravitational backreaction to be neglected. In the
dual picture, this corresponds to the assumption that
the breaking of conformal symmetry is triggered when
the deformation is still slightly below its strong coupling
value. For this choice of parameters the cubic self-
interaction term in the GW potential is expected to
dominate over the other higher order terms. Therefore,
in what follows, we keep only the mass and cubic terms in
the bulk potential for Φ and neglect the higher order terms.
This limit also allows an approximate solution to the

equations of motion for Φ̂. The equations and the boundary
conditions are given by

∂2
θΦ̂−4krc∂θΦ̂− r2cm2Φ̂−r2c

η

2
Φ̂2¼ 0

θ¼ 0∶ Φ̂¼ k3=2v; θ¼ π∶ ∂θΦ̂¼−αk3=2krc: ð2:9Þ

For notational simplicity, we trade the parameters m and η
in the bulk potential of Φ for ϵ and ξ, which are given by

ϵ≡ m2

4k2
; ξ≡ ηv

8
ffiffiffi
k
p : ð2:10Þ

In the limit that the hierarchy is large, krc ≫ 1, the solution
of this equation exhibits boundary layer structure [30]. This
allows an approximate solution to be obtained using
boundary layer analysis. Using these methods, the solution
for Φ̂ is found to be of the form

Φ̂ðθÞ ¼ − k3=2α
4

e−4krcðπ−θÞ þ Φ̂ORðkrcθÞ

¼ − k3=2α
4

e−4krcðπ−θÞ þ k3=2ve−ϵkrcθ
1þ ξð1 − e−ϵkrcθÞ=ϵ :

ð2:11Þ

While we have been specific about the krcθ dependence of
Φ̂OR in the above expression, we shall usually just write
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Φ̂ORðθÞ. Several features of this classical solution are now
apparent:

(i) The boundary region term, proportional to α, is
exponentially suppressed as long as one is away
from the region π − θ ≲ ϵ. This region is the
“boundary layer” where the α term becomes im-
portant in the classical solution and Φ̂ changes very
quickly. In the dual 4D theory, this region corre-
sponds to the energy scales at which the phase
transition associated with the spontaneous breaking
of conformal symmetry occurs.

(ii) The second term, or outer region solution Φ̂ORðθÞ,
depends on the mass m2 and the cubic coupling η. If
we make the cubic coupling small by setting ξ to
zero and work in the limit ϵ < 0; jϵj ≪ 1, Φ̂ grows
slowly with θ, allowing a large hierarchy to be
realized. As discussed above, a negative mass
squared corresponds to the operator in the dual
theory having a relevant scaling dimension.

(iii) In the presence of a nonzero ξ in Φ̂OR, the VEVagain
starts small and grows slowly, its growth controlled
by the small parameter ϵ. For θ away from π, the
term multiplying ξ is small and shields the effect of a
nonzero ξ. As θ approaches π, however, the presence
of ξ cannot be ignored. Choosing a negative ξ (and
equivalently η) leads to a faster growth of Φ̂ as θ
approaches π. The cubic term is dual to the leading
correction to the scaling behavior of the dual
operator.

We see that the qualitative features of this classical
solution can be understood from holography and allow us
to identify the range and sign of parameters in the AdS side
of the correspondence. A plot comparing the classical
solutions in the presence and absence of the cubic term is
shown in Fig. 1. We see that in the presence of the
additional cubic interaction, Φ̂ starts out the same but then
grows faster with increasing θ.
Once rc is made dynamical, Φ̂ generates a contri-

bution to the radion potential leading to a mass for the
radion.3 The dynamics associated with radion stabili-
zation affects the couplings of the radion field. In
general, the GW scalar has contact interactions with
the SM fields. Once Φ acquires a VEV, these inter-
actions alter the parameters in the low energy theory
and correct the radion couplings to SM states. To
understand schematically how these effects arise, con-
sider the following operator which couples Φ to the
SM fields,

L ⊃
ffiffiffiffi
G
p

OSMðx; θÞ
ΦðθÞ
k3=2

: ð2:12Þ

Here OSM is a gauge invariant operator made of SM fields.
The operator in Eq. (2.12) is expected to be present in the
absence of any symmetries that prohibit it. In the limit of
small backreaction, Φ̂ is slightly below its natural strong
coupling value, so that this operator is expected to dominate
over similar terms involving higher powers of Φ̂. Replacing
rc by rðxÞ and working in terms of the canonical radion φ,
Φ̂ can be expanded as

Φ̂ðθ;φðxÞÞ ¼ Φ̂ðθ; fÞ þ ∂φΦ̂ðθ; fÞðφ − fÞ þ � � � ; ð2:13Þ

where f ¼ hφi. After substituting this expansion into
Eq. (2.12), performing a KK expansion and integrating
over the extra dimension, we find that the first term in the Φ̂
expansion can be absorbed into redefinitions of the param-
eters of the theory, while the second and subsequent terms
generate corrections to the coupling of the radion to the
zero modes of the SM fields contained in OSM.
In the next few sections, we determine the couplings of

the radion to bulk fields such as SM gauge bosons and
fermions, focusing on how operators like Eq. (2.12) modify
the leading order story. To write the corrections to radion
couplings in a meaningful form, we define d

dðkrcθÞ Φ̂≡ Φ̂0.
Then, to leading order in Φ̂0OR and e−kπrc , we find

m2
φ

Λ2
IR
¼ − αk3

6M3
5

k−3=2Φ̂0ORðkrcπÞ; ð2:14Þ

k3 2
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FIG. 1 (color online). A comparison of the classical solution for
Φ̂ in the presence of an additional cubic bulk interaction term
(solid line) compared to only having a bulk mass term (dashed),
on a log scale for θ. The choice of parameters are ϵ ¼ −0.1,
kπrc ¼ 10, v ¼ 0.05, α ¼ −0.5, ξ ¼ −0.03. The effect of the
cubic term is negligible near the θ ¼ 0 boundary, but becomes
important for larger θ.

3The radion potential also receives contributions from the SM
gauge bosons and fermions in the bulk through the Casimir effect
[68,69]. Since this contribution is loop suppressed, it is much
smaller than the classical effect associated with the GW scalar,
and can be neglected.
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where mφ is the mass of the radion and ΛIR ∼ ke−kπrc is the
KK scale. We note that in the two physical limits where the
interactions are suppressed (η → 0) or the mass is very
small (m2 → 0), the expression for Φ̂OR simplifies consid-
erably,

Φ̂ðθÞ ¼ − k3=2α
4

e4krcðθ−πÞ

þ

8>><
>>:

k3=2ve−ϵkrcθ ; ξ → 0

ðk3=2vÞ=ð1þ ξkrcθÞ; ϵ → 0

; ð2:15Þ

and Eq. (2.14) can be simplified to

η → 0∶
m2

φ

Λ2
IR
¼ αk3

6M3
5

ϵve−ϵkrcπ

m2 → 0∶
m2

φ

Λ2
IR
¼ αk3

6M3
5

ξv
ð1þ ξkπrcÞ2

: ð2:16Þ

These results may be obtained by analyzing the minimi-
zation condition for the radion potential and the expressions
for the mass of the radion in each case [30].

III. MASSLESS GAUGE BOSONS

In this section, we determine the radion couplings to the
massless gauge bosons of the SM, the photon and the
gluon. We begin by considering the theory in the absence of
a stabilization mechanism. The relevant part of the action is
given by

S ¼
Z

d4 x dθ

�
− δðθÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi−GUV

p
4g2UV

F2

−
ffiffiffiffi
G
p

4g25
F2 − δðθ − πÞ ffiffiffiffiffiffiffiffiffiffiffi−GIR

p
4g2IR

F2

�
; ð3:1Þ

where F2 ¼ GMKGNLFMNFKL and gUV, g5, and gIR re-
present the gauge couplings on the UV brane, in the bulk,
and on the IR brane.
After KK decomposition of the 5D action, we find that

the spectrum of gauge bosons consists of a massless zero
mode and heavier KK modes. The zero mode, which is
identified with the corresponding massless gauge boson of
the SM, has a flat profile in the extra dimension. To obtain
the effective theory involving the massless mode, which we
denote by AμðxÞ, we simply replace Aμðx; θÞ by AμðxÞ in the
action and integrate over the extra dimension. Then the
Lagrangian for the massless gauge bosons in the 4D
effective theory takes the form

− 1

4

1

g24
FμνFμν; ð3:2Þ

where the 4D gauge coupling g4 at the KK mass scale is
related to the underlying parameters of the 5D theory by

1

g24
¼ 1

g2UV
þ 2πrc

g25
þ 1

g2IR
: ð3:3Þ

To obtain the coupling of the zero mode to the radion, we
substitute the metric from Eq. (2.2) into Eq. (3.1) and
promote rc to a dynamical field rðxÞ. Expressing the result
in terms of the canonically normalized radion field φ and
expanding about its VEV hφi ¼ f, we obtain the coupling
of the zero mode to the physical radion ~φ ¼ φ − f. The
result, in a basis where the gauge kinetic term is normalized
as in Eq. (3.2), takes the form [40,41]

1

2kg25

~φ

f
FμνFμν; ð3:4Þ

where indices are raised and lowered using the Minkowski
metric ημν. In contrast to the case of massless gauge bosons
localized on the IR brane [38], we see that in this scenario
the classical contribution to the coupling does not vanish. In
Appendix D we estimate the natural size of the bulk gauge
g5 coupling in units of k. We find that 1=2kg25 is expected to
be small, 1=2kg25 ≪ 1.
The one-loop quantum contribution to the radion cou-

pling to the massless gauge bosons is also important,
potentially comparable in size to the effect in Eq. (3.4).
To determine this effect, note that the value of the 4D gauge
coupling below the KK scale is in general a function of the
background radion field. At low energies, the 4D gauge
coupling satisfies a one-loop renormalization group (RG)
equation of the form

d
d log μ

1

g2ðμÞ ¼
b<
8π2

; ΛIR ≥ μ ≥ 0; ð3:5Þ

where ΛIR represents the cutoff of the 4D effective theory
and scales with rc as

ΛIR ∼mKK ∼ ke−kπrc : ð3:6Þ
The value of the gauge coupling at the cutoff gðΛIRÞ is
identified with g4 in Eq. (3.3). The quantity b< receives
contribution from the particles in the spectrum below ΛIR
that run in the loops that renormalize the gauge coupling.
We can solve Eq. (3.5) to obtain the 4D gauge coupling at
scales μ < ΛIR:

1

g2ðμÞ ¼
1

g24
− b<
8π2

log

�
ΛIR

μ

�
: ð3:7Þ

To compute the corresponding one-loop contribution to the
radion-gauge boson vertex, we promote the parameter rc
contained in ΛIR in Eq. (3.7) to a dynamical field and
expand about its VEV. The kinetic term in the low energy
theory
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− 1

4g2ðμÞFμνFμν ð3:8Þ

then generates a coupling to the normalized radion that is
given by

b<
32π2

~φ

f
F2
μν: ð3:9Þ

Combining this with (3.4), the full radion coupling is
given by �

1

2kg25
þ b<
32π2

�
~φ

f
FμνFμν: ð3:10Þ

To understand this result from a holographic point of
view, recall that the AdS/CFT dictionary relates the bulk
coordinate θ to the RG scale μ in the dual theory. The
position of the UV brane corresponds to the cutoff ΛUV ∼ k
of the CFT, while the position of the IR brane is associated
with the scale ΛIR ∼ ke−kπrc , where the CFT is sponta-
neously broken. Holography also relates a bulk gauge
symmetry in the two brane AdS space to the weak gauging
of a global symmetry in the dual CFT [26,27]. In general,
this gauge coupling is expected to run with the RG scale:

d
d log μ

1

g2ðμÞ ¼
b>
8π2

; ΛUV ≥ μ ≥ ΛIR: ð3:11Þ

To relate b> to the parameters of the dual AdS theory, we
take the following approach. Consider moving the UV
brane from θ ¼ 0 to an arbitrary point θ ¼ θ0 in the bulk.
This corresponds to lowering the cutoff of the theory from
ΛUV ∼ k to the scale Λ0, given by

