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Recent anomalies in 8Be and 4He nuclear decays can be explained by postulating a fifth force mediated
by a new boson X. The distributions of both transitions are consistent with the same X mass, 17 MeV,
providing kinematic evidence for a single new particle explanation. In this work, we examine whether the
new results also provide dynamical evidence for a new particle explanation, that is, whether the observed
decay rates of both anomalies can be described by a single hypothesis for the X boson’s interactions. We
consider the observed 8Be and 4He excited nuclei, as well as a 12C excited nucleus; together these span the
possible JP quantum numbers up to spin 1 for excited nuclei. For each transition, we determine whether
scalar, pseudoscalar, vector, or axial vector X particles can mediate the decay, and we construct the leading
operators in a nuclear physics effective field theory that describes them. Assuming parity conservation, the
scalar case is excluded and the pseudoscalar case is highly disfavored. Remarkably, however, the
protophobic vector gauge boson, first proposed to explain only the 8Be anomaly, also explains the 4He
anomaly within experimental uncertainties. We predict signal rates for other closely related nuclear
measurements, which, if confirmed by the ATOMKI group and others, would provide overwhelming
evidence that a fifth force has been discovered.
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I. INTRODUCTION

In the standard model of particle physics, particles
interact through the electromagnetic, strong, and weak
forces. Following tradition, if we include gravity, but not
the force mediated by the Higgs boson, there are four
known forces. The discovery of a fifth force and the particle
that mediates it would have profound consequences for
fundamental physics.
Nuclear physics provides a fruitful hunting ground for

new forces. This was obviously true in the past, given the
central role of nuclear physics in elucidating the strong and
weak forces, but it remains true today. In particular, nuclear
experiments are well suited to discovering light and weakly
interacting particles [1–4], which have many particle and
astrophysical motivations [5–8]. These particles may be
light enough to be produced in nuclear decays, and the
extraordinary event rates of nuclear experiments allow

them to probe extremely rare processes mediated by
particles with very weak interactions.
In 2015, researchers working at the ATOMKI pair

spectrometer experiment reported a 6.8σ anomaly in the
decays of an excited beryllium nucleus to its ground state,
8Beð18.15Þ → 8Beeþe− [9]. The observed anomaly is an
excess of events at opening angles θeþe− ≈ 140°, suggesting
the production of a new X boson through 8Beð18.15Þ →
8BeX, followed by the decay X → eþe−, with best-
fit parameters mX ¼ 16.7� 0.35ðstatÞ � 0.5ðsystÞ MeV
and Γð8Beð18.15Þ → 8BeXÞ ¼ 1.1 × 10−5 eV, assuming
BðX → eþe−Þ ¼ 1.
In 2016, this possibility was analyzed in detail in

Refs. [10,11]. All possible spin-parity assignments for
the X particle were examined, several explanations were
excluded, and the possibility that the X particle is a vector
gauge boson mediating a protophobic fifth force was shown
to be a viable explanation. Following these studies, other
new physics explanations were examined in detail, with a
host of implications for nuclear, particle, and astrophysical
observations; see, for example, Refs. [12–25] and Ref. [26]
for a brief review. A follow-up study from nuclear theory
was also shown to disfavor a nuclear form factor as an
explanation [27]. Follow-up measurements of the nuclear
transitions have not been reported by other groups, but
other experimental collaborations have provided new con-
straints on X boson couplings to electrons that exclude part
of the viable parameter space in some models [28,29].
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Since 2016, the ATOMKI experimentalists have rebuilt
their spectrometer and confirmed the 8Beð18.15Þ anomaly
with the new detector. A refined analysis yields best-fit
parameters [30]

mX ¼ 17.01� 0.16 MeV; ð1Þ

Γð8Beð18.15Þ → 8BeXÞ ¼ ð6� 1Þ
× 10−6Γð8Beð18.15Þ → 8BeγÞ

¼ ð1.2� 0.2Þ × 10−5 eV: ð2Þ

They have also considered the decays of other excited
beryllium and carbon nuclei [31,32]. Most remarkably, in
recent months they have reported the observation of a 7.2σ
excess at θeþe− ≈ 115° in the transitions of 4Heð20.49Þ →
4Heeþe−, where the proton beam energy was tuned to
produce a resonance that sits within the Breit-Wigner peaks
of both the 4Heð20.21Þ and 4Heð21.01Þ excited states.
Assuming the production of a new particle, the best fit
parameters are reported to be [33,34]

mX ¼ 16.98� 0.16ðstatÞ � 0.20ðsystÞ MeV; ð3Þ

Γð4Heð20.49Þ→ 4HeXÞ¼ 0.12Γð4Heð20.21Þ→ 4Heeþe−ÞE0
¼ð4.0�1.2Þ×10−5 eV; ð4Þ

where the width uncertainty includes only the uncertainty
from Γð4Heð20.21Þ→ 4Heeþe−ÞE0¼ð3.3�1.0Þ×10−4 eV
[35], the decay width of the standard model E0 transition.
The fact that this excess is at a different angle eliminates
some experimental systematic explanations of both anoma-
lies. At the same time, the fact that the excess is found at the
same X mass provides striking supporting evidence that a
new particle is being produced.
Of course, it would be clarifying if these nuclear decays

were examined by another collaboration. It is important to
note, however, that the observation of a second signal
provides an opportunity for another highly nontrivial check
of the new physics interpretation beyond simply the
consistency of the best-fit masses. The description in terms
of a new particle requires not just kinematic consistency,
but also dynamical consistency; that is, the rates for the
anomalous decays must also be consistent with the same set
of interaction strengths between the X and quarks. The
best-fit widths are similar numerically, but it is far from
obvious that this implies consistency: the 8Be and 4He
excited states have different JP quantum numbers and
different excitation energies, and the 8Be measurement was
on resonance, while the 4He measurement was between two
resonances. The decays therefore take place through
operators with different dimensions and different partial
waves, and these differences may lead to disparate decay
widths. A priori, then, it is not at all clear that the observed

anomalous 8Be and 4He decay rates have a consistent new
physics interpretation.
On the experimental side, the width measurement of

