
PHYSICAL REVIEW B 101, 144504 (2020)

Vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in two and
three dimensions: Role of surface defects and material inhomogeneities
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We use time-dependent Ginzburg-Landau theory to study the nucleation of vortices in type-II superconductors
in the presence of both geometric and material inhomogeneities. The superconducting Meissner state is
metastable up to a critical magnetic field, known as the superheating field. For a uniform surface and
homogeneous material, the superheating transition is driven by a nonlocal critical mode in which an array of
vortices simultaneously penetrate the surface. In contrast, we show that even a small amount of disorder localizes
the critical mode and can have a significant reduction in the effective superheating field for a particular sample.
Vortices can be nucleated by either surface roughness or local variations in material parameters, such as Tc. Our
approach uses a finite-element method to simulate a cylindrical geometry in two dimensions and a film geometry
in two and three dimensions. We combine saddle-node bifurcation analysis along with a fitting procedure to
evaluate the superheating field and identify the unstable mode. We demonstrate agreement with previous results
for homogeneous geometries and surface roughness and extend the analysis to include variations in material
properties. Finally, we show that in three dimensions, surface divots not aligned with the applied field can
increase the superheating field. We discuss implications for fabrication and performance of superconducting
resonant frequency cavities in particle accelerators.
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I. INTRODUCTION

A hallmark feature of type-II superconductors is a phase
transition from a purely superconducting (i.e., Meissner) state
to a mixed state characterized by arrays of magnetic vortices.
The mixed state can be understood as the compromise in the
competition between magnetic pressure and the condensation
of Cooper pairs. If the characteristic length scales for these
phenomena are appropriately separated, a balance is struck in
which filaments of magnetic field and small, nonsupercon-
ducting cores are trapped by vortices of supercurrent. This
configuration is thermodynamically stable between a lower
and upper critical field (Hc1 and Hc2, respectively). Olsen
et al. beautifully captured this behavior using magneto-optical
imaging [1]. For time-independent configurations, a stable ar-
ray of vortices can be achieved, while for alternating magnetic
fields, vortex motion leads to heat dissipation [2].

Ginzburg-Landau (GL) theory succinctly captures the rele-
vant physics for describing the Meissner and vortex states, as
well as the transition between the two. The theory is described
by two characteristic length scales: the London penetration
depth λ and the superconducting coherence length ξ . For
materials in which the ratio κ = λ/ξ (known as the GL param-
eter) is less than 1/

√
2 the material is type I and will transition

directly from the Meissner state to the nonsuperconducting
state. However, for type-II superconductors (κ > 1/

√
2) the
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material transitions first to a mixed, vortex state. The density
of vortices increases with larger applied magnetic field until
the system transitions to a nonsuperconducting state at Hc2.

Although vortices are thermodynamically stable for fields
above Hc1, surface effects lead to an energy barrier to vortex
nucleation [3]. The Meissner state can persist above Hc1 up to
a maximum magnetic field, known as the superheating field
Hsh above which the energy barrier vanishes. For homoge-
neous materials with smooth surfaces, this transition is driven
by critical perturbations with a characteristic wave number
kc. For applications requiring a Meissner state (i.e., for which
vortex nucleation is detrimental), Hsh is the fundamental limit
to performance. As such, estimates of Hsh within Ginzburg-
Landau theory have a long history [4–12]. This technique
has since been extended to Eilenberger theory in both the
clean [13] and dirty [14] limits. Often real systems have rough
surfaces and interior defects that do not match this geometry.
The role of surface roughness on Hsh in two-dimensional
geometries with surface defects has been studied extensively
within Ginzburg-Landau theory [15–18]. There has also been
considerable effort to simulate vortex nucleation and subse-
quent dynamics for more complicated domains within time-
dependent Ginzburg-Landau (TDGL) theory [19–29].