ΛUV expð−kθ0rcÞ ¼ Λ0: ð3:12Þ

The parameter b> can be determined by studying the
corresponding change in the gauge coupling. We split the θ
integral in the 5D action Eq. (3.1) into two parts, one from 0
to θ0 and another from θ0 to π,

S ¼ Sθ<θ0 þ Sθ>θ0 : ð3:13Þ

Substituting the zero mode back into the action, we
evaluate the contribution to the θ integral from θ < θ0
and match to the theory with the lower cutoff. This
determines the correction to the brane localized kinetic
term localized at θ0,

1

g2UVðθ0Þ
¼ 1

g2UV
þ 2θ0rc

g25
: ð3:14Þ

The effective 4D gauge coupling at the scale Λ0, which we
denote by g4ðΛ0Þ, is equal to gUVðθ0Þ (up to small
corrections of order g2UV=kg

2
5). This allows us to obtain

the beta function at the scale Λ0,

b>
8π2

≡ d
d logΛ0

1

g2UVðΛ0Þ
¼ −

1

krc

d
dθ0

1

g2UVðθ0Þ
¼ − 2

kg25
: ð3:15Þ

Notice that the expression for b> is independent of Λ0.
Using this, we can rewrite Eq. (3.10) as4

b< − b>
32π2

~φ

f
FμνFμν: ð3:16Þ

This expression agrees with results obtained directly from
the CFT side of the correspondence [11,12].
We now include the effects of stabilization. In the dilaton

case, the corrections to the form of Eq. (3.16) arising from
the explicit breaking of the CFT are one-loop suppressed
and scale asm2

φ=Λ2
IR, wheremφ is now the dilaton mass and

ΛIR is the cutoff of the effective theory where we expect
composite states to appear. For the radion, the leading
corrections arise from direct couplings of the GW scalar to
gauge bosons in the bulk and on the branes. To leading
order in Φ, the effect is captured by

Lint ¼
Φ

k3=2

�
−βUV δðθÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi−GUV

p
4g2UV

F2

− β

ffiffiffiffi
G
p

4g25
F2 − βIR

δðθ − πÞ ffiffiffiffiffiffiffiffiffiffiffi−GIR
p

4g2IR
F2

�
: ð3:17Þ

Here βUV; β and βIR are dimensionless numbers. When we
replace Φ by its VEV and consider fluctuations of the
radion about its background value, these interaction terms
generate corrections to the 4D gauge coupling in the low
energy effective theory, and to the radion coupling to the
gauge bosons. Gauge invariance requires that the zero
mode AμðxÞ continue to have a flat profile even in the
presence of the Φ terms, but the relationship between the
4D gauge coupling g4 and the underlying 5D parameters of
Eq. (3.3) now becomes

1

g24
¼ 1

g2UV

�
1þ βUV

Φ̂ð0Þ
k3=2

�

þ 2rc
g25

Z
π

0

dθ

�
1þ β

Φ̂ðθÞ
k3=2

�
þ 1

g2IR

�
1þ βIR

Φ̂ðπÞ
k3=2

�
:

ð3:18Þ

When determining the corrections to the couplings of the
radion arising from the GW field it is useful to employ the
identity

4In determining b> in Eqs. (3.14) and (3.15), we have not
taken into account the quantum contributions from states local-
ized on or toward the UV brane. However, because these states
contribute equally to b< in Eq. (3.5), their net contribution to
b> − b< in Eq. (3.16) vanishes. As a consequence, they do not
affect the final result.
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Φ̂ðθÞjr¼rcþδr ¼ Φ̂ðθÞjr¼rc þ δrk5=2αðπ − θÞe−4krcðπ−θÞ
þ δrθkΦ̂0ORðθkrcÞ; ð3:19Þ

with Φ̂0OR ≡ d
dðkrcθÞ Φ̂OR. After integrating over the extra

dimension the contribution to the radion coupling from
classical effects is obtained as�

1

2kg25

�
1þ β

k3=2
Φ̂ORðπÞ

�
þ βIR
4g2IRk

3=2 Φ̂
0
ORðπÞ

�
~φ

f
FμνFμν:

ð3:20Þ

In this expression we have dropped the negligible
contribution proportional to the α term in Φ̂ that only
receives support from the boundary region. This classical
contribution must be added to the contribution arising from
quantum effects, which remains of the same form as
Eq. (3.9).
From Eq. (2.14) we see that the final term in brackets in

Eq. (3.20) scales as m2
φ=Λ2

IR. However, the other correction
term proportional to Φ̂ORðπÞ does not appear to scale in a
simple way with the radion mass. In order to understand the
presence of this term, it is useful to consider the holo-
graphic interpretation of this scenario. In the dual descrip-
tion, sourcing the GW scalar on the UV brane corresponds
to a deformation of the CFT by a primary operator. This
deformation affects the RG evolution of the gauge cou-
pling. To understand this in detail, we again need to relate
the beta function for the gauge theory above the scale ΛIR,
where the conformal symmetry is broken, to the parameters
of the extra dimensional theory. When Φ acquires a VEV,
the coupling of the GW field to the gauge bosons affects the
gauge kinetic terms in the 5D construction, and hence the
4D gauge coupling in the dual theory. Since Φ̂ depends on
the location in the extra dimension, the beta function
coefficient b> in the dual theory is affected, and now
depends on the energy scale.
To determine the new b>, we must once again obtain the

correction to the brane localized gauge kinetic term as the
location of the UV brane is moved. We separate the 5D
integral over θ into two parts, one from 0 to θ0 and another
from θ0 to π. After integrating out the part of the extra
dimension corresponding to θ < θ0, we match to the theory
with the lower cutoff. Then the gauge coupling at the scale
Λ0 corresponding to θ ¼ θ0 is given by

1

g2UVðΛ0Þ
¼ 1

g2UV
þ 2rc

g25

Z
θ0

0

dθ

�
1þ β

Φ̂

k3=2

�
: ð3:21Þ

The beta function in 4D dual theory is given by

b>
8π2

≡ d
d logΛ0

1

g2UVðΛ0Þ
¼ − 2

kg25

�
1þ β

k3=2
Φ̂ðθ0Þ

�
:

ð3:22Þ

We notice that b> now depends on θ0, and hence on Λ0.
The form of the contribution from scales below ΛIR remains
unaffected by the addition of the GW scalar. Therefore, the
form of the term proportional to b< is unchanged.
By taking the limit θ0 → π − 1

krc
in Eq. (3.22) we can, in

the limit of large krc, neglect the effects of boundary region
of Φ̂ and obtain the value of b> just above the breaking
scale. The full radion coupling is then obtained by
combining this result with Eq. (3.20) and Eq. (3.9) as�
b< − b>
32π2

þ k−3=2
2

Φ̂0ORðπÞ
�

β

kg25
þ βIR
2g2IR

��
~φ

f
F2
μν: ð3:23Þ

It follows from Eq. (3.20) that, in general, the correction to
the radion couplings from effects associated with stabiliza-
tion of the extra dimension can be large. However, we see
from Eq. (3.22) that in the presence of the GW scalar, the
identification of b> on the CFT side of the correspondence
in terms of parameters on the AdS side is also modified. As
can be seen from Eq. (3.23), when this effect is incorpo-
rated the correction to the form of the radion coupling is
proportional to Φ̂0ORðπÞk−3=2. From Eq. (2.14) it follows
that this scales as m2

φ=Λ2
IR, in agreement with results from

the CFT side of the correspondence. It also follows from
naive dimensional analysis (NDA) estimates of the sizes of
the brane and bulk gauge couplings (see Appendix D for
details) that the overall size of the correction is parametri-
cally one-loop suppressed. This differs from the case of
brane localized gauge bosons [30], but agrees with the dual
result for elementary gauge bosons in the 4D CFT [11].

IV. MASSIVE GAUGE BOSONS

In this section we determine the corrections to the radion
couplings to the massive gauge bosons of the SM, the W�
and the Z. As in the previous section, we consider SM
gauge bosons residing in the bulk of the space and the SM
Higgs field H localized on the IR brane. For simplicity, we
assume that Higgs-radion mixing is absent, which is natural
if, for example, the Higgs is a pNGB. When the Higgs
acquires a VEV, the W� and Z gauge bosons become
massive. The coupling of the radion to the field strength
tensor squared can be determined just as in Sec. III. In this
case, however, because the gauge symmetry is broken,
the radion can also have a nonderivative coupling to
the gauge fields of the form φWμWμ. Since this is an
operator of lower dimension than φFμνFμν, it constitutes
the dominant effect at low energies. In this section, we
focus on couplings of this form.
We first determine the couplings in the absence of

stabilization. The action, in addition to gauge kinetic terms
of Eq. (3.1), includes the brane localized operator

S ⊃
Z

d4xdθδðθ − πÞ
ffiffiffiffiffiffiffiffiffiffiffi−GIR

p
Gμν

IRðDμHÞðDνHÞ†; ð4:1Þ
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where Dμ ¼ ∂μ − iWμ represents the gauge covariant
derivative, and Wμ represents any massive gauge boson.
After replacing H by its VEV, the operator in Eq. (4.1)
generates a mass mW for the zero mode gauge bosons Wμ.
To zeroth order in m2

W=Λ
2
IR, the profile for the zero mode

gauge boson is a constant [70,71]. Therefore, to obtain the
couplings of the zero mode WμðxÞ, we can simply replace
Wμðx; θÞ byWμðxÞ in the action and integrate over the extra
dimension.
To determine the coupling of the radion to the zero mode,

we follow the same steps as in Sec. III. The leading
coupling in this case comes from the operator Eq. (4.1)
itself and is given by [40,41]

2m2
W

g24

~φ

f
WμWμ; ð4:2Þ

where the index on W is raised by ημν. We see that this
coupling has the same form as for the case when Wμ is
localized on the visible brane.
In the presence of the GW scalar Φ, there are additional

operators in the action involving couplings between the
gauge bosons and Φ. In addition to operators of the form
Eq. (3.17) that lead to corrections to the 4D gauge coupling
as in Eq. (3.18), we consider the operator

Lint ¼ βW
ffiffiffiffiffiffiffiffiffiffiffi−GIR

p
δðθ − πÞGμν

IRðDμHÞðDνHÞ†
Φ

k3=2
ð4:3Þ

where βW is a dimensionless number. When Φ gets a VEV,
this term corrects the mass mW of the bulk gauge boson,
which is now given by

m2
W ¼ m̂2

W

�
1þ βW

Φ̂ðπÞ
k3=2

�
: ð4:4Þ

In this expression m̂W represents the gauge boson mass that
arises from Eq. (4.1) in the absence of the correction term
Eq. (4.3). In the presence of this operator, the coupling of
the radion also receives corrections taking the form

m2
W

g24

~φ

f
W2

�
2 − βWΦ̂

0
ORðπÞ

k3=2 þ βWΦ̂ðπÞ

�
: ð4:5Þ

In this expression mW and g4 are the corrected mass and
gauge coupling. From Eq. (2.14) we see that the correction
term scales as m2

φ=Λ2
IR, and is small if the radion is light.

V. BULK FERMIONS

In this section we determine the couplings of the radion
to SM fermions. For concreteness we focus on the
interactions of the radion with the up-type quarks, the
generalization to other SM fermions being straightforward.
We consider a scenario where these fields emerge from bulk

fermions Q and U, and obtain their masses from a brane-
localized Higgs H. As in the previous sections, we first
obtain the radion couplings in the absence of a stabilization
mechanism, and then we show how these results are
modified in the presence of the GW field. We also obtain
the holographic interpretation of the results.