Eq. (4) requires careful differentiation of signal and back-
ground. The leading backgrounds include external pair
creation (pþ 3H → 4Heþ ðγ� → eþe−Þ) and internal pair
creation from the E0 transition 4Heð20.21Þ → 4Heeþe−. By
fitting to the expected opening angle distributions for the
signal and these backgrounds, the ratio ΓX=ΓE0 was
determined. The collaboration has noted, however, that
an additional background from the E1 transition may also
be significant [36]. Including this contribution will modify
the best-fit width. With this in mind, we consider models
that predict widths that differ by orders of magnitude from
Eq. (4) to be highly disfavored, whereas models that predict
roughly similar widths are considered viable. These pre-
dictions will be tested once a refined experimental analysis
including a separate determination of the E1 background is
available.
We begin examining the fifth force explanation for

the ATOMKI results in Sec. II, where we consider the
production and decay kinematics for the observed 8Be and
4He processes and also for a 12C excited state, which
completes the possible nuclei JP assignments up to spin 1.
In Sec. III we determine how the observation or exclusion
of various decays constrains the possible X spin-parity
assignments. This is developed further in Sec. IV, where
for each of these possibilities we determine the leading
interactions in an effective field theory (EFT) that describes
low-energy nuclear transitions. Using this EFT, the decay
rates for the pseudoscalar, axial vector, and vector cases
are calculated in Secs. V, VI, and VII, respectively.
Remarkably, we find that in the vector case, the proto-
phobic gauge boson, previously advanced as an explan-
ation of the 8Be anomaly, also provides a viable explanation
for the new 4He observations within experimental uncer-
tainties. In Sec. VIII, we suggest further nuclear measure-
ments that can provide incisive tests of the new particle
hypothesis, and we summarize our conclusions in Sec. IX.

II. PRODUCTION AND DECAY KINEMATICS

We consider the production of new X particles in the
decays of excited states of 8Be, 12C, and 4He nuclei.
Although the states of interest have different quantum
numbers, leading to different decay dynamics, the kine-
matic features of the relevant processes are very similar.
In each case, a beam of protons with kinetic energy
Ebeam collides with nuclei A at rest to form excited nuclei
through the process pþ A → N�. The excited nuclei N�
decay to the corresponding ground state nuclei N0 through
N� → N0X, and the X bosons further decay via X → eþe−.
In this section we review the experimental results and the
kinematics of these processes. We examine the kinematics
of resonance production in Sec. II A, and we consider the X
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boson decay and the electron-positron opening angle θeþe−
in Sec. II B.

A. Resonance production

For resonance production, the required proton energy is

Ep ¼ m2
N� −m2

A −m2
p

2mA
; ð5Þ

where mA and mN� are the nuclear (not atomic) masses.
The proton beam energy, or proton kinetic energy, is
Ebeam ¼ Ep −mp, the proton’s momentum is pp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p −m2

p

q
, and the N� nucleus is created with velocity

vN� ¼ pp=ðEp þmAÞ in the lab frame. The values of Ebeam,
mA, mN� , and vN� for the considered processes are given in
Table I, and the properties of the relevant excited nuclear
states are summarized in Table II.
The anomaly observed in the 8Be system is unambig-

uously associated with the 8Beð18.15Þ state [9]. The
8Beð18.15Þ and 8Beð17.64Þ resonances do not overlap
significantly, and the anomaly was found to appear and
disappear as the proton beam energy was varied to scan
through the 8Beð18.15Þ resonance.

For the 4He anomaly [33], the experiment ran between
the broad 0þ 4Heð20.21Þ and 0− 4Heð21.01Þ resonances.
The proton beam energy was tuned to produce 4He nuclei
with an excitation energy of E ¼ 20.49 MeV, which is well
within the widths of both excited states; see Fig. 1.

B. X boson decay

Once produced, the excited nucleus decays through
N� → N0X. In the N� rest frame, the X boson is produced
with energy

EX ¼ m2
N� þm2

X −m2
N0

2mN�
≈mN� −mN0

; ð6Þ

where the last expression exploits the fact that mX, mN�−
mN0

≪ mN� ,mN0
. The X velocity is vX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðmX=EXÞ2

p

TABLE I. Production and decay kinematic parameters. Beams of protons with kinetic energy Ebeam collide with
nuclei A at rest to form excited nuclei N�, which then decay to the ground state nucleus N0 through N� → N0X. We
fixmX ¼ 17 MeV, and for each of the relevant processes, we give the values of Ebeam,mA,mN� , vN� (theN� velocity
in the lab frame), vX (the X velocity in the N� rest frame), and θmin

eþe− (the minimum eþe− opening angle). 4Heð20.49Þ
indicates the resonance energy probed in Ref. [33], which sits between the 4Heð21.01Þ and 4Heð20.21Þ states.
pþ A → N� Ebeam [MeV] mA [MeV] mN� [MeV] vN�=c vX=c θmin

eþe−

pþ 7Li → 8Beð18.15Þ 1.03 6533.83 7473.01 0.0059 0.350 139°
pþ 7Li → 8Beð17.64Þ 0.45 6533.83 7472.50 0.0039 0.267 149°
pþ 11B → 12Cð17.23Þ 1.40 10252.54 11192.09 0.0046 0.163 161°
pþ 3H → 4Heð21.01Þ 1.59 2808.92 3748.39 0.0146 0.587 108°
pþ 3H → 4Heð20.49Þ 0.90 2808.92 3747.87 0.0110 0.557 112°
pþ 3H → 4Heð20.21Þ 0.52 2808.92 3747.59 0.0084 0.540 115°

TABLE II. Nuclear excited states N� and their spin-parity JP�� ,
isospin T�, total decay width ΓN� , and photon branching fraction
[37–42] [or, in the case of 4Heð20.21Þ, the branching fraction for
the E0 decay into eþe− [35] ]. The N� states are labeled by their
energy above the nuclear ground state N0 in MeV. The 8Be
excited states mix; we list the dominant isospin component.