Particle accelerators are an application of importance to a
wide variety of fields [30–32] to which quantitative studies of
the superheating field and vortex motion are particularly rele-
vant. Superconducting radio-frequency (SRF) cavities transfer
energy to particle beams. Large ac currents running along the
interior surface of the cavity induce electromagnetic fields
that are timed to boost particle bunches as they pass through
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FIG. 1. Two-dimensional geometries. We consider an infinite
superconducting cylinder (left) and an infinite superconducting film
(right). In both cases, the magnetic field is perpendicular to the
plane of simulation and does not vary spatially. Boundary conditions
require matching the applied magnetic field on the surface. For the
film (right), we have periodic boundary conditions on the left and
right sides.

[33]. Traditionally, cavities have been fabricated from Nb, but
engineering advances have pushed these cavities to near their
fundamental limits [34].

To more efficiently reach higher accelerating gradients, the
accelerator community is exploring new materials for next-
generation cavities [35]. Of particular interest is Nb3Sn, which
theoretically has Hsh = 425 mT and Tc = 18 K (compared to
niobium which has Hsh = 219 mT and Tc = 9.2 K) [36]. In
practice current Nb3Sn cavities perform far below theoretical
limits [34,37].

In addition to surface roughness, the alloyed nature of
these materials often leads to variations in material parame-
ters, such as Sn concentration, that can have a strong effect
on the superconducting properties [38–43]. To guide future
development and keep pace with experimental advancements,
more sophisticated theoretical and computational tools are
needed to identify the relevant physics for vortex nucleation
and quantify their effect on Hsh in real materials. They need
to be flexible enough to not only capture the impact of surface
roughness, but also interior material inhomogeneities. These
advances also offer an opportunity to validate theories of
traditional superconductors in extreme conditions.

In this paper, we perform bifurcation analysis of the
Meissner state using TDGL and a finite-element formulation.
Our method quantitatively confirms previous estimates of
Hsh derived in the symmetric, time-independent theory. We
account for asymmetric geometries, such as surface divots,
and variation in material parameters in two and three dimen-
sions. We show that local reductions in the superconducting
critical temperature are a potentially important nucleation
mechanism in inhomogeneous alloyed superconductors. Our
method identifies the critical fluctuations that drive the vortex
nucleation. Unlike the symmetric case in which arrays of
vortices nucleate in tandem, a small amount of disorder acts
as a nucleation site for individual vortices, indicating that near
Hsh, the free-energy surface has several shallow directions. We
quantify this effect for both surface roughness and material

Ha

Ha

FIG. 2. Three-dimensional geometry. We generalize the 2D film
geometry by extending the x-y plane along the ẑ direction. In this
geometry we are free to rotate the direction of the magnetic field.

inhomogeneity, a result that will guide the manufacture of
precision samples to maximize performance. Finally, in three
dimensions we show that the relative orientation of defects
and the external field has a strong role in vortex nucleation. We
demonstrate that defects aligned perpendicular to the applied
field lead to an increase in Hsh.

The rest of this paper is organized as follows. Section II for-
mulates the time-dependent Ginzburg-Landau (TDGL) equa-
tions to account for spatial variations in Tc and introduces
the two- and three-dimensional geometries we consider. We

FIG. 3. Spatial dependence of a(r). The dependence of the GL
equations on the critical temperature comes from a coefficient a. We
model the influence of Sn segregation as a local suppression of the
superconducting critical temperature by allowing a to vary spatially.
Here, we show the value of a throughout the domain. a < 1 leads to
a reduction of the superconducting order parameter.
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FIG. 4. Vortex nucleation. The order parameter above Hsh after
vortex nucleation. Note how the vortices penetrate uniformly around
the cylinder.

also introduce saddle-node bifurcation analysis to efficiently
identify the critical modes that drive vortex nucleation and
estimate Hsh. In Sec. III we first confirm that our simulations
for homogeneous systems match previous work. Then, we
report on the effect of surface roughness and material inho-
mogeneity in two and three dimensions. Finally, in Sec. IV,
we discuss implication and limitations of our approach and
potential future extensions.