A. Radion couplings in the absence
of a stabilization mechanism

In the absence of any dynamics that fixes the brane
spacing, the relevant part of the action takes the form

Z
d4x

Z
π

0

dθ

� ffiffiffiffi
G
p �

i
2
eMa Q̄Γa∂M

⟷
Q − kcqQ̄QþQ → U

�

þ
ffiffiffiffiffiffiffiffiffiffiffi−GIR

p
δðθ − πÞ

�
Y
k
Q̄HU þ H:c:

��
; ð5:1Þ

where ∂↔ ≡ ~∂ − ∂⃖. The dimensionless parameters Y and
cq; cu represent the brane localized Yukawa coupling and
the bulk mass parameters for the 5D fermions respectively.
For simplicity, we suppress all flavor indices. The eMa
represent the vielbein and Γa the matrices that realize the
5D Clifford algebra.
In the absence of a VEV for the brane-localized Higgs,

the boundary conditions on the 5D fermions Q and U are
chosen such that each has a zero mode with the appropriate
chirality. These zero modes are identified with the corre-
sponding massless quarks in the SM before electroweak
symmetry breaking. Once the Higgs gets a VEV, these
modes acquire a mass. At the same time, a mixing is
induced between the zero mode ofQ and the KK modes of
U and vice versa. As a result, the zero modes are not mass
eigenstates. To work in a mass diagonal basis, a “mixed”
KK decomposition can be performed [72]. In this basis the
5D fermions are expanded as

Qðx; θÞ ¼
�
QLðx; θÞ
QRðx; θÞ

�

¼
�
Q0

LðθÞq0LðxÞ þQ1
LðθÞq1LðxÞ þ � � �

Q0
RðθÞu0RðxÞ þQ1

RðθÞq1RðxÞ þ � � �

�

Uðx; θÞ ¼
�
ULðx; θÞ
URðx; θÞ

�

¼
�
U0

LðθÞq0LðxÞ þ U1
LðθÞu1LðxÞ þ � � �

U0
RðθÞu0RðxÞ þ U1

RðθÞu1RðxÞ þ � � �

�
; ð5:2Þ

where the subscripts L;R refer to 4D chiralities. In our
notation the lower case letters represent the 4D fields, while
the upper case letters represent their profiles in the bulk.
The superscripts 0; 1;… refer to the mode number in the
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KK expansion. Using this expansion, the 4D fields in the
spectrum are

ðq0L; u0RÞ; ðq1L; q1RÞ; ðu1L; u1RÞ;…: ð5:3Þ

Notice that the first term in the KK expansion of QR
contains the 4D field uR which is where the mixed nature of
KK decomposition manifests itself. The profilesQi

L;R; U
i
L;R

can be solved for in this decomposition, and the details are
given in Appendix B. The calculation of the profiles fixes
the mass mf for the pair ðq0L; u0RÞ and the masses of the
other KK modes in terms of the parameters of the 5D
theory. We will take the KK scale mKK ∼ ke−kπrc to be
parametrically larger than the zero mode fermion masses
mf and work to lowest order in mf=mKK.
To obtain the coupling of the radion to the zero modes,

we write the 5D metricGMN and the vielbein eMa in terms of
φ and expand about the VEV hφi ¼ f. Using the expres-
sions for the profiles, the couplings of the radion can be
determined as shown in Appendix B. The final result takes
the form

L⊇ −mfðIq þ IuÞ
~φ

f
ðq†LuR þ H:c:Þ; ð5:4Þ

where Iq, Iu are dimensionless numbers given by an
overlap integral involving the profiles, and depend on
the dimensionless 5D mass parameters cq, cu respectively.

5

In what follows we will choose positive chirality for Q and
negative chirality for U, so the expression for Iu may be
obtained from that for Iq by making the replacement
cq → −cu. To leading order in e−kπrc , the quantity Iq is

Iq ¼
1=2 − cq

1 − e−ð1−2cqÞkrcπ
þ cq ≈

8>><
>>:

cq; cq >
1
2

1
2
; cq <

1
2

ð5:5Þ

where we have taken the two limits in which the
expression simplifies considerably. Therefore, if cq <
1=2 and cu > −ð1=2Þ, the radion coupling scales as
−mfðcq − cuÞ. In the opposite regime, cq > 1=2 and
cu < −ð1=2Þ, the coupling scales as −mf. This agrees
with the existing results in the literature [41].
How do we understand this result from the dual point of

view? Recall that AdS/CFT relates the extra-dimensional
coordinate θ to the RG scale μ in the dual theory. A 5D
fermion Ψ in AdS space corresponds to a fermionic CFT
operator OΨ. The value of the fermion field Ψ at the
boundary of AdS space, which we denote by qsðxÞ, is

identified with the source for the operator OΨ. Therefore,
the 4D CFT Lagrangian contains the term

δL ¼ ΨðxÞjAdS boundaryOΨðxÞ≡ qsðxÞOΨðxÞ: ð5:6Þ

Because the 4D Dirac equation is first order, the boundary
condition for the 5D field Ψ must be subject to a chiral
projection relating the left- and right-handed chiralities.
Therefore only one of the two chiralities can be identified
with the source. The 5D (dimensionless) mass parameter
cΨ is related to the scaling dimension ΔΨ of OΨ by

ΔΨ ¼
����cΨ � 1

2

����þ 3

2
; ð5:7Þ

where Ψ ¼ Q;U and the � denotes the two choices for the
chirality of the source [73].
The correspondence can be extended to the case of AdS

space with two branes, thereby allowing a holographic
interpretation of our results. The source qsðxÞ now becomes
dynamical, being promoted to an elementary field that
couples weakly to the CFT. Since, in general, the coupling
to an elementary field constitutes an explicit breaking of the
CFT, we expect that other conformal symmetry violating
operators will be generated and will be present in the theory
at an arbitrary renormalization scale μ. These are repre-
sented by higher dimensional operators on the UV brane
that are suppressed by powers of k. The operator in
Eq. (5.6) generates a mixing between the CFT states and
elementary field qsðxÞ. The presence of the IR brane in AdS
corresponds to the spontaneous breaking of the CFT, and
leads to a mass gap in the spectrum. As a consequence of
Eq. (5.6), the mass eigenstates are mixtures of the elemen-
tary state qsðxÞ and composites that arise from the CFT
dynamics.
In the mass diagonal basis prior to electroweak sym-

metry breaking, the spectrum in the 4D theory contains a
massless chiral fermion corresponding to the zero mode of
the 5D field. The localization of the zero mode in AdS
space is governed by the mixing between qs and OQ in the
dual picture. If the scaling dimension ΔQ is less than 5=2,
the operator in Eq. (5.6) is relevant and therefore large at
low energies. As a result, the massless mode is mostly
composite. Using Eq. (5.7), this corresponds to the case of
the corresponding 5D mass parameter being less than 1=2
(we are focusing on the case of Q which has positive
chirality) and results in the zero mode being localized
toward the IR brane. Similarly, if the scaling dimension ΔQ
is more than 5=2, the operator in Eq. (5.6) becomes
irrelevant, and, as a result, the mixing is small at low
energies. Consequently, the massless mode is mostly
elementary and corresponds to the 5D mass parameter
cΨ being greater than 1=2 using Eq. (5.7). This translates
into the zero mode being localized toward the UV brane.

5Throughout our analysis, we work in the regime where cq >−1=2 and cu < 1=2, because in the opposite regime, the behavior
of the zero mode spectrum is qualitatively different [73].
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The form of the coupling of the dilaton to light fermions
has been obtained [11,12], both for the case when the
fermions are mostly composite and the case when they are
mostly elementary. In the first case, the dilaton coupling
simply scales like mf, which agrees with the result from
Eq. (5.5). In the other case, the coupling scales as
mfðΔQ þ ΔU − 4Þ. This coefficient can be rewritten as

ΔQ þ ΔU − 4 ¼ cq − cu ¼ Iq þ Iu

for cq > 1=2; cu < −1=2 ð5:8Þ

where the first equality employs Eq. (5.7), and the second
Eq. (5.5). The case of one composite and one elementary
fermion is a straightforward generalization. From this
analysis, we see that in each case the radion coupling
agrees with the corresponding result for the dilaton in the
literature.

B. Corrections arising from stabilization

We now include the effects of stabilizing the extra
dimension. In general, the fields Q and U will couple to
the GW field Φ in the bulk, resulting in corrections to the
radion couplings. To leading order in Φ, the interactions of
the bulk fermions with the GW scalar are of the form

Φ

k3=2

� ffiffiffiffi
G
p �

αq
i
2
eMa Q̄Γa∂M

⟷
Q − βqkcqQ̄QþQ → U

�

þ
ffiffiffiffiffiffiffiffiffiffiffi−GIR

p
δðθ − πÞαy

�
Y
k
Q̄HU þ H:c:

��
ð5:9Þ

where αq, αu, βq, βu and αy are dimensionless couplings
whose natural sizes are estimated in Appendix D. To
calculate the coupling of the radion to the zero modes in
the presence of these terms, we follow the same steps as
before. First, we replace Φ by its VEV and perform the
mixed KK decomposition. This fixes the mass mf for the
zero mode pair ðq0L; u0RÞ and the KK modes and determines
the profiles in terms of the other theory parameters. Next,
we consider fluctuations of Φ about its VEV associated
with fluctuations of the background radion field. The
operators in Eq. (5.9) generate corrections to the radion
coupling of Eq. (5.4). The details of the calculation are in
Appendix B. Including these effects, the coupling has the
form

L⊇ −mfðIq þ Iu þ IhÞ
~φ

f
ðq†LuR þ H:c:Þ: ð5:10Þ

The quantities Iq and Iu again arise from overlap integrals
involving the profiles and reduce to the results in Eq. (5.5)
when Φ̂ is set to zero. The quantity Ih originates from the
brane localized term involving both Φ and H and also
vanishes if the Φ̂ is set to zero. It is given by

Ih ¼ − Φ̂0ORðπÞ
2

�
2αy

k3=2 þ αyΦ̂ðπÞ
− αq

k3=2 þ αqΦ̂ðπÞ

− αu
k3=2 þ αuΦ̂ðπÞ

�

≡− Φ̂0ORðπÞ
2k3=2

Xh ð5:11Þ

where Xh is expected to be of order one by NDA as shown
in Appendix D.
We next compute Iq, and, as before, the expression for Iu

is obtained from Iq by making the replacement
cq → −cu;αq → αu; βq → βu. It is important to take into
account the fact that, in addition to inducing the direct
coupling of the radion to the fermions, Φ̂ also modifies the
leading order fermion bulk profiles. In Appendix B we
obtain the solution for Iq taking all these effects into
account. The result may be found in Eq. (B31).
We focus our attention on the phenomenologically

interesting cases where the fermion profiles are peaked
toward either the UVor IR brane. These represent fermions
that are either mostly elementary or mostly composite, and
correspond to generalizations of the unstabilized analysis
considered previously. We shall refer to these cases as being
UV localized or IR localized respectively. We define the
quantity

~cq ≡ cq þ cq
ðβq − αqÞΦ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

: ð5:12Þ

To leading order in d
dðkrcθÞ Φ̂≡ Φ̂0 and e−kπrc , Iq is given by

Iq¼

8>><
>>:

~cq ;UVLocalized

1
2
þ ~cqðβq−αqÞΦ̂0ORðπÞk3=2
ð1−2~cqÞðk3=2þαqΦ̂ORðπÞÞðk3=2þβqΦ̂ORðπÞÞ ;IRLocalized

:

ð5:13Þ

Now that the functions Iq, Iu and Ih have been
determined, the fermion coupling to the radion can be
determined from Eq. (5.10). In the case of IR localized
profiles, the sum of the I functions is given by

1− Φ̂0ORðπÞ
k3=2

×

�
Xh

2
− ~cqðβq−αqÞk3
ð1− 2~cqÞðk3=2þαqΦ̂ORðπÞÞðk3=2þ βqΦ̂ORðπÞÞ

þ ~cuðβu−αuÞk3
ð1þ 2~cuÞðk3=2þαuΦ̂ORðπÞÞðk3=2þ βuΦ̂ORðπÞÞ

�
:

ð5:14Þ
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We see that the corrections to the unstabilized result of
Eqs. (5.4) and (5.5) scale as Φ̂0ORðπÞk−3=2. From Eq. (2.14),
it follows that the corrections to the leading result are
proportional to m2

φ=Λ2
IR, in good agreement with the CFT

side of the correspondence.
We now turn to UV localized profiles. The sum of the I

functions in this case is given by

ð~cq − ~cuÞ − Φ̂0ORðπÞ
2k3=2

Xh ð5:15Þ

This contains two distinct types of corrections to the
unstabilized result. The term proportional to
Φ̂0ORðπÞk−3=2 scales as m2