N� JP�� T� ΓN� [keV] BðN� → N0γÞ
8Beð18.15Þ 1þ 0 138 1.4 × 10−5

8Beð17.64Þ 1þ 1 10.7 1.4 × 10−3

12Cð17.23Þ 1− 1 1150 3.8 × 10−5

4Heð21.01Þ 0− 0 840 0
4Heð20.21Þ 0þ 0 500 6.6 × 10−10 (E0)

0+ 0

19.5 20.0 20.5 21.0 21.5 22.0

0 0.5 1 2

E (MeV)

Ebeam (MeV)

FIG. 1. The Breit-Wigner resonance curves of the
0þ 4Heð20.21Þ and 0− 4Heð21.01Þ excited states as a function
of the excitation energy E above the helium ground state (bottom)
and the proton beam energy Ebeam (top). The solid and dashed
vertical lines at beam energies of 0.90 MeV and 0.52 MeV
correspond to the beam energy used in Ref. [33] and the beam
energy required to maximize the 0þ resonance, respectively.
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and is shown in Table I for the various processes, assuming
mX ¼ 17 MeV. The X boson decays throughX → eþe−. In
the X rest frame, the electron and positron velocities
are ve ≈ 0.998.
All of the processes of interest have the hierarchies

vN� ≲ 0.01 ≪ vX < ve ≈ 1: ð7Þ
Since vN� ≪ vX, N� can, to good approximation, be treated
as being produced at rest in the lab frame. In addition,
because vX < ve ≈ 1, the electron mass is negligible, and
we may take ve to be 1.
With these simplifications, it is easy to determine the

distribution of the opening angle θeþe− in the lab frame. In
the X rest frame, the electron and positron are produced
back-to-back, with 4-momenta

pX
e− ¼ mX

2
½1; sin θ; 0; cos θ�; ð8Þ

pX
eþ ¼ mX

2
½1;− sin θ; 0;− cos θ�; ð9Þ

where θ is the angle relative to the X’s velocity, which
defines the ẑ direction. Boosting along ẑ to the lab frame,
these momenta become

pe− ¼ mX

2
½γXð1þ vX cos θÞ; sin θ; 0; γXðcos θ þ vXÞ�;

ð10Þ

peþ ¼ mX

2
½γXð1 − vX cos θÞ;− sin θ; 0; γXð− cos θ þ vXÞ�;

ð11Þ

where γX ¼ EX=mX.
The opening angle is θeþe− ¼ θe− − θeþ , where

θe− ¼ tan−1
�

sin θ
γXðcos θ þ vXÞ

�
and

θeþ ¼ tan−1
�

− sin θ
γXð− cos θ þ vXÞ

�
; ð12Þ

along with the appropriate choice of quadrant for θe�. If
cos θ ¼ 1, the boost is (anti)parallel to the eþ=e− direction
in the X rest frame, and the e− and eþ remain back-to-back
in the lab frame, so θeþe− ¼ 180°. On the other hand, if
cos θ ¼ 0, the boost is perpendicular to the eþ=e− direction
in the X rest frame, and the e− and eþ velocities are both
bent toward the boost direction an equal amount, yielding
the minimal opening angle

θe− ¼ tan−1
�
mX

pX

�
¼ −θeþ ⇒ θmin

eþe− ¼ 2 sin−1
�
mX

EX

�

≈ 2 sin−1
�

mX

mN� −mN0

�
: ð13Þ

The opening angle θeþe− as a function of cos θ is shown in
Fig. 2. The possible opening angles range from θmin

eþe− to
180°, as expected.
However, if the X decays are uniformly distributed in

cos θ (as they would be for spin-0 X bosons), the distri-
bution of opening angles will be highly peaked at θmin

eþe− . For
spin-1 X bosons, the distribution could be modified by
dynamical dependence on the X spin direction, but it

He 20.49

Be 18.15

C 17.23

0.0 0.2 0.4 0.6 0.8 1.0
100

120

140

160

180

cos

e
e

de
g

FIG. 2. Opening angle θeþe− as a function of cos θ, where θ is
the angle between the e� axis in the X rest frame and the direction
of the X velocity in the lab frame. Results are shown for decays
from the excited nuclei indicated, assuming mX ¼ 17 MeV. The
opening angles are larger for smaller mass splittings. Given a
uniform distribution of cos θ, the opening angle distributions will
be strongly peaked near their minimal values θmin

eþe− ¼ 161°; 139°,
and 112° for the decays of 12Cð17.23Þ, 8Beð18.15Þ, and
4Heð20.49Þ, respectively.

FIG. 3. Contours (black solid lines) of the X boson mass mX in
the plane of the minimum opening angle θmin

eþe− and the nuclear
state mass splitting mN� −mN0

. The relevant nuclear decay mass
splittings discussed in the text are indicated by red dashed lines.
The blue points and error bars indicate the parameters where 7σ
excesses have been found in the opening angle distributions in
8Be and 4He nuclear decays. The excesses are at different opening
angles θmin

eþe− , but both are consistent with the production of
17 MeV X bosons.
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typically remains strongly peaked at the minimum value
due to phase space.
Thus, any X bosons produced in the processes under

consideration lead to an excess at θmin
eþe− . In Fig. 3 we plot

contours of mX in the ðθmin
eþe− ; mN� −mN0

Þ plane, using the
simple relation of Eq. (13). The blue data points indicate the
parameters where the 7σ excesses have been found in 8Be
and 4He nuclear decays. The observations are at different
opening angles, but both are consistent with the production
of a boson with mass mX ≈ 17 MeV, a striking consistency
check of the new particle hypothesis.

III. SPIN-PARITY ANALYSIS

A first layer of particle dynamics, added to the kinematic
foundation laid in the previous section, is to consider
the allowed spin and parity assignments of an X boson
capable of accounting for the ATOMKI observations. The
assumption that parity is conserved warrants some dis-
cussion. Although parity is a very good symmetry with
respect to the internal nuclear dynamics and the electro-
magnetic interaction, the fundamental description of the
X boson interactions must be organized with respect to
chirality and would require engineering to end up parity
symmetric. At the same time, nuclear processes for the
same spin, but opposite parity, typically proceed via
different partial waves, and since the X is produced at
most semirelativistically (see Table I), the decay of a mixed
state is likely to be highly dominated by a single parity
component. With this in mind, we organize our discussion
by treating the X boson as a state of definite parity, and
consider the more general case of a vector particle with
mixed vector and axial vector interactions in Sec. VIII.
We continue to label each nuclear decay process as

N� → N0X, where N� is an excited nucleus and N0 is the
ground state nucleus. The cases of primary interest are
those where anomalies have been observed: N ¼ 8Be [9],
where the excited states are 1þ states, and 4He [33], where
the excited states are 0þ and 0− states. However, to
complete the analysis of all JP combinations up to spin
1, we also consider the case N ¼ 12C, where 12Cð17.23Þ is
an excited 1− state that can be used to search for the X
boson (see, e.g., Ref. [43]).
The spin-parity ofN�, N0, and X are denoted by JP�� , JP0

0 ,
and JPX

X , respectively. Parity and angular momentum
conservation imply

J� ¼ L ⊕ J0 ⊕ JX; ð14Þ

P� ¼ ð−1ÞLP0PX; ð15Þ

where L is the final state orbital angular momentum and⊕
denotes the addition of angular momentum. In all the cases
considered, the ground states have quantum numbers
JP0

0 ¼ 0þ, leading to

J� ¼ L ⊕ JX; ð16Þ

P� ¼ ð−1ÞLPX: ð17Þ

We analyze the implications of these conservation laws for
JPX
X , considering spin-1 nuclear excited states and spin-0

excited states in turn.