II. METHODS

A. Problem formulation

The time-dependent Ginzburg-Landau (TDGL) equations
are a series of partial-differential equations relating the su-

FIG. 5. Critical fluctuation. During the relaxation back to steady
state after a random perturbation (Ha < Hsh), the slowest decaying
mode is the critical fluctuation that drives the phase transition at
Hsh. Note that the alternating pattern of low and high values roughly
match the pattern of vortices in Fig. 4 and previous calculations of kc

in bulk geometries.
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FIG. 6. Extracting Hsh. Extrapolating the bifurcation parameter r
to zero gives Hsh.

perconducting order parameter to the electric potential and
magnetic vector potential on mesoscopic scales. Although
originally a phenomenological theory, the equations can be
rigorously derived from the time-dependent Gorkov equations
[44]. The TDGL equations in Gaussian units given in Ref. [45]
are

−�

(
∂ψ

∂t
+ 2ieφ

h̄
ψ

)
= −|α|ψ + β|ψ |2ψ

+γ

(
− ih̄∇ − 2e

c
A

)2

ψ, (1)

j = c

4π
∇ × ∇ × A

= σn

(
− 1

c

∂A
∂t

− ∇φ

)
+ 2eγ

[
ψ∗

(
− ih̄∇ − 2e

c
A

)
ψ

+ψ

(
ih̄∇ − 2e

c
A

)
ψ∗

]
. (2)

These equations depend on the order parameter ψ , the mag-
netic vector potential A, and the electric potential φ all of
which can vary in space and time. The rest of the quantities
are material parameters and fundamental constants: � is the
rate of relaxation of the order parameter, e is the charge of
an electron, h̄ is Planck’s constant divided by 2π , c is the
speed of light, α is a material-specific constant proportional to

TABLE I. Numerical results. Hsh and kc for different values of
κ calculated using bifurcation analysis with a cylinder of radius
40. For comparison, we include estimates from time-independent
calculations.

Cylinder Hsh Slab Hsh Absolute relative difference

κ = 2 0.803 0.7980 0.00615
κ = 4 0.721 0.7233 0.00320
κ = 6 0.683 0.6879 0.00711
κ = 8 0.660 0.6663 0.00944

Cylinder kc Slab kc

κ = 2 0.975 1.1423 0.1465
κ = 4 2.125 2.31769 0.0831
κ = 6 3.125 3.27868 0.0468
κ = 8 3.925 4.15077 0.0544
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1 − T/Tc (T is temperature and Tc is the critical temperature),
β is another material parameter that is approximately constant
with respect to Tc, γ is related to the effective mass of
the Cooper pairs, and σn is the conductivity of the normal
electrons.

Typically, all physical constants can be absorbed into the
units of fields. However, we relax this assumption in order to
model spatial variations in Tc by allowing α(r) ∝ 1 − T/Tc to
vary in space over a range of values. This has been done pre-
viously to model pinning sites by setting α(r) to zero at fixed
points in the domain [20,26–28]. We define α(r) = α0a(r)
where α0 is a reference value (to be subsumed by units),
and a(r) is a dimensionless number characterizing the spatial
material variation. The quantities α0 and a(r) are defined with
respect to some reference point in the bulk material such that
a(r0) = 1 and α(r0) = α0. With this convention, α0 can be
absorbed into the units of the field. Values of a less than one
correspond to a local Tc less than the reference value with
a < 0 corresponding to Tc less than the operating temperature.
The critical temperature of Nb3Sn can depend strongly on the
local concentration of Sn [43], so local reductions in Tc are an
important potential mechanism for vortex nucleation.