φ=Λ2
IR, in line with our expect-

ations from holography. On the other hand, the difference
between c and ~c contains a correction term proportional to
Φ̂ORðπÞ. This term is expected to be somewhat large, and
does not scale in a simple way with the radion mass. To
understand this result, we consider the holographic dual of
this scenario. In the presence of operators such as Eq. (5.9),
the relation between cΨ and ΔΨ is modified from Eq. (5.7).
Specifically, the effective scaling dimension ΔΨ changes
with the RG scale and the corrections to its value become
large close to the breaking scale. This effect must be taken
into account when relating ΔΨ at the breaking scale to cΨ.
The details of the calculation are presented in Appendix C
and follow the approach presented in [73]. We find that to
leading order in Φ̂0OR, Eq. (5.7) generalizes to

ΔΨ ¼
����cΨ

�
1þ ðβΨ − αΨÞΦ̂ORðπÞ

k3=2 þ αqΦ̂ORðπÞ

�
� 1

2

����þ 3

2

þOðk−3=2Φ̂0ORÞ

¼
����~cΨ � 1

2

����þ 3

2
þOðk−3=2Φ̂0ORÞ ð5:16Þ

where Ψ ¼ Q;U and the operator dimension ΔΨ in this
expression is understood to be evaluated close to the
symmetry breaking scale. As before, the � denotes the
two choices of chirality, and we choose it to be positive for
Q and negative for U.
Using this modified relation and neglecting terms of

order k−3=2Φ̂0OR, we find that

cq

�
1þ ðβq − αqÞΦ̂ORðπÞ

k3=2 þ αqΦ̂ORðπÞ

�
− cu

�
1þ ðβu − αuÞΦ̂ORðπÞ

k3=2 þ αuΦ̂ORðπÞ

�
¼ ~cq − ~cu ¼ ΔQ þ ΔU − 4: ð5:17Þ

As a result, the large term that scales as Φ̂ORðπÞ for UV
profiles in Eq. (5.15) is absorbed into ΔQ and ΔU when the
dilaton coupling is written in terms of the operator
dimensions at the breaking scale. The remaining

corrections scale as Φ̂0ORðπÞk−3=2 ∼m2
φ=Λ2

IR, as expected
from the CFT side of the correspondence [11].
In summary, we see that the leading order radion cou-

plings to bulk SM fermions correspond to dilaton inter-
actions that scale either as mf or as mfðΔQ þ ΔU − 4Þ,
depending on whether the SM fermions are mostly
composite or mostly elementary. In the presence of the
GW field, the identification of ΔQ and ΔU with parameters
in the dual 5D theory receives corrections. When this
effect is taken into account, the leading corrections to the
form of the dilaton interaction are found to scale as
m2

φ=Λ2
IR, in good agreement with results from the CFT

side of the correspondence.

VI. CONCLUSION

The AdS/CFT correspondence is a powerful tool that can
help us understand the dynamics of strongly coupled 4D
theories by studying their weakly coupled higher dimen-
sional duals. A particularly interesting laboratory to study
the duality is in the context of the explicit and spontaneous
breaking of the isometries of the extra dimensions, corre-
sponding to the spontaneous breaking of an approximate
conformal symmetry in the 4D theory. The spontaneous
breaking gives rise to an associated Goldstone boson, the
radion in the extra dimension and dilaton in the CFT. In this
work we have studied the interactions of a radion in a class
of theories of phenomenological interest, specifically RS
models with the SM gauge and matter fields in the bulk. We
have compared the results against those in the literature for
the dilaton, finding good agreement.
In the absence of a stabilization mechanism for the extra

dimension such as the GW framework [29], the form of the
radion couplings is determined by diffeomorphism invari-
ance. Here, we have computed the corrections to these
couplings that arise from the stabilization mechanism. We
have focused on the phenomenologically interesting case
where the radion is somewhat lighter than the KK states
associated with the extra dimension. We have extended the
analysis of [30], which was restricted to the scenario when
all the SM fields were localized to the IR brane, to the case
when the gauge bosons and fermions of the SM reside in
the bulk of the extra dimension. These corrections primarily
arise from direct couplings of the GW scalar to the SM
fields of the form shown schematically in Eq. (1.1).
We have obtained a detailed interpretation of our results

in terms of the holographic dual of the radion, the dilaton.
In doing so, we have taken into account the fact that the
familiar identification of the parameters on the two sides of
the AdS/CFT correspondence is modified in the presence of
couplings of the bulk SM fields to the GW scalar. As in the
case of brane-localized SM fields, we find that corrections
to the form of the dilaton couplings to these states are
suppressed by the square of the ratio of the dilaton mass to
the KK scale. These effects are therefore parametrically
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small in the limit of a light radion, in good agreement with
the corresponding results for the dilaton [11].
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APPENDIX A: RADION MIXING
WITH THE NEW GW FIELD

In general, the GW stabilization mechanism will affect
the radion profile, leading to corrections to its couplings. In
the KK picture, these changes in the radion wave function
arise from mixing between the radion and other states after
stabilization. In the limit of small backreaction, the leading
corrections to the radion profile are expected to arise from
mixing with the KK modes of the GW scalar, rather than
from mixing with the graviton or its KK modes. The
physical radion state is then a linear combination of the
graviscalar and these heavy scalar fields. Consequently,
the radion couplings to the SM fields receive corrections.

In this appendix we determine the size of these effects. In
particular, we show that they are smaller than the correc-
tions that arise from direct couplings of the GW scalar to
SM fields.
We begin from the action for the GW scalar

SGW ¼
Z

d4xdθ

� ffiffiffiffi
G
p �

1

2
GAB∂AΦ∂BΦ − VbðΦÞ

�

− X
i¼IR;UV

δðθ − θiÞ
ffiffiffiffiffiffiffiffiffi−Gi

p
ViðΦÞ

�
: ðA1Þ

We now make a change of variables from Φðx; θÞ to
a new variable ϕðx; θÞ, by making the separation
Φðx; θÞ ¼ Φ̂ðrðxÞ; θÞ þ ϕðx; θÞ. Here Φ̂ðrðxÞ; θÞ corre-
sponds to the VEV of Φ at the minimum, but with rc
promoted to the dynamical field rðxÞ. Having made this
change of variables, we substitute for Φðx; θÞ in the action.
Because Φ̂ satisfies the classical equations of motion,
several terms in the action cancel. We are left with

SGW ¼
Z

d4xdθ

�
− e−4krθ

2r
∂θϕ∂θϕþ

re−2krθ
2
ð∂μΦ̂∂μΦ̂þ 2∂μΦ̂∂μϕþ ∂μϕ∂μϕÞ − re−4krθ

�
1

2
ϕ2

∂2

∂Φ̂2
VbðΦ̂Þ þ � � �

�

− δðθÞ
�
1

2
ϕ2

∂2

∂Φ̂2
VUVðΦ̂Þ þ � � �

�
−δðθ − πÞe−4krπ

�
1

2
ϕ2

∂2

∂Φ̂2
VIRðΦ̂Þ þ � � �

��
; ðA2Þ

where theþ � � � represent terms higher order in ϕ. We neglect these higher order terms, since their effects are subleading. In
addition, we replace rðxÞ with rc in terms that are quadratic in ϕ, or that involve ∂μΦ̂ ∼ ∂μrðxÞ, since the effects being
neglected are small. After these simplifications, the relevant part of the action takes the form

SGW ¼
Z

d4xdθ

�
− e−4krcθ

2rc
∂θϕ∂θϕþ

rce−2krcθ
2

ð∂μΦ̂∂μΦ̂þ 2∂μΦ̂∂μϕþ ∂μϕ∂μϕÞ

− rc
2
e−4krcθϕ2

∂2

∂Φ̂2
VbðΦ̂Þ − δðθÞ 1

2
ϕ2

∂2

∂Φ̂2
VUVðΦ̂Þ − δðθ − πÞe−4krcπ 1

2
ϕ2

∂2

∂Φ̂2
VIRðΦ̂Þ

�
: ðA3Þ

We see from the form of the action that the only mixing between the light graviscalar and the heavy modes contained in ϕ
arises from the kinetic terms. To determine the size of this effect we employ the KK decomposition, ϕðx; θÞ ¼P

fnðθÞϕnðxÞ in the classical background, r ¼ rc. The profiles fn satisfy the equation

∂θðe−4krcθ∂θfnÞ − r2c
2
e−4krcθ ∂

2Vb

∂Φ̂2
fn ¼ −mnr2ce−2krcθfn; ðA4Þ

subject to the boundary conditions

∂θfn ¼ rcfn
∂2VUV

∂Φ̂2
θ ¼ 0; −∂θfn ¼ rcfn

∂2VIR

∂Φ̂2
θ ¼ π: ðA5Þ

It is convenient to normalize these profiles as
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Z
dθrce−2krcθfnfm ¼ δnm: ðA6Þ

Then the action reduces to

SGW ¼
Z

d4x

�X
n

�
1

2
∂μϕn∂μϕn −m2

n

2
ϕ2
n

�
þ
Z

dθ

�
rc
2
e−2krcθ∂μΦ̂∂μΦ̂þ

X
n

rce−2krcθfn∂μΦ̂∂μϕn

��
: ðA7Þ

At this point we recall that the x dependence of Φ̂ arises
through rðxÞ,

∂μΦ̂ ¼
∂Φ̂
∂r ∂μr ¼ − 1

kπφ
∂Φ̂
∂r ∂μφ; ðA8Þ

where we have made the change of variable from rðxÞ
to the canonically normalized radion field φ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24M3

5=k
q

expð−kπrðxÞÞ. We see that Eq. (A7) contains,

in addition to a correction to the radion kinetic term, a term
that generates kinetic mixing between the radion and the
KK states of the GW field. Now, from (2.11) we have

∂Φ̂
∂r ¼ k5=2αðπ − θÞe−4krðπ−θÞ þ kθΦ̂0OR: ðA9Þ

Under the θ integrals the α term is exponentially suppressed
except in the region close to θ ¼ π, where its coefficient is
small. In what follows we neglect this term, since its
contribution is small.
The coefficient of the correction to the radion kinetic

term is given by

rck3

π2hφi2
Z

dθe−2krcθθ2k−3Φ̂02OR: ðA10Þ

Now, the VEV of Φ grows from the UV to the IR, and, in
general, so does Φ̂0OR. Therefore, we expect that at some
arbitrary point θ in the bulk, we have that
Φ̂0ORðkrcθÞ≲ Φ̂0ORðkrcπÞ. This allows us to bound (A10) as

rck3

π2hφi2
Z

dθe−2krcθθ2k−3Φ̂02OR

≲ rck3

π2hφi2 k
−3Φ̂0ORðkrcπÞ2

Z
dθe−2krcθθ2: ðA11Þ

Up to exponentially suppressed terms the θ integral
evaluates to ð2krcÞ−2. Noting that k−3=2Φ̂0ORðkrcπÞ∼
m2

φ=Λ2
IR, we see that the correction to the radion kinetic

term satisfies

rck3

π2hφi2
Z

dθe−2krcθθ2k−3Φ̂02OR≲
�

1

2πhφirc

�
2 m4

φ

Λ4
IR
: ðA12Þ

Since this correction scales asm4
φ=Λ4

IR, we see that its effect
on the radion interactions is smaller than the corrections
that arise from direct couplings of the GW field to the SM,
which scale as m2

φ=Λ2
IR.

The mixing term takes the form

−
Z

d4x
rck3=2

πhφi
X
n

fn

�Z
dθe−2krcθθk−3=2Φ̂0OR

�
∂μφ∂μϕn

≡
Z

d4x
X
n

κn∂μφ∂μϕn: ðA13Þ

Employing the same methods as in the previous case, we
find that the coefficients κn of the mixing terms satisfy
κn ≲m2

φ=Λ2
IR. Upon transforming to a basis where the

kinetic terms are diagonal and canonically normalized, we
find that

φ→φ−κn
m2

n

m2
n−m2

φ
ϕn; ϕn→ϕnþκn

m2
φ

m2
n−m2

φ
φ: ðA14Þ

The mass of the KK states of ϕ is of the order of the IR
scale, mn ∼ ΛIR. Then it follows that the corrections to the
radion couplings that arise from mixing with the KK states
of the GW scalar scale as m4

φ=Λ4
IR, and are, therefore,

smaller than the effects from direct couplings to the
GW field.