A. Spin-1 excited states: 8Be and 12C

In the case of 8Be, the excited states of interest are both
1þ states: one with energy 18.15 MeV and the other with
energy 17.64 MeV. The conservation laws for production
from the 8Beð18.15Þ state require

1 ¼ L ⊕ JX; ð18Þ

þ1 ¼ ð−1ÞLPX: ð19Þ

If JX ¼ 0, then L ¼ 1, and PX ¼ −1: X cannot be a scalar,
but it can be a pseudoscalar produced in the P wave. If
JX ¼ 1, then L ¼ 0; 1; 2, and PX ¼ þ1;−1;þ1, respec-
tively: X can be either a vector produced in a P wave or an
axial vector produced in an S or D wave.
In the case of 12C, the excited state is a 1− state with

energy 17.23 MeV above the stable ground state. Relative
to the 8Be case, the parity is reversed, and so all the 8Be
results apply with the substitutions scalar ↔ pseudoscalar
and vector ↔ axial vector.

B. Spin-0 excited states: 4He

The 4He excited states of interest are the 0− 4Heð21.01Þ
state and the 0þ 4Heð20.21Þ state. The anomaly is seen at an
intermediate energy chosen to excite both resonances. For
the 0− excited state, the conservation laws require

0 ¼ L ⊕ JX; ð20Þ

−1 ¼ ð−1ÞLPX: ð21Þ

If JX ¼ 0, then L ¼ 0, and PX ¼ −1: X cannot be a scalar,
but it can be a pseudoscalar produced in the S wave. If
JX ¼ 1, then L ¼ 1, and PX ¼ þ1: X cannot be a vector,
but it can be an axial vector produced in a P-wave state.
Note that X cannot be a vector gauge boson, and so
symmetries also forbid decays to single photons for this
transition.
For the 0þ excited state, the parity is reversed, and so all

the 0− results apply with the substitutions scalar ↔
pseudoscalar and vector ↔ axial vector.

C. Spin-parity summary

The spin-parity analysis results are summarized in
Table III. All four JP�� possibilities up to spin 1 have been
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considered, and so these results are broadly applicable to
many other nuclear decays.
By comparing results frommore than one excited nucleus,

one can in principle determine whether two signals can be
attributed to a single X boson, and constrain the possible
spin-parity assignments of theX boson. The current situation
is somewhat clouded by the experimental decision to target a
nonresonant 4He state, where the anomaly can be attributed
to transition through either the 0þ or the 0− intermediate
state (or both, if parity is not conserved).
That said, it is worth noting that if the X particle is being

produced in both 0− 4He and 8Be decays, X must be either a
pseudoscalar or an axial vector; it cannot be a vector (in
contrast to the conclusion of Ref. [33]). In addition, this
case implies that the 8Be decay and the 4He decay are either
S wave and P wave or vice versa. On the other hand, if the
X particle is produced in both 0þ 4He and 8Be decays, the
only possibility is that the X boson is a vector and that both
decays are P-wave. We construct an effective field theory
for these nuclear decays in Sec. IV, and then use it to
examine the pseudoscalar, axial vector, and vector pos-
sibilities in more detail in Secs. V, VI, and VII, respectively.

IV. EFT FOR NUCLEAR TRANSITIONS

The next refinement in exploring the dynamical con-
sistency of the 8Be and 4He anomalies is to explore whether
a single set of X interactions can consistently account for
both of them. This is complicated by the fact that a
fundamental description of the X boson specifies its
coupling to quarks and leptons, whereas the states partici-
pating in the reaction are complicated nuclei. It is useful to
employ the language of an effective field theory, which
exploits the fact that the typical momentum transfer for the
transitions of interest are far smaller than the sizes of the
participating nuclei, allowing for an expansion in p × rN ,
where p denotes the typical energy/momentum of the
transition, and rN ∼ ð200 MeVÞ−1 characterizes the size
of the 4He, 8Be, and 12C nuclei.
In this limit, each energy level of the nucleus can be

represented as a separate pointlike quantum field, with
interactions described by terms in an effective Lagrangian,

LI ¼
X
i

ciOi: ð22Þ

The Oi are operators built out of combinations of fields
with powers of the nuclear scale Λ included to make them
dimension four, and the dimensionless Wilson coefficients
ci encode the nuclear physics. Corrections due to finite size
effects are represented by (even) higher dimensional non-
renormalizable interactions. The coefficients describing the
interactions can in principle be extracted from theoretical
nuclear physics computations or matched to experimental
observations of nuclear transitions. In cases where neither
is available, they must be estimated using dimensional
analysis. As above, we take the spin-1 and spin-0 cases in
turn. In each case we denote the 0þ ground state by N0 and

the excited state by NðμÞ
� , where a vector index is included

when it is a spin-1 state.
The EFT consists of all possible interaction terms

consistent with the symmetries, including Lorentz invari-
ance, gauge invariance (for the photon), baryon number,
and (to good approximation) parity and strong isospin. We
review its construction in detail, though in some cases the
material is well-known. Rather than break the operators
into components to analyze parity, we recognize that the
contraction of a vector Vμ (JP ¼ 1−) with a derivative is
parity even,

Vμ∂μ⟶
Parity

Vμ∂μ; ð23Þ

while the contraction of a derivative with an axial vector Aμ

(JP ¼ 1þ) is parity odd,

Aμ∂μ⟶
Parity

− Aμ∂μ: ð24Þ

Similarly, the contraction of two vector or two axial vectors
is parity even, while the contraction of a vector with an
axial vector is odd. These observations account for nearly
all of the needed operators. The remaining cases employ the
Levi-Civita tensor εμναβ. If an operator that includes four
contracted vector indices has definite parity, the operator
composed of the same fields but with the vector indices

TABLE III. Nuclear excited states N�, their spin-parity JP�� , and the possibilities for X (scalar, pseudoscalar,
vector, axial vector) allowed by angular momentum and parity conservation, along with the operators that mediate
the decay and references to the equation numbers where these operators are defined. The operator subscripts label

the operator’s dimension and the partial wave of the decay, and the superscript labels the X spin. For example,Oð0Þ
4P is

a dimension-four operator that mediates a P-wave decay to a spin-0 X boson.