With these modifications and assuming our boundary con-
ditions are a fixed applied magnetic field on the surface with
no current leaking into vacuum, we arrive at

∂ψ

∂t
+ iφψ = −aψ + |ψ |2ψ +

(−i

κ0
∇ − A

)2

ψ, (3)

j = ∇ × ∇ × A

= − 1

u0

(
∂A
∂t

+ 1

κ0
∇φ

)
− i

2κ0
(ψ∗∇ψ − ψ∇ψ∗) − |ψ |2A,

(4)
(

i

κ0
∇ψ + Aψ

)
· n = 0 on surface, (5)

(∇ × A) × n =H × n on surface, (6)

−
(

∇φ + ∂A
∂t

)
· n =0 on surface, (7)

where we have introduced two new constants u0 and κ0.
The constant u0 = τψ/τ j is the ratio of the timescales for
variations in the order parameter and the current. They are
defined as

τψ = �

|α0| , (8)

τ j = βσn

8e2γ |α0| = σn

8e2γψ2
0

. (9)

The constant κ0 is the Ginzburg-Landau parameter, the ratio
of the penetration depth λ0, and the coherence length ξ0. All
of these are defined with respect to the reference point r0.

Equations (3)–(7) are a set of coupled partial-differential
equations in three dimensions. A common simplification is
to assume a symmetry in the z direction and only consider
variations in the x-y plane. This assumption leads to a two-
dimensional formulation which greatly reduces the computa-
tional overhead, but does limit the types of geometries that can

FIG. 7. Vortex nucleation for rough surfaces. The norm squared
of the order parameter just after vortex nucleation. Note how the
vortices penetrate in the troughs of the surface.

be simulated. We perform both two- and three-dimensional
simulations in this paper.

We numerically solve the TDGL equations using a finite-
element method (FEM) implemented in FEniCS [46]. Be-
cause the TDGL equations are diffusionlike, the time step is
implemented through an implicit formula. We use a backward
Euler formula, but higher-order backward difference formulas
could also be applied. A more detailed description of previous
methods is given by Gao et al. [25].

One reason for the large variety of FEM formulations is
the need to choose a gauge. Although physical quantities
should remain the same in different gauges, the efficiency
and accuracy of numerical methods with each gauge varies.
We follow the formulations and conventions of Gao et al.
[25,47]. Although the TDGL equations are nonlinear, by using

FIG. 8. Critical mode for the rough surface. The slowest decay-
ing mode for rough surfaces is concentrated at the troughs where the
first vortex enters.
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FIG. 9. Vortex nucleation for small roughness. Even a little
roughness qualitatively changes vortex nucleation pattern. Here, only
one vortex nucleates.

solutions from the previous time steps, each time step can
be formulated as a series of linear equations. For the two-
dimensional case, the problem can be reduced to a series of
Laplace and diffusion equations of coupled scalar fields which
we implement as Lagrange elements. In three dimensions, the
problem also reduces to a series of linear equations; however,
the geometric nature of the magnetic field and vector potential
in 3D require they be modeled as Ravier-Thomas and Nedelec
elements of different orders. The complexity of the three-
dimensional formulation incurs a substantial computational
cost (both in time and memory).

In the two-dimensional case, we define two geometries:
an infinite cylinder and a thin film. In these geometries the
magnetic field points in the ẑ direction, i.e., perpendicular to
the plane of simulation. Figure 1 shows these cross sections.

FIG. 10. Critical mode for small roughness. The critical mode is
centered where the first vortex enters. Compare with Fig. 9.

FIG. 11. Role of geometry in vortex nucleation. The ratio of Hsh

in the presence of a divot to the bulk value. Divots that are thin and
deep are the most detrimental.

For large radii and wide films these geometries approximate
an infinite flat surface, studied using linear-stability analysis
in [4].

In the 3D case we consider a rectangular box cut out
of a thin film as in Fig. 2. This is done by extending the
domain of simulation along the z axis (the inner solid box).
In this geometry we can orient the applied magnetic field in
many directions along the surface of the film. The process of
meshing these geometries is given in the Appendix.

We take as initial conditions the case of a perfectly super-
conducting material in the absence of an applied field. We
raise the applied magnetic field exponentially to values near
Hsh in order to capture the dynamics of vortex nucleation. The
time dependence of the magnetic field is Ha(t ) = Hmax(1 −
e−t/τ ). This allows us to quickly raise the field but slow down
close to the asymptotic value H where vortex nucleation is
sensitive to small fluctuations in ψ and A.