APPENDIX B: COUPLINGS OF BULK FERMIONS
TO THE RADION

In this appendix we determine the form of the radion
coupling to bulk fermions in the presence of the GW field,
filling in many of the steps outlined in Sec. V. Consistent
with the metric Eq. (2.2), we define the vielbein

eMa ¼ δμaδMμ ekrcjθj þ
1

rc
δ5aδ

M
5 : ðB1Þ

HereM is the 5D curved index and a is the 5D index in the
tangent space. We choose the gamma matrices to be
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γa ¼ ðγμ;−iγ5Þ;
γμ ¼

�
0 σμ

σ̄μ 0

�
;

γ5 ¼
�−I 0

0 I

�
: ðB2Þ

For later convenience, we choose to write a 5D fermion
Ψ as

Ψ ¼
�
ΨL

ΨR

�
; ðB3Þ

which fixes the form of Ψ̄ ¼ Ψ†γ0 ¼ ðΨ†
R Ψ†

L Þ. For
concreteness we focus on radion couplings to the up-type
quarks. The generalization to the cases of the other SM
fermions is straightforward.
In the presence of the GW scalar Φ, the 5D fermion

action is given by

S ¼
Z

d4x
Z

π

0

dθ
ffiffiffiffi
G
p �

i
2
ðQ̄ΓM∂MQ − ð∂MQ̄ÞΓMQÞ

�
1þ αq

k3=2
Φ

�
−mQQ̄Q

�
1þ βq

k3=2
Φ

�

þ i
2
ðŪΓM∂MU − ð∂MŪÞΓMUÞ

�
1þ αu

k3=2
Φ

�
−mUŪU

�
1þ βu

k3=2
Φ

�

þ δðθ − πÞ
rc

�
Y
k
Q̄HU þ H:c:

��
1þ αy

k3=2
Φ

��
; ðB4Þ

where ΓM ¼ eMa γa. For simplicity we take Y to be real and
consider the Higgs field H to be localized to the visible
brane at θ ¼ π. We denote the VEV of H by vh.
The dynamics in theΦ sector leads to a background value

Φ̂ðθÞ. The excitations of the GW field are generically heavy,
being of order mKK. This allows us to integrate out the GW
field in a dynamical radion background, thereby obtaining
the low energy effective theory for the radion. We do this by
promoting rc to a dynamical field, which we denote by rðxÞ,
and expanding rðxÞ about rc as rðxÞ ¼ rc þ δrðxÞ. Using
Eq. (2.5), the canonically normalized physical radion ~φ is
related to the other parameters by

φ ¼ hφi þ ~φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
24M3

5

k

s
e−krcπð1 − kπδrÞ ðB5Þ

which leads to the relation

δr ¼ − ~φ

fkπ
ðB6Þ

where hφi ¼ f.

To proceed, we take the following approach. We first set
r ¼ rc and determine the equations of motion for the 5D
fermions. We then set the Higgs field to its VEV and
perform a KK decomposition to obtain the 4D fermion
spectrum. We then write out the action to linear order in δr,
expand out the bulk fermions in terms of their KK modes,
and integrate over the extra dimension to obtain the radion
coupling to the zero modes. This approach is consistent
within the effective theory and yields the leading contri-
bution to the operators that couple a single radion to the SM
fermions.
To be consistent with phenomenology, we choose QL

and UR to be even about θ ¼ 0 and QR and UL to be odd.
As usual, the mass parameter ci is taken to be odd. We also
take Φ̂c, the VEV of Φ at r ¼ rc, to be even at θ ¼ 0 and
θ ¼ π. Using the orbifold symmetry, we restrict the limits
on the θ integral in the action to be from 0 to π.
Minimizing the action (at r ¼ rc), we find the equations

of motion satisfied by the fermion fields. For instance,
considering the variation δQ†

R gives

ircekrcθσμ∂μQR − ∂θQL þ 2krcQL − krccq
1þ ðβq=k3=2ÞΦ̂c

1þ ðαq=k3=2ÞΦ̂c

QL − ðαq=2k
3=2Þ∂θΦ̂c

1þ ðαq=k3=2ÞΦ̂c

QL

þ vhY
2k

δðθ − πÞ 1þ ðαy=k
3=2ÞΦ̂c

1þ ðαq=k3=2ÞΦ̂c

UL ¼ 0: ðB7Þ

The boundary terms in the action fix the boundary conditions to be
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�
δQ†

RQLe−4krcθ
�
1þ αq

k3=2
Φ̂c

�
þ Yvh
2rck

δQ†
RULe−4krcθ

�
1þ αY

k3=2
Φ̂c

������
θ¼π

−
�
δQ†

RQLe−4krcθ
�
1þ αq

k3=2
Φ̂c

������
θ¼0
¼ 0:

ðB8Þ

We proceed by employing the mixed KK decomposition described in Eq. (5.2) and require the zero modes q0L and u0R to
satisfy the 4D Dirac equations

iσ̄μ∂μq0L −mfu0L ¼ 0; iσμ∂μu0R −mfq0L ¼ 0; ðB9Þ

where mf is the mass of the zero mode generated by the Higgs VEV. In what follows, we work to leading order in
mf=ðke−kπrcÞ. Because we have chosenQR and UL to be odd about θ ¼ 0, they vanish at the boundary. This ensures that the
boundary condition at θ ¼ 0 is satisfied in Eq. (B8). To leading order inmf=ðke−kπrcÞ, this completely fixes the profilesQ0

L

andU0
R up to an overall normalization that is determined by the requirement of a canonical kinetic term for the 4D field. The

boundary condition at θ ¼ π, to this order, fixes the mass mf in terms of other parameters.

Using Eqs. (B9) and (B7), the profile Q0
L satisfies

∂θQ0
L −

�
2krc − krccq

1þ ðβq=k3=2ÞΦ̂c

1þ ðαq=k3=2ÞΦ̂c

− ðαq=2k
3=2Þ∂θΦ̂c

1þ ðαq=k3=2ÞΦ̂c

�
Q0

L −mfrcekrcθQ0
R ¼ 0: ðB10Þ

Similar equations can be derived for the other three fermion zero mode profiles Q0
R;U

0
L;R. By our choice of boundary

conditions, the even profiles Q0
L and U0

R correspond to the chiral fermions in the effective theory and hence survive in the
mf → 0 limit. The odd profiles Q0

R and U0
L vanish at θ ¼ 0 and are forced by the equations of motion to begin at order

mf=ðke−krcπÞ. As a result, we can drop the term proportional to Q0
R in Eq. (B10). To make the notation simpler, we define

the functions

Tðα; θÞ ¼
Z

θ

0

dθ0
Φ̂cðθ0Þ

k3=2 þ αΦ̂cðθ0Þ
;

Gðc; α; β; θÞ ¼ exp

�
krcθ

�
1

2
− c

�
− krccðβ − αÞTðα; θÞ

�
: ðB11Þ

The even profiles, to leading order in mf=ðke−krcπÞ, are given by

Q0
L ¼

NQLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðαq=k3=2ÞΦ̂c

q exp

�
3

2
krcθ

�
Gðcq; αq; βq; θÞ ðB12Þ

U0
R ¼

NURffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðαu=k3=2ÞΦ̂c

q exp

�
3

2
krcθ

�
Gð−cu; αu; βu; θÞ: ðB13Þ

In the limit where Φ̂c goes to zero, these agree with the results for the profiles in the absence of stabilization [43,44]. The
constants NQL

and NUR
are determined by normalizing the kinetic terms for q0L and u0R and are given by

N−2
QL
¼ 2rc

Z
π

0

dθG2ðcq; αq; βq; θÞ; N−2
UR
¼ 2rc

Z
π

0

dθG2ð−cu; αu; βu; θÞ: ðB14Þ
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To leading order in mf=ðke−krcπÞ the odd profiles are given by

Q0
RðθÞ ¼ − mfrcNQLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðαq=k3=2ÞΦ̂c

q exp

�
3

2
krcθ

�
Gð−cq; αq; βq; θÞ

Z
θ

0

dθ0G2ðcq; αq; βq; θ0Þ;

U0
LðθÞ ¼

mfrcNURffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðαu=k3=2ÞΦ̂c

q exp

�
3

2
krcθ

�
Gðcu; αu; βu; θÞ

Z
θ

0

dθ0G2ð−cu; αu; βu; θ0Þ: ðB15Þ

The brane localized Higgs term contributes to the boundary condition at θ ¼ π. Since the Yukawa operator is associated
with effects suppressed by mf=ðke−krcπÞ, to the order we are working this only affects the odd profiles. More specifically,
the boundary conditions in Eq. (B8) require

Q0
RðπÞ ¼

vhY
2k

U0
RðπÞ

�
1þ αy

k3=2
Φ̂cðπÞ

��
1þ αq

k3=2
Φ̂cðπÞ

�−1
; ðB16Þ

U0
LðπÞ ¼ − vhY

2k
Q0

LðπÞ
�
1þ αy

k3=2
Φ̂cðπÞ

��
1þ αu

k3=2
Φ̂cðπÞ

�−1
; ðB17Þ

which fixes the mass mf in terms of other parameters of the theory as

mf ¼ − vhY
k

½1þ ðαy=k3=2ÞΦ̂cðπÞ�NQL
NURffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðαu=k3=2ÞΦ̂cðπÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðαq=k3=2ÞΦ̂cðπÞ
q Gð−cu; αu; βu; πÞ

Gð−cq; αq; βq; πÞ : ðB18Þ

To derive the coupling of the radion to the zero modes, we restrict Φ̂ to its background value in the action and expand the
action to linear order in δr ¼ rðxÞ − rc. We then plug in the profiles for the zero modes and integrate over the extra
dimension. As r varies from its background value, the leading terms in the action can be written S ¼ Sc þ δS with Sc
independent of δr and δS linear in δr. Before doing so we note that to linear order in the fluctuation of the radius δr, Φ̂
satisfies

Φ̂ðθÞ ¼ Φ̂cðθÞ þ δr∂rΦ̂c ¼ Φ̂cðθÞ þ δr

�
k5=2αðπ − θÞe−4krcðπ−θÞ þ θ

rc
∂θΦ̂ORðθÞ

�
; ðB19Þ

where we have used (2.11). We then find

δS ¼
Z

d4x
Z

π

0

dθδre−4krcθ
�
iekrcθ

�
ð1 − 3krcθÞ

�
1þ αq

k3=2
Φ̂c

�
þ rcαq

k3=2
∂rΦ̂c

�h
Q†

Rσ
μ ∂⟷μQR þQ†

Lσ̄
μ ∂⟷μQL

i

þ
�

αq
rck3=2

∂rΦ̂c − 4kθ

�
1þ αq

k3=2
Φ̂c

��h
Q†

L ∂⟷θQR −Q†
R ∂⟷θQL

i

− 2kcq

�
ð1 − 4krcθÞ

�
1þ βq

k3=2
Φ̂c

�
þ rcβq

k3=2
∂rΦ̂c

�
½Q†

LQR þQ†
RQL� þ ðQ → UÞ

þ vhY
k

δðθ − πÞ
�
αy
k3=2

∂rΦ̂c − 4kθ

�
1þ αy

k3=2
Φ̂c

��
½Q†

RUL þQ†
LUR þ U†

RQL þ U†
LQR�

	
: ðB20Þ

Before inserting the profiles into δS to derive the coupling of the 4D fields to the radion, we note that the following identities
hold to first order in the small parameter mf=ðke−krcπÞ:

iðQ†
Rσ

μ ∂⟷μQR þQ†
Lσ̄

μ ∂⟷μQLÞ ¼ mfðu0†R q0L þ q0†L u0RÞðQ0
RQ

0
R þQ0

LQ
0
LÞ; ðB21Þ

Q†
LQR þQ†

RQL ¼ ðu0†R q0L þ q0†L u0RÞQ0
LQ

0
R; ðB22Þ
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Q†
L ∂⟷θQR −Q†

R ∂⟷θQL ¼ ðu0†R q0L þ q0†L u0RÞðQ0
L∂θQ0

R −Q0
R∂θQ0

LÞ: ðB23Þ

Similar relations exist for the U field. The last of these can be further simplified by using the equation satisfied by the
profiles, Eq. (B10). To take the boundary conditions into account, we write the boundary terms as δ-functions in the
equations of motion. A partial cancellation of terms results in the simplification