N� JP�� Scalar X Pseudoscalar X Vector X Axial Vector X

8Beð18.15Þ 1þ … Oð0Þ
4P (27) Oð1Þ

5P (37) Oð1Þ
3S (29), Oð1Þ

5D (34)
12Cð17.23Þ 1− Oð0Þ

4P (27) … Oð1Þ
3S (29), Oð1Þ

5D (34) Oð1Þ
5P (37)

4Heð21.01Þ 0− … Oð0Þ
3S (39) … Oð1Þ

4P (40)
4Heð20.21Þ 0þ Oð0Þ

3S (39) … Oð1Þ
4P (40) …
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contracted into the Levi-Civita tensor has the opposite
parity.
We also make use of the equations of motion for a

massive vector:

ð□þm2
VÞVμ ¼ JμV; ∂μVμ ¼ 0; ð25Þ

where mV and JμV are the mass and current of the Vμ

particle, respectively. Unlike in the massless case, the
second condition is unrelated to a choice of gauge and
implies that, in general, pμϵ

μ
Vðp⃗Þ ¼ 0, where ϵμVðp⃗Þ is the

polarization vector of a Vμ state with momentum
pμ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V þ p⃗2
p

; p⃗Þ. This can be rewritten as

ϵ0Vðp⃗VÞ ¼
pi
V

EV
ϵiVðp⃗VÞ: ð26Þ

Note that for a massive vector at rest, ϵ0Vð0⃗Þ ¼ 0 for all three
polarization states.
Finally, it is well-known that simply enumerating all

operators consistent with a given set of symmetries tends to
introduce ambiguities in how the dynamics is described,
although the physical outputs are the same. This is because
operators are often related by integration by parts or
through the equations of motion for a given field. In what
follows we choose to focus on the operators that make
agreement with the partial wave analysis in the decay
process most transparent. In doing so, derivatives are
typically moved from N0 to X, but the final results do
not depend on this choice.

A. Spin-1 excited states: 8Be and 12C

In the spin-1 cases of beryllium and carbon, the excited

state Nμ
� transforms as Nμ

�∂μ→
Parityð−ÞNμ

�∂μ when the state is
a vector (axial vector). The lowest dimension operator
describing the decay into a spinless X particle is the
dimension-four operator

Oð0Þ
4P ¼ N†

0N
μ
�∂μX: ð27Þ

Here and below, the operator’s subscripts denote the
operator’s dimension and partial wave of the decay it
mediates, and the superscript denotes the spin of the X

boson. Operator Oð0Þ
4P is one of a family of operators that

includes ð∂μN0Þ†Nμ
�X and N†

0ð∂μN
μ
�ÞX. All three of these

operators are related to one another by integration by parts,
and so only two are linearly independent. However, ∂μN

μ
�

vanishes for on-shell processes by the equations of motion,

so we may choose Oð0Þ
4P as the single independent operator

describing processes mediated by this interaction for which
Nμ

� is on-shell.
Since N0 is parity even, we find that for the entire

operator to be parity even when Nμ
� is a vector (axial

vector), X must be a scalar (pseudoscalar). To see what Nμ
�

decay partial waves result from this operator, we consider

the matrix element hN0XjOð0Þ
4P jN�i in the Nμ

� rest frame,
which takes the form

M ∝ ϵ�ð0⃗ÞipXi: ð28Þ
Because of the single factor of p⃗X, this operator mediates a
P-wave decay, in agreement with the spin-parity analysis of
the previous section.
The leading operator for a massive spin-1 X particle is

Oð1Þ
3S ¼ ΛN†

0N
μ
�Xμ: ð29Þ

If Nμ
� is a vector (axial vector), then parity demands that Xμ

must also be a vector (axial vector). The Nμ
� decay

amplitude is proportional to

M ∝ Λϵ�ð0⃗ÞiϵXiðp⃗XÞ ð30Þ

and is clearly S wave, after summing over the X polari-
zation states.
At higher order, there are three dimension-five operators

to consider. The first is

Oð1Þ
5S ¼ N†

0

Λ
ð∂μNν�Þ∂μXν: ð31Þ

The contraction of derivatives is parity even, requiring the
contraction of Xμ with Nμ

� to be parity even as well. Thus,
Xμ and Nμ

� must either both be vectors or both be axial
vectors. By integrating by parts 3 times, this operator can be
rewritten as

N†
0

Λ
ð∂μNν�Þ∂μXν ¼ −

N�ν
Λ

ð∂μN
†
0Þ∂μXν −

N†
0

Λ
Nμ

�□Xμ

¼ Xν

Λ
ð∂μN�νÞ∂μN

†
0 −

N†
0

Λ
Nμ

�□Xμ

þ Nμ
�Xμ

□

Λ
N†

0

¼ −
N†

0

Λ
ð∂μNν�Þ∂μXν −

N†
0

Λ
Nμ

�□Xμ

þ Nμ
�Xμ

□

Λ
N†

0 −
N†

0

Λ
Xμ□Nμ

�: ð32Þ

Using the leading order equations of motion of the three

fields, the final three terms are proportional to Oð1Þ
3S ,

implying that this operator is not independent

N†
0

Λ
ð∂μNν�Þ∂μXν ¼ −

m2
N� −m2

N0
þm2

X

2Λ
N†

0XμN
μ
�

¼ −
mN�EX

Λ
N†

0XμN
μ
�; ð33Þ

where we have used Eq. (6) in the last equality.
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The next operator is

Oð1Þ
5D ¼ N†

0

Λ
ð∂μNν�Þ∂νXμ; ð34Þ

which again requires Xμ and Nμ
� to have equal parity. In the

Nμ
� rest frame, where pμ

� ¼ ðmN� ; 0; 0; 0Þ, the decay matrix
element takes the form

M ∝
mN�
Λ

δ0μϵ�ð0⃗ÞipXiϵ
μ
Xðp⃗XÞ ¼

mN�
ΛEX

ϵ�ð0⃗ÞipXip
j
Xϵ

j
Xðp⃗XÞ;