B. Inhomogeneities

This formulation allows for a wide variety of potential
simulations. We go beyond the bulk geometry [4–12] by
considering the influence of surface roughness and spatial
variations of Tc (α).

We introduce surface roughness in two ways. First, we
model the surface of a wire (cylinder) as a Gaussian process
(random sum of sinusoidal functions). Second, motivated by
observed morphology of grain boundaries [48], we introduce
a divot with a cutout of the form Ae−|x|/σ . Examples of these
geometries are shown along with results in the next section
and are described further in the Appendix.

We model spatial variations of Tc within the cylindrical

geometry as a Gaussian function a(r, θ ) = 1 − Be
−θ2

2s2 ( r
R )l (see

Fig. 3). B is the lowest value of alpha, s sets the width of our
defect, R is the cylinder radius, and l adjusts how quickly
a drops off radially. This “line” of lowered Tc mimics the
effect of Sn segregation in the grain boundaries of Nb3Sn
cavities [49].

C. Bifurcation analysis and mode extraction

One of the contributions of this work is a method for cal-
culating Hsh for arbitrary geometries and material properties.
The superheating field occurs when the metastable Meissner
state becomes unstable to a critical fluctuation. At Hsh, the
free-energy landscape near the Meissner state transitions from
a local minimum to a saddle point, and dynamics exhibit a
saddle-node bifurcation. The free energy flattens (to lowest
order) in the direction characterizing the critical fluctuation
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FIG. 12. Hsh vs opening angle. Divots with the same opening
angle may nucleate vortices at different applied fields.

that nucleates magnetic vortices. Because the free-energy
landscape is flat near the bifurcation, simulation dynamics are
slow for applied fields near Hsh. Rather than solve the TDGL
equations near the bifurcation, we use normal-form theory
to quickly extract Hsh from simulations with applied fields
below Hsh.

The normal form of the saddle-node bifurcation is

dx

dt
= −r + x2, (10)

where r is the bifurcation parameter [50] and, in our case,
an implicit, unknown function of the applied field. x is some
combination of finite-element degrees of freedom that be-
comes the unstable, critical fluctuation.

Equation (10) is stable for r > 0 and unstable for r < 0.
Near the bifurcation, the system decays to equilibrium with
a characteristic rate γ = 1

2
√

r
. We extract the critical mode,

x by first finding the metastable Meissner state for applied
fields below Hsh. We then perturb the state with random white
noise and extract the slowest mode and the decay rate γ

FIG. 13. Nucleation due to material inhomogeneity. We plot the
norm squared of the order parameter above Hsh when a(r) varies as
shown in Fig. 3. Vortices nucleate in regions of low a ∝ 1 − T/Tc

(i.e., lower Tc).

FIG. 14. Reduction in Hsh vs material parameter. The minimum
value of α in the weakly superconducting region determines the field
at which vortices first nucleate.

using a fitting procedure [51]. Repeating this calculation for
several different applied fields, we then extrapolate to find
the applied field at which r becomes zero. We also apply an
iterative technique to improve the numerical stability of this
method. We repeatedly amplify the remaining noise and relax
the system to cleanly separate the decaying mode and identify
γ and r [52]. One of the benefits of this method is that it avoids
running simulations where r ≈ 0 and the timescale diverges.