ðQ0
L∂θQ0

R −Q0
R∂θQ0

LÞ ¼ 2Q0
LQ

0
Rkcqrc

1þ ðβq=k3=2ÞΦ̂c

1þ ðαq=k3=2ÞΦ̂c

−mfrcekrcθðQ0
RQ

0
R þQ0

LQ
0
LÞ

− vhY
2k

δðθ − πÞ 1þ ðαy=k
3=2ÞΦ̂c

1þ ðαq=k3=2ÞΦ̂c

ðQ0
RU

0
L þQ0

LU
0
RÞ: ðB24Þ

Similarly, the term in Eq. (B20) for δS localized at θ ¼ π can be expressed as

Q†
RUL þQ†

LUR þ U†
RQL þ U†

LQR ¼ ðu0†R q0L þ q0†L u0RÞðQ0
RU

0
L þ U0

RQ
0
LÞ: ðB25Þ

Inserting these relations into Eq. (B20) we find

δS ¼
Z

d4xðu0†R q0L þ q0†L u0RÞδr
Z

π

0

dθe−4krcθ
�
mfekrcθð1þ krcθÞ

�
1þ αq

k3=2
Φ̂c

�
ðQ0

RQ
0
R þQ0

LQ
0
LÞ

− 2kcq

�
1þ βq

k3=2
Φ̂c þ

βq − αq

k3=2 þ αqΦ̂c

rc∂rΦ̂c

�
Q0

LQ
0
R þ ðQ0 → U0Þ þ vhY

k
δðθ − πÞ ∂rΦ̂

k3=2

×

�
αy − 1

2

�
αqð1þ ðαy=k3=2ÞΦ̂cÞ
1þ ðαq=k3=2ÞΦ̂c

þ αuð1þ ðαy=k3=2ÞΦ̂cÞ
1þ ðαu=k3=2ÞΦ̂c

�	
ðQ0

RU
0
L þU0

RQ
0
LÞ
�
: ðB26Þ

To proceed further, we insert the functional form of the profiles, use the relationship between mf and vh, and work to
linear order in mf=ðke−krcπÞ. To this order, we can drop terms like Q0

RQ
0
R and U0

LU
0
L in the above. This results in

δS ¼
Z

d4xðu0†R q0L þ q0†L u0RÞδrmf

Z
π

0

dθ
��

N2
QL
ð1þ krcθÞG2ðcq; αq; βq; θÞ

þ 2cqkrcN2
QL

1þ ðαq=k3=2ÞΦ̂c

�
1þ βq

k3=2
Φ̂c þ

βq − αq

k3=2 þ αqΦ̂c

rc∂rΦ̂c

�Z
θ

0

dθ0G2ðcq; αq; βq; θ0Þ
�

þ
�
N2

UR
ð1þ krcθÞG2ð−cu; αu; βu; θÞ

−
2cukrcN2

UR

1þ ðαu=k3=2ÞΦ̂c

�
1þ βu

k3=2
Φ̂c þ

βu − αu
k3=2 þ αuΦ̂c

rc∂rΦ̂c

�Z
θ

0

dθ0G2ð−cu; αu; βu; θ0Þ
�

− δðθ − πÞ ∂rΦ̂c

2k3=2

�
2αy

1þ ðαy=k3=2ÞΦ̂c

− αq

1þ ðαq=k3=2ÞΦ̂c

− αu
1þ ðαu=k3=2ÞΦ̂c

�	
: ðB27Þ

For compactness, we write δS as

δS ¼ −
Z

d4xðu0†R q0L þ q0†L u0RÞ
~φ

f
mfðIq þ Iu þ IhÞ; ðB28Þ

where Iq (Iu) is associated with the term in the first (second) set of square brackets and Ih arises from the final boundary
term,
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Ih ¼ − Φ̂0ORðπÞ
2

�
2αy

k3=2 þ αyΦ̂cðπÞ
− αq

k3=2 þ αqΦ̂cðπÞ
− αu
k3=2 þ αuΦ̂cðπÞ

�
; ðB29Þ

where we have used Eq. (B19) and d
dðkrcθÞ Φ̂≡ Φ̂0.

The quantity Iq is related to Iu by taking cq → −cu and replacing the q labels with u labels on αq and βq. This holds quite
generally for the rest of this appendix, and so we limit our attention to Iq. Using the definition of NQL

from Eq. (B14) and
integrating by parts, the expression for Iq simplifies to

Iq ¼
1

2krcπ
þ cq þ

cq
πk3=2

ðβq − αqÞ
Z

π

0

dθ

1þ αq
k3=2

Φ̂c

�
Φ̂c þ

rc∂rΦ̂c

1þ αq
k3=2

Φ̂c

�
þ N2

QL

rc
π

Z
π

0

dθekrcθð1−2cqÞe−2cqkrcðβq−αqÞTðαq;θÞ

×

�
θð1 − 2cqÞ − 2cq

k3=2
ðβq − αqÞ

Z
θ

0

dθ0

1þ αq
k3=2

Φ̂c

�
Φ̂c þ

rc∂rΦ̂c

1þ αq
k3=2

Φ̂c

��
; ðB30Þ

where we have used the fact that Φ̂ðθÞ is even about θ ¼ 0. From Eqs. (2.11) and (B19), this expression depends on both
Φ̂OR and on α exp½−4krcðπ − θÞ�. The effects of this second term, however, are small and can be neglected. This is because
this term is only significant in a small region close to the IR brane, and so the region of integration where it has support is
parametrically small. Therefore its contribution is suppressed by the size of this region, Oð1=krcÞ. Therefore, in the rest of
this section, we drop all α exp½−4krcðπ − θÞ� terms and replace Φ̂c with Φ̂OR.
Integrating Eq. (B30) by parts we then find

Iq ¼ cq þ cq
ðβq − αqÞΦ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

þ 1

2krc

�Z
π

0

dθekrcðθ−πÞð1−2cqÞ exp
�
2cqkrcðβq − αqÞ

Z
π

θ
dθ0

Φ̂ORðθ0Þ
k3=2 þ αqΦ̂ORðθ0Þ

��−1

¼ cq þ cq
ðβq − αqÞΦ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

þ G2ðcq; αq; βq; πÞ
2krc

R
π
0 dθG2ðcq; αq; βq; θÞ

ðB31Þ

where we have used the notation of Eq. (B11). This expression can be further simplified in the cases of phenomenological
interest. Recall that these G functions are tied to the fermion profiles in the θ dimension. In the unstabilized case, the
fermion profiles are peaked towards one brane and exponentially small near the other. If Φ̂=k3=2 is large or rapidly varying,
then the fermion profiles could in principle have much more complicated behavior, such as local extrema in the bulk. In the
rest of the analysis, we will focus on the phenomenologically interesting case when the profiles are peaked towards either
θ ¼ 0 or θ ¼ π. Because theG function is an exponential, in general when it is peaked near the one brane, it is exponentially
small near the other. We can use this fact to simplify the integral in Eq. (B31). When the fermion profile is peaked near
θ ¼ 0, we can immediately see that Gðcq; αq; βq; πÞ is exponentially suppressed, making the third term in Eq. (B31)
negligible.
When the fermion profile is peaked near θ ¼ π we make the change of variables θ → π − ϑ in the integral in the

denominator of the third term to obtain

Iq ¼ cq þ cq
ðβq − αqÞΦ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

þ 1

2krc

�Z
π

0

dϑefðϑÞ
�−1

ðB32Þ

where

fðϑÞ ¼ −krcϑð1 − 2cqÞ þ 2krccqðβq − αqÞ
Z

π

π−ϑ
dθ

Φ̂ORðθÞ
k3=2 þ αqΦ̂ORðθÞ

: ðB33Þ

The integral is now dominated by values of the integrand close to ϑ ¼ 0. Now, notice that the leading terms in the Taylor
series expansion of fðϑÞ about ϑ ¼ 0 are

ϑ

�
−krcð1 − 2cqÞ þ 2krccqðβq − αqÞ

Φ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

�
− ϑ2

k2r2ccqðβq − αqÞk3=2Φ̂0ORðπÞ
ðk3=2 þ αqΦ̂ORðπÞÞ2

: ðB34Þ
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Close to ϑ ¼ 0 the linear term dominates and we treat the quadratic term as a small correction. We therefore write the
integral as

Z
π

0

dϑ exp

�
krcϑ

�
−1þ 2cq þ 2cqðβq − αqÞ

Φ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

���
1 − ϑ2

k2r2ccqðβq − αqÞk3=2Φ̂0ORðπÞ
ðk3=2 þ αqΦ̂ORðπÞÞ2

�
ðB35Þ

which is evaluated exactly as

1

2
ð1 − 2~cqÞ

�
1 − 2~cqðβq − αqÞΦ̂0ORðπÞk3=2
ð1 − 2~cqÞ2ðk3=2 þ αqΦ̂ORðπÞÞðk3=2 þ βqΦ̂ORðπÞÞ

�−1
ðB36Þ

were we have defined

~cq ≡ cq þ cq
ðβq − αqÞΦ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

: ðB37Þ

In the limit k−3=2Φ̂0ðπÞ≪ 1, corresponding to a light radion, we therefore find

Iq ¼
1

2
þ ~cqðβq − αqÞΦ̂0ORðπÞk3=2
ð1 − 2~cqÞðk3=2 þ αqΦ̂ORðπÞÞðk3=2 þ βqΦ̂ORðπÞÞ

: ðB38Þ

Combining the two cases, we obtain

Iq ¼
(

~cq ; G peaked at θ ¼ 0

1
2
þ ~cqðβq−αqÞΦ̂0ORðπÞk3=2
ð1−2~cqÞðk3=2þαqΦ̂ORðπÞÞðk3=2þβqΦ̂ORðπÞÞ ; G peaked at θ ¼ π

: ðB39Þ

APPENDIX C: EFFECTS OF RADION STABILIZATION ON OPERATOR SCALING DIMENSIONS

In this appendix we determine how the scaling dimension ΔQ of the dual CFToperator associated with the fermion field
Q is affected by the dynamics that stabilizes the radion. We follow closely the approach of [73]. The central idea is to relate
the bulk physics to that of a CFT by treating a bulk field and its boundary value as separate fields, and then integrating out
the bulk physics.
Using Eq. (B1) and Eq. (B2) we begin with the fermion action

S ¼
Z

d4x
Z

π

0

dθ

�
1

2
½irce−3krcθðQ†

Rσ
μ ∂⟷μQR þQ†

Lσ
μ ∂⟷μQLÞ þ e−4krcθðQ†

L ∂⟷θQR −Q†
R ∂⟷θQLÞ�

�
1þ αq

k3=2
Φ̂c

�

− kcqrce−4krcθ½Q†
LQR þQ†

RQL�
�
1þ βq

k3=2
Φ̂c

�	
ðC1Þ

where ∂μ

⟷ ≡ ∂μ

! − ∂μ

 

and Φ̂cðθÞ is the VEVof the GW scalar. In this appendix we focus on theQ field. The end result can

be mapped to the U by simply taking cq → −cu while changing all other q labels to u labels. The scaling dimension is
associated with physics above the conformal symmetry breaking scale, and so in this appendix we can safely ignore details
of the IR brane dynamics such as couplings to the Higgs.
In Appendix B, we took theQL field and Φ̂c to be even about θ ¼ 0 and θ ¼ π, andQR to be odd. In this appendix, solely

for the purpose of determining the scaling dimensions of bulk fields, we relax those restrictions. We now associate the value
ofQL on the UV (θ ¼ 0) brane with the source qs for some fermionic operatorOQ in the CFTon the boundary with scaling
dimension ΔQ. Specifically,