ð35Þ

where we have used Eq. (26). Since this depends on two
factors of p⃗X, it describes a D-wave decay. The factor of
mN� in the numerator of this decay might cause one to
wonder if it is really suppressed relative to the S-wave
decay. However, comparing Eq. (33) and Eq. (35), we see
that the ratio of theD-wave operator to the S-wave operator
is parametrically

p2
X

E2
X
¼ v2X; ð36Þ

which is exactly what we expect when we compare a
D-wave amplitude with an S-wave amplitude.
The final dimension-five operator contracts the four

vector indices of the previous two operators with the
Levi-Civita tensor:

Oð1Þ
5P ¼ N†

0

Λ
εμναβð∂μN�νÞ∂αXβ: ð37Þ

As mentioned in the introduction to this section, this
implies that Xμ and Nμ

� have opposite parity, in contrast
to the two previous operators, where they had equal parity.
In the rest frame of the excited state, the amplitude for this
decay is proportional to

M ∝
mN�
Λ

ε0ijkϵ�ið0⃗ÞpXjϵXkðp⃗XÞ; ð38Þ

which is P wave. Thus, we have explicitly confirmed
that the operator-based analysis conforms with the spin-
parity analysis for both the beryllium and the carbon decays
in every particular. These results are summarized in
Table III.

B. Spin-0 excited states: 4He

For helium the operator analysis is nearly identical for
both the scalar and the pseudoscalar excited states. If X is
spin 0, the leading operator that mediates the decay is

Oð0Þ
3S ¼ ΛN†

0N�X: ð39Þ

To preserve parity, either both N� and X are scalars or both
are pseudoscalars, and it is clear that the decay mediated by
this operator is S wave.
If Xμ is spin 1, the leading independent operator is

Oð1Þ
4P ¼ N†

0X
μ∂μN�: ð40Þ

A similar operator with the derivative acting on N0 is
obtained by integrating by parts and recalling that
∂μXμ ¼ 0. The parity analysis is simple: if N� is parity
even, then so is Xμ∂μ, so Xμ is a vector. If N� is a
pseudoscalar, then Xμ must be an axial vector. The
amplitude for N� decay in its own rest frame is

M ∝ ϵμXðp⃗XÞmN�δ
0
μ ¼

mN�
EX

pi
Xϵ

i
Xðp⃗XÞ; ð41Þ

where we have used the identity in Eq. (26). This is a
P-wave decay, and again we find complete agreement
between the spin-parity and operator analyses of the helium
decays. These results are summarized in Table III.

V. PSEUDOSCALAR X

When X is a pseudoscalar, its couplings to protons and
neutrons can be written as

LX ⊃ X½εpp̄γ5pþ εnn̄γ5n�

¼ X

�
1

2
ðεp þ εnÞJ50 þ

1

2
ðεp − εnÞJ51

�
; ð42Þ

where

J50 ¼ p̄γ5pþ n̄γ5n and J51 ¼ p̄γ5p − n̄γ5n ð43Þ

are the isosinglet and isotriplet currents, respectively.
Nuclear transitions between states of the same isospin
couple to J50, while transitions that change isospin by one
unit couple to J51.
For the 8Be case, the decay of the 8Beð18.15Þ excited

nucleus to the ground state transitions from (predomi-
nantly) isosinglet to isosinglet, so X must couple through
the J50 field. In terms of nucleon currents, then, the decay
amplitude is

M ¼ hN0Xj
1

2
ðεp þ εnÞXJ50jN�i

¼ 1

2
ðεp þ εnÞh8BejJ50j8Beð18.15Þi: ð44Þ

In the nuclear EFT, the P-wave decay amplitude, deter-

mined by Oð0Þ
4P in Eq. (27), can be written as
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M ¼ hN0Xj
1

2
ðεp þ εnÞCP;BeO

ð0Þ
4P jN�i

¼ 1

2
ðεp þ εnÞCP;Beϵ

μ
�pXμ; ð45Þ

where CP;Be is the Wilson coefficient of the operator. This
coefficient is expected to be Oð1Þ in the nuclear EFT [44].
From matching Eqs. (44) and (45), it is determined by

CP;Beϵ
μ
�pXμ ¼ h8BejJ50j8Beð18.15Þi; ð46Þ

where the nuclear matrix element has been estimated in
Ref. [15] using a shell model. Note that, since the excited
beryllium state is spin-1, the matrix element must depend
on ϵμ�. Because the matrix element is a scalar, this
polarization vector must be contracted into some combi-
nation of the particle momenta. Conservation of momen-
tum allows us to write this as a linear combination of pμ

X
and pμ

�, but the latter vanishes when contracted with ϵμ�,
leaving only pXμ in Eq. (46). Note also that the combina-

tion εμναβϵ
μ
�pν�pα

0p
β
X vanishes because the momenta are not

independent, but could not appear in any case because it is
odd under parity.
The decay width is then

Γ
8Be
P ðN� → N0XÞ ¼

ðεp þ εnÞ2C2
P;Be

96πm2
N�

p3
X;Be; ð47Þ

where pX;Be is the magnitude of the 3-momentum of the X
particle produced in the beryllium decay.
For the 12C case, as shown in Sec. III, the 12Cð17.23Þ 1−

state cannot decay into the 0þ ground state and a pseudo-
scalar. If an X boson were observed in 12Cð17.23Þ decay, it
would exclude the possibility that X is a pure pseudoscalar.
In the 4He case, the decay is from the 4Heð21.01Þ 0−

isosinglet state. In terms of nucleon currents, the decay
amplitude is therefore

M ¼ hN0Xj
1

2
ðεp þ εnÞXJ50jN�i

¼ 1

2
ðεp þ εnÞh4HejJ50j4Heð21.01Þi: ð48Þ

In the nuclear EFT, the decay is mediated by the operator

Oð0Þ
4P in Eq. (27), leading to the S-wave decay amplitude

M ¼ hN0Xj
1

2
ðεp þ εnÞCP;HeO

ð0Þ
4P jN�i

¼ 1

2
ðεp þ εnÞCP;HeΛ: ð49Þ

TheOð1ÞWilson coefficient CP;He is determined simply by

CP;HeΛ ¼ h4HejJ50j4Heð21.01Þi; ð50Þ

and the decay width is

Γ
4He
P ðN� → N0XÞ ¼

ðεp þ εnÞ2C2
P;HeΛ2

32πm2
N�

pX;He: ð51Þ

Therefore, for pseudoscalar X bosons, the ratio of the
beryllium and helium decay widths of Eqs. (47) and (51) is
predicted to be