III. RESULTS

A. Agreement with previous work

We first demonstrate that our formulation correctly re-
produces several known qualitative and quantitative results.
We reproduce vortex nucleation and numerical estimates of
Hsh using a cylindrical geometry without defects. Figure 4
illustrates magnetic vortices shortly after nucleation for an
applied magnetic field of Ha = 0.8

√
2Hc and a cylinder of

radius 20λ with κ = 4. Note that magnetic fields will always
be measured in units of

√
2Hc where Hc is the thermodynamic

critical field. We will drop the
√

2Hc from now on.
As described in Sec. II C we extract the slowest decaying

mode for fluctuations in the order parameter below but near
Hsh. Figure 5 shows this mode for a radius of 20λ. This pattern
is roughly sinusoidal on the surface with a wave number kc

that we estimate from the number of times the pattern crosses
zero. Fluctuations in this mode drive the transition from the
Meissner state to the vortex state. Notice that the mode is
nonlocal. The coordination of multiple penetrating magnetic
vortices lowers the barrier to entry for any single vortex.

The procedure for calculating Hsh and kc differ from those
based on linear-stability analysis in the time-independent case
[4]. Here, using bifurcation analysis, we extract the numerical
value of the bifurcation parameter r using the observed decay
rate of the critical mode. Repeating this for several different
applied fields gives an empirical relationship between r and
Ha, represented in Fig. 6. The superheating field occurs at
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Ha=0.9 Ha=0.9 Ha=1.00.9(a) (b) (c)

FIG. 15. Vortex nucleation in 3D. Plotting the square of the order
parameter shows that a vortex has nucleated at Ha = 0.9 for the
smooth surface but not the dented surface. At Ha = 1.0 we do see
vortex nucleation perpendicular to the divot.

Ha such that r = 0. We estimate Hsh by fitting empirical
estimates of r(Ha) to a second-order polynomial and solving
for r = 0. We also calculate kc by counting the number of sign
changes in the critical mode in Fig. 5. Table I summarizes our
calculations of Hsh and kc for varying κ and compares them to
previous estimates from [4].

In addition to linear stability analysis, previous work has
also used the time-dependent theory to estimate the entry field
[15–29]. An advantage of using the time-dependent theory is
the ability to explore rough geometries. Typically, the field
is raised until vortices nucleate, but efficiently and accurately
determining the transition point can be tedious as the rel-
evant timescales diverge near Hsh. The bifurcation analysis
we describe above extracts the same information without
having to explicitly nucleate vortices. In the next section we
demonstrate qualitative agreement to previous studies.

B. Random surfaces

Vortex nucleation is a surface effect; surface roughness
changes how vortices nucleate. Figure 7 shows a simulation
that captures vortex nucleation for a random surface. Note
that Ha = 0.7 for this simulation and is less than Hsh for the
symmetric case. Also note that the critical fluctuation is no
longer a periodic array. Instead, the mode is large at concave
regions of the surface, where the vortices first form (see
Fig. 8). Using bifurcation analysis we calculate Hsh = 0.566
for this geometry, a significant reduction in in the value for a
smooth surface (Hsh = 0.72).

The roughness in Fig. 7 is somewhat extreme, but il-
lustrates the relevant physics in qualitative agreement with
previous results. Although less roughness leads to smaller
reduction in Hsh, we find that even a very small roughness
leads to a large, qualitative change in the critical mode.
Indeed, even very small, individual divots act as nucleation
points for vortices, as illustrated in Figs. 9 and 10.

C. Single divot

It has long been known that surface roughness is a relevant
parameter for vortex nucleation within GL theory. To explore
which geometric properties affect nucleation, we introduce
a single exponential cut out on the surface of the cylinder.
We vary the height and depth of this defect and calculate

FIG. 16. We solve the time-dependent Ginzburg-Landau equa-
tions on a circular cutout of a cylinder. Forcing symmetry in the mesh
ensures vortices penetrate uniformly. We refine the mesh near the
surface as we are only interested in initial vortex nucleation. Length
is measured in penetration depths

the corresponding reduction in Hsh. Results are summarized
in Fig. 11; divots that are narrow and deep lead to the
largest reduction in Hsh. A similar study assuming large κ

and using London theory also found single divots to be
detrimental [17].

An alternative parametrization of the divot geometry is
in terms of the opening angle. A potential hypothesis is
that the opening is the relevant parameter determining vor-
tex nucleation; however, Fig. 12 shows that this is not the
case.