QLðx; θÞjθ¼0 ¼ qsðxÞ;⇒ LCFT ⊃ qsOQ: ðC2Þ
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This function is fixed, or δQL ¼ 0, on the UV boundary.
Because the equation of motion for fermions is first order,
we cannot fix the boundary conditions for both chiralities
of Q so we leave QR free to vary on the boundary.
When we take the variation of the action,6 we generate

the equations of motion such as Eq. (B7) and a boundary
term such as led to Eq. (B8). The total boundary term is

δS ⊃
1

2

Z
d4xe−4krcθ

�
1þ αq

k3=2
Φ̂c

�
× ½Q†

LδQR − δQ†
LQR −Q†

RδQL þ δQ†
RQL�jπ0: ðC3Þ

Now we choose QLjπ ¼ 0 to eliminates the boundary term
at θ ¼ π.7 The UV boundary, where δQL ¼ 0, remains
becauseQL ≠ 0 and δQR ≠ 0. Thus, in order for δS ¼ 0 to
hold we must add a term on the UV boundary to cancel this
remainder. This term is

S4 ¼
1

2

Z
UV

d4x

�
1þ αq

k3=2
Φ̂c

�
ðQ†

LQR þQ†
RQLÞ ðC4Þ

where all the fields are evaluated at the UV brane.
Because δQL ¼ 0 on the UV brane, we can also add to

the boundary Lagrangian any term LUV which is only a
function of QL without changing the equations of motion.
For instance

SUV ¼
Z
UV

d4xLUV

¼
Z
UV

d4x

��
β̂q þ

α̂q
k3=2

Φ̂c

�
iQ†

L∂QL þ � � �
�
ðC5Þ

where β̂q and α̂q are arbitrary coefficients. We are now
ready to integrate out the bulk by substituting the solutions
to the 5D equations of motion back into the action. By
design, the bulk action vanishes when the variation van-
ishes, so we are left with only the UV boundary terms.
It is useful to Fourier transform the 4D coordinates of the

5D fields and parametrize their θ dependence by

QLðp; θÞ ¼
fLðp; θÞ
fLðp; 0Þ

qsðpÞ;

QRðp; θÞ ¼
fRðp; θÞ
fRðp; 0Þ

qRðpÞ ðC6Þ

where we have made the definitionQRðp; 0Þ ¼ qRðpÞ. The
4D fermions qR and qs are related by the Dirac equation,
and we can fix the relative normalization by taking

pqs ¼ p
fLðp; 0Þ
fRðp; 0Þ

qR: ðC7Þ

The bulk equations of motion for QL and QR then imply

∂θfL;R∓krc

�
p
k
ekrcθfR;L − 2fL;R � cq

k3=2 þ βqΦ̂c

k3=2 þ αqΦ̂c

fL;R

þ αq
2

Φ̂0c
k3=2 þ αqΦ̂c

fL;R

�
¼ 0 ðC8Þ

where the first and second labels on fi;j correspond to the
upper and lower signs respectively and Φ̂0c ≡ d

dðkrcθÞ Φ̂c.

We now turn to the boundary action for qs. After
rescaling so that the kinetic term in SUV is canonically
normalized, the action is

S ¼
Z

d4p
ð2πÞ4 ½q

†
spqs þ � � �� þ ζ̂qq

†
sΣðpÞqs ðC9Þ

where ζ̂q is a a normalization that is independent of p and
we have defined

ΣðpÞ ¼ p
p
fRðp; 0Þ
fLðp; 0Þ

: ðC10Þ

This quantity ΣðpÞ determines the scaling dimension of the
operator OQ defined in Eq. (C2). This follows from the
holographic principle which associates the generating
function of a CFT

Z½qs� ¼
Z

DϕCFTe
iSCFTþ

R
qsOQþH:c: ðC11Þ

with the AdS partition function

Z½qs� ¼
Z
qs

DQeiS½Q� ¼ eiSeff ½qs� ðC12Þ

where the subscript on the integral means that the integra-
tion is to be performed subject to the condition thatQ takes
on the value qs on the UV boundary. In general Seff ½qs�
represents a nonlocal action in 4D for the source field qs. In
its original incarnation, the AdS/CFT correspondence
applied to the scenario when the UV boundary, where
the source field resides, corresponded to the boundary of
AdS space. However, since different positions of the UV
brane correspond simply to different choices of the cutoff
scale, and are therefore related by RG transformations, the
holographic principle can also be applied to the situation
when the UV brane sits at an arbitrary location in the bulk.
In general, it is also possible to promote qsðxÞ to a
dynamical field. The LUV term we can add to the UV
brane in Eq. (C5) exactly captures this freedom.

6We treat Φ̂c as a background field, so δΦ̂c ¼ 0.
7It would also be consistent to choose QRjπ ¼ 0. This has no

effect on the final result.

CHACKO et al. PHYSICAL REVIEW D 92, 056004 (2015)

056004-22



Since the scaling dimension of an operator is associated
with physics above the conformal symmetry breaking
scale, we work in the limit of the IR brane being far away.
This is done by taking the limit p ≫ k expð−kπrcÞ, where
p represents the momentum scales being probed. It is
likewise convenient to work in the limit that the UV brane
is also far away, so that p ≪ k. The reason is that the hard
momentum cutoff associated with the presence of the UV
brane constitutes an explicit violation of conformal sym-
metry by the regulator. When working at momenta well
below the cutoff scale, spurious effects associated with the
regulator are suppressed. In this limit, for instance, the
correlator

hŌQOQi≃
Z

d4p
ð2πÞ4 e

−ix·p δ2Seff
δq†sδqs

ðC13Þ

has dimension 2ΔQ. This allows us to relate

lim
krc→∞
p=k→0

ðΣðpÞ þ countertermsÞ ðC14Þ

to ΔQ. The counterterms are included because divergent
terms in ΣðpÞ which are local, and hence analytic, are
renormalized by local counterterms. This implies that the
leading nonanlaytic term in ΣðpÞ gives the dimension of
OQ; specifically the leading nonanalytic term goes like [73]

lim
krc→∞
p=k→0

ðΣðpÞ þ countertermsÞ ∝ pp2ΔQ−5: ðC15Þ

Therefore once we compute ΣðpÞ, it will give us the scaling
dimension of the dual operator.
The bulk RS metric possesses an isometry under shifts in

the extra dimensional coordinate θ, when combined with a
rescaling of the 4D coordinates xμ. This isometry corre-
sponds to the symmetry under scale invariance of the dual
4D theory. After the introduction of the stabilization
mechanism, the isometry of the bulk 5D metric is no
longer exact. In the dual description, the scale invariance of
the 4D theory is now explicitly broken, and the scaling
dimensions of operators are no longer strictly defined.
However, the scenario we are interested in is one where the
dilaton is light as a consequence of the fact that the operator
that breaks the symmetry is close to marginal, and so the
theory is approximately conformally invariant at all scales.
In this limit, the scaling behavior of operators only changes
very slowly as a function of the renormalization scale.
Therefore we can continue to associate each operator with
an approximate scaling dimension that changes very slowly
with the renormalization scale. From the holographic
perspective, the scaling dimension is dual to a function
of the parameters of the 5D theory that changes with the
extra dimensional coordinate θ, but only very slowly.

Ultimately, we are interested in comparing with the dual
picture [11], where the dilaton couplings are related to the
scaling dimensions of operators evaluated near the scale
where conformal symmetry is spontaneously broken.
Therefore, we need to relate the scaling dimensions to
5D parameters evaluated near the IR brane. This is
challenging because at θ ¼ π there is a phase transition
where a boundary layer forms. Therefore we need to be
careful in taking the limit approaching the IR brane, and we
use the specific procedure described below.
We first modify the analysis above to compute the

scaling dimension, ΔQðθ0Þ, in the neighborhood of an
arbitrary point θ ¼ θ0 in the bulk. We imagine that there is a
UV brane at θ ¼ θ0 such that

QLðx; θÞjθ¼θ0 ¼ qsðxjθ0Þ;⇒ LCFT ⊃ qsðxjθ0ÞOQ: ðC16Þ

We can now follow the analysis above to get the equations
analogous to Eqs. (C9) and (C10), namely

S ¼
Z

d4p
ð2πÞ4 ½q

†
sðθ0Þpqsðθ0Þ þ � � ��

þ ζ̂qq
†
sðθ0ÞΣθ0ðpÞqsðθ0Þ ðC17Þ

with the definition

Σθ0ðpÞ ¼
p
p
fRðp; θ0Þ
fLðp; θ0Þ

: ðC18Þ

which is then related to the scaling dimensionΔQðθ0Þ in the
same way as before.
We now turn to calculating ΣðpÞ and its generalization

Σθ0ðpÞ. From Eq. (C8) we find

fR ¼
e−krcθ
prc

�
∂θfL − 2krcfL þ

krc
2

αqΦ̂
0
c

k3=2 þ αqΦ̂c

fL

þkrccq
k3=2 þ βqΦ̂c

k3=2 þ αqΦ̂c

fL

�
: ðC19Þ

Substituting this back into the companion relation for fL
we find

0 ¼ ∂2
θfL − krcð5 − C1Þ∂θfL þ fLðkrcÞ2

×

�
p2

k2
e2krcθ þ 6 − cqð1þ cqÞ − 5

2
C1

− 1

4
C2
1 þ C2 − cqC3

	
ðC20Þ

where
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C1 ¼
αqΦ̂

0
c

k3=2 þ αqΦ̂c

; ðC21Þ

C2 ¼
1

2

αqΦ̂
00
c

k3=2 þ αqΦ̂c

þ cqðβq − αqÞΦ̂0cΦ̂0c
k3=2ð1þ αq

k3=2
Φ̂Þ2 ; ðC22Þ

C3 ¼
ðβq − αqÞΦ̂c

k3=2 þ αqΦ̂c

�
1þ 2cq þ

cqðβq − αqÞΦ̂c

k3=2 þ αqΦ̂c

�
: ðC23Þ

The Ci above conveniently encapsulate the Φ̂c depend-
ence in the differential equation for fL. We are interested in
theories where the dilaton is light, which correspond to
scenarios where Φ̂c is a slowly varying function of θ. In this
limit we can solve the differential equation by making a
WKB approximation, treating the Ci as constants indepen-
dent of θ. With this assumption the solution to Eq. (C20)
takes the form

fLðθÞ ¼ ekrcð5−C1Þθ=2
�
A1JnðθÞ

�
p
k
ekrcθ

�

þA2J−nðθÞ
�
p
k
ekrcθ

��
ðC24Þ

where

nðθÞ ¼
����
�
cq þ

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2C2

1 − 4C2 þ 4cqC3

ð1þ 2cqÞ2
s ����: ðC25Þ

We can check if this function solves the ODE Eq. (C20).
In so doing we employ an identity, which can be most
easily seen from the infinite series definition of the Bessel
function:

d
dx

JnðxÞðxÞ ¼ J0nðxÞðxÞ þ
dnðxÞ
dx

d
dn

JnðxÞ ðC26Þ

where J0n is the usual derivative of the Bessel function with
respect to its argument. The first term of the above is like
those terms that appear when n has no dependence on x and
will satisfy theODE.The second term leads to terms thatwill
not satisfy the ODE. These terms, however, are proportional
to dn

dθ which is in turn proportional to Φ̂0c or higher order
derivatives of Φ̂c with no compensating large factors.
Therefore, our solution for fL is valid up to small corrections
proportional to derivativesof the slowlyvarying function Φ̂c.
Then, to be consistent, we must drop all Φ̂0c terms in the

Ci. In this limit C1 and C2 vanish, leaving us with the
solution

fLðθÞ ¼ e
5
2
krcθ

�
A1JnðθÞ

�
p
k
ekrcθ

�
þ A2J−nðθÞ

�
p
k
ekrcθ

��
ðC27Þ

where

nðθÞ ¼
����
�
cq þ

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4cqC3ðθÞ
ð1þ 2cqÞ2

s ���� ¼
���� 12þ cq þ

cqðβq − αqÞΦ̂cðθÞ
k3=2 þ αqΦ̂cðθÞ

����: ðC28Þ

Now satisfied that Eq. (C27) solves the ODE we enforce the IR brane boundary condition fLðπÞ ¼ 0. This yields

fLðθÞ ¼ NLe
5
2
krcθ

�
J−nðπÞ

�
p
k
ekrcπ

�
JnðθÞ

�
p
k
ekrcθ

�
− JnðπÞ

�
p
k
ekrcπ

�
J−nðθÞ

�
p
k
ekrcθ

��
; ðC29Þ

with NL a UV dependent normalization constant. We also find

fRðθÞ ¼ NLe
5
2
krcθ

�
J−nðπÞ

�
p
k
ekrcπ

�
JnðθÞ−1

�
p
k
ekrcθ

�
þ JnðθÞ

�
p
k
ekrcπ

�
J1−nðθÞ

�
p
k
ekrcθ

��
: ðC30Þ

With fL and fR in hand, for slowly varying Φ̂c, we evaluate the two point correlator on the UV brane at θ0. Using (C18)
we find