Γ
8Be
P

Γ
4He
P

¼ 1

3

C2
P;Be

C2
P;He

m2
He�

m2
Be�

pX;Be

pX;He

p2
X;Be

Λ2

≈ 1.7 × 10−6
C2
P;Be

C2
P;He

�
GeV
Λ

�
2

; ð52Þ

where we have assumed mX ¼ 17 MeV. The coefficients
CP;Be and CP;He are expected to be Oð1Þ in the EFT, but
they are not both readily available in the literature, leading
to significant uncertainty in their ratio. On the experimental
side, the fact that the ATOMKI 4He data were collected off-
resonance requires some care (see Sec. VIII). Nevertheless,
even given these theoretical and experimental uncertainties,

the EFT prediction Γ
8Be
P =Γ

4He
P ∼ 10−6 is clearly difficult to

reconcile with the observations of Eqs. (2) and (4), which

imply Γ
8Be
P ∼ Γ

4He
P , and a pseudoscalar X explanation for

both anomalies is strongly disfavored.
Note also that the extreme hierarchy in expected decay

widths also implies that X is unlikely to be a scalar and
pseudoscalar mixture, since a significant pseudoscalar
component is required to explain the beryllium anomaly
(since the beryllium state cannot decay to a scalar), but even
a small pseudoscalar component would result in a very
large helium decay width, which has not been observed.

VI. AXIAL VECTOR X

Similar to the pseudoscalar case, an axial vector X
couples to the nucleon currents

Jμ5X ¼ εpp̄γμγ5pþ εnn̄γμγ5n

¼ 1

2
ðεp þ εnÞJμ50 þ 1

2
ðεp − εnÞJμ51 ; ð53Þ

where

Jμ50 ¼ p̄γμγ5pþ n̄γμγ5n and Jμ51 ¼ p̄γμγ5p − n̄γμγ5n

ð54Þ

are the isospin-preserving and isospin-changing currents,
respectively.
For the isospin-preserving 8Be decay, the nucleon-level

amplitude is
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M ¼ hN0Xj
1

2
ðεp þ εnÞXμJ

μ5
0 jN�i

¼ 1

2
ðεp þ εnÞh8BejJμ50 j8Beð18.15ÞiϵXμ: ð55Þ

At the nucleus level, the decay is mediated by the operator

Oð1Þ
3S in Eq. (29), which leads to the S-wave decay

amplitude

M ¼ hN0Xj
1

2
ðεp þ εnÞCA;BeO

ð1Þ
3S jN�i

¼ 1

2
ðεp þ εnÞCA;BeΛϵ

μ
�ϵXμ; ð56Þ

where CA;Be is the Oð1Þ Wilson coefficient of the operator.
Matching these amplitudes, we find

CA;BeΛϵ
μ
� ¼ h8BejJμ50 j8Beð18.15Þi; ð57Þ

where the nuclear matrix element has been obtained via
many-body techniques in Ref. [19]. Note that the nuclear
matrix element must be proportional to ϵμ�. The quantity
εμναβϵ�νp�αpXβ cannot appear because it would make
the matrix element odd under parity. The resulting decay
width is

Γ
8Be
A ðN� → N0XÞ ¼

ðεp þ εnÞ2C2
A;BeΛ2

32πm2
N�

pX;Be

�
1þ p2

X;Be

3m2
X

�
:

ð58Þ

For 12C, the decay of the excited nucleus requires
changing isospin by one unit, and so the nucleon-level
amplitude is

M ¼ hN0Xj
1

2
ðεp − εnÞXμJ

μ5
1 jN�i

¼ 1

2
ðεp − εnÞh12CjJμ51 j12Cð17.23ÞiϵXμ: ð59Þ

In the nuclear EFT, the operator Oð1Þ
5P of Eq. (37) gives rise

to the amplitude

M ¼ hN0Xj
1

2
ðεp − εnÞCA;CO

ð1Þ
5P jN�i

¼ 1

2
ðεp − εnÞCA;C

1

Λ
εμναβp�μϵ�νpXαϵXβ; ð60Þ

where the Wilson coefficient CA;C is determined by

CA;C
1

Λ
εμναβp�νϵ�αpXβ ¼ h12CjJμ51 j12Cð17.23Þi: ð61Þ

The excited nuclear state has spin 1, so the nuclear matrix
element must be proportional to ϵμ�. However, becauseN

μ
� is

a vector, while Xμ is an axial vector, the inner product of
their polarization vectors is parity odd. Therefore, the
matrix element must be proportional to the axial vector
εμναβp�νϵ�αpXβ. The resulting decay width is

Γ
12C
A ðN� → N0XÞ ¼ ðεp − εnÞ2

C2
A;C

48πΛ2
p3
X;C: ð62Þ

Combining Eqs. (58) and (62), the ratio of the beryllium
and carbon decay widths is

Γ
8Be
A

Γ
12C
A

¼ 3

2

ðεp þ εnÞ2
ðεp − εnÞ2

C2
A;Be

C2
A;C

Λ4

m2
Be�

pX;Be

p3
X;C

�
1þ p2

X;Be

3m2
X

�

≈ 8.1 × 103
ðεp þ εnÞ2
ðεp − εnÞ2

C2
A;Be

C2
A;C

�
Λ

GeV

�
4

: ð63Þ

Although this result is quantitatively limited by our knowl-
edge ofCA;Be andCA;C, these coefficients are expected to be

Oð1Þ in the nuclear EFT, and so we expect Γ
8Be
A ≫ Γ

12C
A .

Given that the carbon total decay width and photon decay
width are both about an order of magnitude larger than their
beryllium counterparts, for pseudoscalar X bosons, the
carbon decay rate will be greatly suppressed relative to the
beryllium decay rate and very difficult to observe.
The 4He decay must proceed from the 4Heð21.01Þ

state. It is isospin preserving, and so the nucleon-level
amplitude is

M ¼ hN0Xj
1

2
ðεp þ εnÞXμJ

μ5
0 jN�i

¼ 1

2
ðεp þ εnÞh4HejJμ50 j4Heð21.01ÞiϵXμ: ð64Þ

At the nucleus level, the P-wave decay is mediated by Oð1Þ
4P

in Eq. (40), with amplitude

M ¼ hN0Xj
1

2
ðεp þ εnÞCA;HeO

ð1Þ
4P jN�i

¼ 1

2
ðεp þ εnÞCA;Hep

μ
�ϵXμ; ð65Þ

where

CA;Hep
μ
� ¼ Pμ

Xνh4HejJ5ν0 j4Heð21.01Þi ð66Þ

and

Pμ
Xν ¼ δμν −

pμ
XpXν

p2
X

ð67Þ

is the projection matrix into the subspace orthogonal to pμ
X.