D. Variations of Tc

In addition to surface roughness, material inhomogeneities
also act as nucleation sites. We model variations in material
properties by spatially varying α(r) ∝ 1 − T/Tc as described
in Sec. II B. Figure 13 shows that for Ha > Hsh vortices first
nucleate where Tc is lowest on the surface. Similar to surface
roughness, even a small, local reduction in Tc leads to a
localization in the critical mode.

Variation in Tc can also lead to a significant drop in Hsh

as seen in Fig. 14. As a point of comparison, for Nb3Sn, the
variation in Sn concentration can cause Tc to vary from about
18 K at the optimal stoichiometry to as low at 6 K in Sn de-
pleted regions Sn seen in typical SRF cavities [38–43]. For an
SRF cavity operating near 4 K, this means that vortices could
nucleate at an applied field around 0.6, an effect comparable
to the extreme roughness of Fig. 7. These results suggest that
realistic variations in Tc could be an important mechanism for
vortex nucleation.
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FIG. 17. We introduce a geometric defect to the cylinder based
on experimentally observed grain boundaries.

E. Film geometry

Up to this point, all our results have been reported for
the two-dimensional cylindrical geometry. To control for the
effects of curvature, we repeat our calculations using a film
geometry. We apply the same magnetic fields to the top
and bottom of the rectangular domain and enforce periodic
boundary conditions on the left and right sides. Our results for
the film geometry are nearly identical to those of the cylinder,
indicating that the curvature effects are minimal.

F. 3D film

A major limitation of the two-dimensional analysis is that
the magnetic field must be parallel to the defects. As men-
tioned in Sec. II A, the 2D geometry is a cross section of a 3D
domain that does not vary in the ẑ direction. In this geometry
it is not possible to simulate defects that break symmetries in
the direction of the magnetic field points, nor is it possible
to have defects oriented differently from the applied field. To
consider magnetic fields perpendicular to defects, we must
move into fully three-dimensional geometries. Because three-
dimensional simulations are more computationally expensive,
we only consider volumes that accommodate a single vortex.
Our geometry is a three-dimensional generalization of the
2D film. We fix the applied field on the faces parallel to
the z plane and apply periodic boundary conditions to the
remaining sides. We use a mesh that is 2λ long in the x
direction, 1.5λ in the y, and 5λ in the z direction.

Our results indicate that when defects are perpendicular to
the applied field. the superheating field is effectively raised.
We illustrate in Fig. 15 in which we observe a vortex nucle-
ating on a smooth surface at an applied field of Ha = 0.9.
The magnetic field direction is indicated by the black ar-
row. However, after introducing a defect perpendicular to the

FIG. 18. We etch out an exponential-like function from the sur-
face of our cylinder to match what is observed experimentally.

magnetic field, no vortex nucleates at Ha = 0.9. After raising
the field to Ha = 1.0, the vortex fully enters the dented film.
This demonstrates that the relative orientation of defects and
the applied magnetic field also plays a crucial role in nucle-
ation mechanism and suggests that the most dangerous divots
are those parallel to the applied magnetic field.

IV. DISCUSSION AND CONCLUSIONS

This work combines TDGL simulations with bifurcation
analysis to study the transition of the metastable Meiss-
ner state to the mixed state of type-II superconductors. We
have implemented a finite-element method that accommo-
dates rough geometries in two and three dimensions, as well
as variations in material parameters. We have demonstrated
accuracy by reproducing previous calculations of Hsh and
kc for smooth geometries. The flexibility of finite-element
methods enable simulating geometries that are more complex,
including both rough surfaces and material inhomogeneities.
The bifurcation analysis allows us to efficiently extract both
the superheating field as well as the accompanying critical
mode without explicitly simulating vortex nucleation which
occurs at diverging timescales.