Σθ0ðpÞ ¼
p
p

J−nðπÞðpk ekrcπÞJnðθ0Þ−1ðpk ekrcθ0Þ þ JnðπÞðpk ekrcπÞJ1−nðθ0Þðpk ekrcθ0Þ
J−nðπÞðpk ekrcπÞJnðθ0Þðpk ekrcθ0Þ − JnðπÞðpk ekrcπÞJ−nðθ0Þðpk ekrcθ0Þ

: ðC31Þ

CHACKO et al. PHYSICAL REVIEW D 92, 056004 (2015)

056004-24



We wish to express the two point function as a power
series in p=k to determine the scaling dimension of O. To
suppress effects associated with spontaneous conformal
symmetry breaking we work in the limit that the IR brane is
far away by choosing p such that p

k e
krcπ ≫ 1. In order to

avoid spurious conformal symmetry violating effects asso-
ciated with the regulator, we must also stay away from the
UV brane by choosing p such that pk e

krcθ0 ≪ 1. In this limit
we can employ the small Bessel expansion for the terms
with θ0 in Eq. (C31). We also Wick rotate the momenta to
tame the oscillations of the Bessel functions. Using the
asymptotic expansions of the Bessel functions for both
small and large argument we obtain a result of the form

lim
krc→∞

Σθ0ðpÞ ¼
p
k

�
a1ðθ0Þ þ a2ðθ0Þ

�
p
k

�
2

þ � � �

þ b1ðθ0Þ
�
p
k

�j2nðθ0Þ−2j þ � � �� ðC32Þ

where the ai are the coefficients of analytic terms and the bi
those of the nonanalytic terms. The coefficients depend on
the location of the extra dimension, θ0, but they are
independent of p. Comparing the power of the b1 term
to Eq. (C15) we immediately find that for n > 1 (cq > 1=2
at leading order)

ΔQðθ0Þ ¼
3

2
þ nðθ0Þ: ðC33Þ

A similar expression can be derived for n < 1.
We are interested in the scaling dimensions just above

the conformal symmetry breaking scale, which corresponds
to the region just outside the boundary layer near the IR
brane. This corresponds to

θ0 ¼ π − x
krc

: ðC34Þ

where x is a number of order a few. We must check that the
approximations that led to Eq. (C33) continue to remain
valid this close to the IR brane. In order for the asymptotic
forms of the Bessel functions to be applicable, p must be
chosen to simultaneously satisfy

p
k
ekrcπ ≫ 1;

p
k
ekrcπe−x ≪ 1: ðC35Þ

These conditions can indeed be satisfied provided e−x ≪ 1,
which corresponds to x of order a few.
We now evaluate nðθ0Þ in this limit. The θ0 dependence

of nðθ0Þ comes from the outer region GW solution
Eq. (2.11) Φ̂ORðθ0Þ. In the limit of large krc we find

Φ̂ORðθ0Þ ¼ Φ̂ORðπÞ − xΦ̂OR
0ðπÞ þ � � � ðC36Þ

Because we have been dropping all Φ̂0OR to obtain the
Bessel function solution (C27) we must also drop the
second and higher terms in the expansion above. We are left
with Φ̂ORðθ0Þ ¼ Φ̂ORðπÞ. Therefore,

ΔQjIR ¼
3

2
þ nðπÞ

¼ 3

2
þ
���� 12þ cq þ

cqðβq − αqÞΦ̂ORðπÞ
k3=2 þ αqΦ̂ORðπÞ

����
þOðk−3=2Φ̂0ORÞ: ðC37Þ

APPENDIX D: NAIVE DIMENSIONAL ANALYSIS
ESTIMATION OF PARAMETERS

In this appendix we estimate the sizes of the various
parameters in the theory, using the methods of naive
dimensional analysis (NDA) [74,75] as generalized to
higher dimensions [76]. A more detailed explanation of
some of these estimates may be found in Appendix C of
[30]. The underlying philosophy behind NDA estimates is
that in a strongly coupled theory, the radiative corrections
to any process are expected to be comparable at every loop
order. Since holography relates the interactions in the bulk
and on the IR brane to the dynamics of a strongly coupled
CFT, we expect that NDAwill offer a guide to the sizes of
the parameters in these regions. The dynamics on the UV
brane, on the other hand, is associated with the interactions
of states external to the CFT. Therefore, we do not expect
that NDAwill offer a useful guide to the sizes of parameters
on this brane.
Following [76] we can write the D-dimensional

Lagrangian of a strongly coupled theory as

LD ∼
NΛD

lD
L̄ðΦ̄; ∂=ΛÞ; ðD1Þ

Here Φ̄ represents the fields in the theory normalized so as
to be dimensionless, Λ is the cutoff of the theory, and N is
the number of states going around the loops. The loop
factor, which comes from integrating over D dimensional
phase space, is given in four dimensions by l4 ¼ 16π2,
while in five dimensions it is given by l5 ¼ 24π3. All
parameters in L̄ are dimensionless and taken to be Oð1Þ.
Rescaling the fields so that kinetic terms are canonically
normalized then gives all Lagrangian parameters in terms
of the cutoff, the loop factor, and the number of states
participating in the correcting loops.
We begin by analyzing the gravity Lagrangian,

L ∼ 2M3
5R. The above prescription allows us to relate

the cutoff ΛIR to the 5-dimensional Planck mass M5,

ΛIR ∼
�
l5

N

�
1=3

M5: ðD2Þ
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We can also estimate the size of the bulk cosmological
constant Λb that would be radiatively generated by the
strong dynamics,

Λb ∼
NΛ5

IR

l5

∼
�
l5

N

�
2=3

M5
5: ðD3Þ

Einstein’s equations then allow us to estimate the natural
size of the curvature k, in units of the cutoff. From Eq. (2.3)
we obtain

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−Λb

24M3
5

s
∼

ΛIRffiffiffiffiffi
24
p ; ðD4Þ

from which we can express

�
k
M5

�
3

∼ 24−3=2 l5

N
∼

6

N
: ðD5Þ

1. GW scalar potential

Next we analyze the bulk potential for the GW field. The
potential in Eq. (2.8) is parametrized by ϵ ¼ m2=4k2 and
ξ ¼ ηv=8

ffiffiffi
k
p

. The bulk mass of the GW scalar is estimated
to be simply m2 ∼ Λ2

IR, but we need the bulk mass to be
small in order for the size of the extra dimension to be
stabilized at a large value [29]. Therefore, we take the NDA
estimate to be an upper bound:

ϵ≲ 6: ðD6Þ

The bulk cubic is estimated as

η ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
l5ΛIR

N

r
: ðD7Þ

If we use NDA on the UV brane, we can estimate v ∼ 0.4,
but the dynamics of the UV brane is weakly coupled, so v is
expected to be smaller than its NDAvalue. Furthermore, we
need v to be small in order to have an approximately
conformal dual because it corresponds to explicit breaking
of the CFT. Putting it all together, we get an NDA upper
bound of

ξ≲ 3ffiffiffiffi
N
p : ðD8Þ

Finally, we can now estimate the size of the VEV Φ̂ on the
IR brane by looking at the IR brane potential parameter α.
Using the NDA prescription on the 4D brane we find that

Φ̂ðπÞ
k3=2

≃ α

4
∼

ffiffiffiffiffiffiffiffiffi
Nl5

p
8l4

�
ΛIR

k

�
5=2

∼ 1.1
ffiffiffiffi
N
p

: ðD9Þ

2. Couplings of SM fields

In order to estimate the size of the gauge couplings
in Eq. (3.1), we work in a convention where the gauge
field is treated on the same footing as a spacetime
derivative so that the gauge covariant derivative is
Dμ ¼ ∂μ − iAμ. This allows us to generalize Eq. (D1) to

LD ∼ NΛD

lD
L̄ðΦ̄; ∂=Λ; A=ΛÞ, where Φ represents the non-

gauge fields and A the gauge fields. We can then estimate
the size of the visible brane gauge coupling in terms of the
4D loop factor,

gIR ∼
4πffiffiffiffi
N
p : ðD10Þ

The bulk gauge coupling is dimensionful, and we can
estimate the following useful combination

g25k ∼
ffiffiffiffiffi
24
p π3

N
: ðD11Þ

The IR coupling gIR and bulk gauge coupling g5 are
expected to be of order their NDA values, because they
are associated with the strong dynamics. The UV coupling
gUV, on the other hand, is associated with physics external
to the strong dynamics, so it can naturally be smaller than
its NDA value.
We now estimate the couplings of the GW field to SM-

like fields. We begin with the coupling to gauge bosons as
in Eq. (3.17) which is given schematically by

Φ

k3=2

�
βUV
4g2UV

δðθÞ þ β

4g25
þ βIR
4gIR2

δðθ − πÞ
	
F2: ðD12Þ

Because the gauge coupling is already scaled out of the
definition of β, all one needs to do to estimate its size is
rescale Φ so it is canonically normalized using the
prescription of Eq. (D1). Therefore we find that

β ∼
ffiffiffiffiffi
l5

N

r �
k
ΛIR

�
3=2

∼
2.5ffiffiffiffi
N
p : ðD13Þ

To estimate the IR brane coupling to bulk fields βIR, we
note that F2 is normalized as a 5D operator, while in the
NDA prescription the brane operator is multiplied by the
4D loop factor. Therefore, we find that

βIR ∼
l3=2
5

l4

ffiffiffiffi
N
p

�
k
ΛIR

�
5=2

∼
2.4ffiffiffiffi
N
p ; ðD14Þ
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which is numerically similar to the estimate for the bulk
coupling β. The size of βUV is not correlated with the NDA
estimate.
The GW scalar can also couple to the Higgs kinetic term

on the IR brane as in Eq. (4.3),

βW
Φ

k3=2
δðθ − πÞðDμHÞ†ðDμHÞ: ðD15Þ

An estimate of the NDA size of βW yields a result similar to
that of the gauge kinetic term on the IR brane,ffiffiffiffi
N
p

βW ∼
ffiffiffiffi
N
p

βIR ∼ 2.4. The coupling of the GW field to
the fermions is given in Eq. (5.9),

Φ

k3=2

��
αq

i
2
eMa Q̄Γa∂M

⟷
Q − βqkcqQ̄Q

�

þ δðθ − πÞαy
�
Y
k
Q̄HU þ H:c:

��
: ðD16Þ

We have only shown Q, but the generalization to other
fermions is clear. We find that

ffiffiffiffi
N
p

αy ∼
ffiffiffiffi
N
p

βv ∼ 2.4, and
that

ffiffiffiffi
N
p

αq ∼
ffiffiffiffi
N
p

β ∼ 2.5. Here we are assuming that the

coupling to the GW scalar does not break the SM flavor
symmetries.
Finally we come to βq. Before we can determine this, we

must first estimate the size of the dimensionless coefficient
cq that parametrizes the bulk mass term. This is given by

cq;u ∼
ΛIR

k
∼ 4.9: ðD17Þ

If the mass term cq was of order its NDA size, then we

would have
ffiffiffiffi
N
p

βq ∼
ffiffiffiffi
N
p

αq ∼ 2.5. However, in order to
generate a realistic spectrum of fermion masses, it is
necessary to take values of cq close to 1=2, significantly
below its NDA value. It follows that the estimate of the
coupling to the GW scalar is modified to

βq ∼
2.5ffiffiffiffi
N
p cNDAq

cq
; ðD18Þ

where cNDAq is given in Eq. (D17).
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