We have shown that even very small surface roughness
and material inhomogeneity can change the nucleation mech-
anism. In smooth geometries, arrays of vortices nucleate
together. However, weak perturbations lead to a localization
of the critical model and significant reduction in Hsh. Future
work will further apply these tools to geometries and material-
specific parameters motivated by experimental observations.

As we are interested in defects about the size of a co-
herence length we focus on mesoscopic scales. We have
chosen the penetration depth as our length scale in our sim-
ulations. This means that for increasing κ we must consider
smaller coherence lengths. This further increases mesh den-
sity and makes simulations more computationally expensive.
The value of κ determines how large of a domain we can
simulate. For type-II materials, such as Nb3Sn, simulations
will be primarily limited to mesoscopic scales.

This work has been based on Ginzburg-Landau theory
that has known limitations. Most importantly, GL theory is
formally exact only when the system is close to its critical
temperature; however, most SRF cavities operate well below
Tc. Previous work applying Eilenberger theory to uniform
surfaces and materials suggests that the Ginzburg-Landau pre-
dictions are surprisingly accurate (within a few percent) even
at very low temperatures [13]. It is reasonable to expect that
the relative effects of roughness and material inhomogeneity
that we have quantified will hold even at low temperatures,
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and that inhomogeneities are likely to be bottlenecks to per-
formance.

A critical aspect that we have ignored here is field enhance-
ment. The field enhancement effect refers to a local increase
in the applied field in response to surface roughness. Our
simulations have not accounted for any field enhancement
effects. This would require solving Maxwell’s equations in
the vacuum region outside the superconductor. This could be
added in future work, but is beyond the scope of this study.

This analysis is a step toward sample-specific time-
independent calculations of Hsh that include not only surface
defects, but spatially varying material parameters. We have
shown that realistic variations in Tc can lower the barrier to
vortex nucleation in ways similar to surface roughness and
such effects are likely to be present in alloyed superconduc-
tors. We present these results as an exploration of GL theory
and as a tool for quantifying detrimental defects in realistic
superconducting samples. In the future we plan to extend
these results to incorporate more material parameters and
specific geometries into this framework and how these tools
are bringing insight to the development of Nb3Sn cavities.
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APPENDIX: MESHING

We simulate three geometries: the 2D cylinder, the 2D film,
and the 3D film. In all of these geometries the mesh is refined
to capture length scales smaller than the order parameter,
otherwise the simulations do not accurately capture vortex
dynamics.

For the smooth cylinder we want to keep the simulation
as symmetric as possible to minimize the effect of numerical
noise. Near Hsh small defects in the mesh can lead to vortex
nucleation. For this reason we divide the domain into con-
centric circles. Starting with the inner circle, we add points
equally around the circumference. We then add points to the
second largest circle such that if projected onto the inner circle
they would be centered between the first set of points. We
repeat this process adding extra points if the domain becomes
too sparse. Finally, we are interested in dynamics near the
surface so we push interior points radially outward. Figure 16
shows the end result of this process for a cylinder of radius
10λ.

Once we introduce an inhomogeneity, the local defect
dominates global behavior. It is no longer necessary to keep
the mesh symmetric. We can let FEniCS automatically mesh
the domain. We can define differing mesh densities for differ-
ent regions as in Fig. 17. In Fig. 18 we can see the mesh close
to the defect.

As a reference for future papers, here is how we mesh the
film. The domain is broken up into rectangles. We found that
if we split the rectangles into an upper right triangle and a
lower left triangle, then nucleated vortices came in at an angle.
To avoid this, we divide each rectangle into four triangles as

FIG. 19. The symmetric mesh is broken up into smaller rect-
angles containing four triangles. This prevents biases in vortex
movement.

seen in Fig. 19. When we introduce a divot, the surface gets
remeshed and this bias disappears as seen in Fig. 20.

In 3D we only considered a domain that was big enough
for one vortex to form. The surface has a symmetric grid of
points. When we introduced a defect we centered the cusp on
a line of vertex points. Interior points were not symmetric.

FIG. 20. Here we add a divot to the surface of the film mesh.
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