The matrix element has a vector Lorentz index, but is
composed of scalar fields. This, along with momentum
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conservation, implies that h4HejJμ50 j4Heð21.01Þi is propor-
tional to a linear combination pμ

� and pμ
X. However, the

latter vanishes when contracted with the X polarization
vector. The decay width is

Γ
4He
A ðN� → N0XÞ ¼

ðεp þ εnÞ2C2
A;He

32πm2
X

p3
X;He: ð68Þ

Thus, combining Eqs. (58) and (68), for an axial vector X
boson, we find

Γ
8Be
A

Γ
4He
A

¼ C2
A;Be

C2
A;He

Λ2
m2

X

m2
Be�

pX;Be

p3
X;He

�
1þ p2

X;Be

3m2
X

�

≈ 1.8 × 10−2
C2
A;Be

C2
A;He

�
Λ

GeV

�
2

; ð69Þ

where we have assumed mX ¼ 17 MeV. In contrast to the
pseudoscalar case, the decay widths are not expected to be
separated by 2 orders of magnitude, not 4. Within the
uncertainties of the measurements and the nuclear matrix
elements, it may be possible that an axial vector X boson
could explain both the 8Be and 4He anomalies.

VII. VECTOR X

In contrast to the pseudoscalar and axial vector cases, the
necessary nuclear matrix elements for decays to a pure
JP ¼ 1− vector X boson are related to standard model
decays to photons and E0 transitions and cancel out in
appropriately defined ratios.

A. Beryllium decays to vector X bosons

We begin by reviewing the analysis for beryllium decays
[10,11]. The vector X boson couples to the nucleon current

JμX ¼ εpep̄γμpþ εnen̄γμn

¼ 1

2
ðεp þ εnÞeJμ0 þ

1

2
ðεp − εnÞeJμ1; ð70Þ

where

Jμ0 ¼ p̄γμpþ n̄γμn and Jμ1 ¼ p̄γμp − n̄γμn ð71Þ

are the isospin-preserving and isospin-changing vector
currents, respectively. In contrast to the previous two
sections, we have included a factor of the photon coupling
e to simplify comparisons between Xμ and photon decays.

8Beð18.15Þ and the 8Be ground state have equal isospin.
If we assume isospin is conserved and neglect isospin
mixing in the nuclear states, only the Jμ0 current contributes,
and the decay amplitude is

M ¼ h8BeXjXμJ
μ
Xj8Beð18.15Þi

¼ 1

2
ðεp þ εnÞeh8BejJμ0j8Beð18.15ÞiϵXμ: ð72Þ

At the nucleus level, the P-wave decay is mediated by Oð1Þ
5P

in Eq. (37), leading to the decay amplitude

M ¼ hN0Xj
1

2
ðεp þ εnÞeCV;BeO

ð1Þ
5P jN�i

¼ 1

2
ðεp þ εnÞeCV;Be

1

Λ
εμναβp�μϵ�νpXαϵXβ: ð73Þ

Matching the amplitudes, we find that the Wilson coef-
ficient CV;Be is determined by

CV;Be
1

Λ
εμναβp�νϵ�αpXβ ¼ h8BejJμ0j8Beð18.15Þi: ð74Þ

Because the excited nuclear state is spin-1, the nuclear
matrix element must contain a factor of ϵμ�. However, since
Nμ

� is an axial vector, while Xμ is a vector, the matrix
element must be proportional to εμναβp�νϵ�αpXβ to preserve
parity.
The resulting decay width is

Γ
8Be
X ðN� → N0XÞ ¼ ðεp þ εnÞ2

αC2
V;Be

12Λ2
p3
X;Be; ð75Þ

where pX;Be is the magnitude of the 3-momentum of the X
boson. For the photon, the width is similarly computed.
Note that the mediating operator is “accidentally” gauge

invariant, Oð1Þ
5P ¼ 1=ð2ΛÞN†

0ε
μναβð∂μN�νÞXαβ, where Xαβ is

the X boson’s field strength, and so the results have a
smooth limit mX → 0 and are immediately applicable to
photons. The resulting photon width is

Γ
8Be
γ ðN� → N0γÞ ¼

αC2
V;Be

12Λ2
p3
γ;Be; ð76Þ

and the ratio of widths is

Γ
8Be
X

Γ
8Be
γ

¼ ðεpþ εnÞ2
p3
X;Be

p3
γ;Be

≈ ðεpþ εnÞ2
�
1−

m2
X

ðmN� −mN0
Þ2
�
3=2

:

ð77Þ

Because the same nuclear matrix element occurs in both the
vector X boson and the photon decays, the ratio of the two
decay widths is particularly simple and independent of
nuclear matrix elements.
As shown in Ref. [11], the presence of the nearby spin-1,

isospin-triplet 8Beð17.64Þ state induces some isospin mix-
ing corrections to this result. Including the isospin mixing,
the ratio of widths is modified to
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Γ
8Be
X

Γ
8Be
γ

¼ j − 0.09ðεp þ εnÞ þ 1.09ðεp − εnÞj2
p3
X;Be

p3
γ;Be

≈ 0.043j − 0.09ðεp þ εnÞ þ 1.09ðεp − εnÞj2; ð78Þ

where we have set mX ¼ 17 MeV in deriving the final
numerical result. The coefficients of the isosinglet and
isotriplet components are related to the degree of mixing
and relative strengths of the respective M1 transitions in the
8Be system. A further refinement to fit experimental data by
introducing isospin breaking in the electromagnetic tran-
sition operators was introduced in Ref. [11]. With both
isospin mixing and isospin breaking, the width ratio is
modified to

Γ
8Be
X

Γ
8Be
γ

¼ j0.05ðεp þ εnÞ þ 0.95ðεp − εnÞj2
p3
X;Be

p3
γ;Be

≈ 0.043j0.05ðεp þ εnÞ þ 0.95ðεp − εnÞj2: ð79Þ

We use both Eqs. (78) and (79) in presenting our
results below.

B. Carbon decays to vector X bosons

For 12C, it is straightforward to calculate the X boson
decay rate. The excited state is a vector with isospin
T� ¼ 1. Consequently, the transition to the ground state
0þ is through the Jμ1 current of Eq. (71). As with the case of
8Be decaying to axial vector X bosons, this carbon decay is

mediated by the operator Oð1Þ
3S of Eq. (29), but now with

both Nμ
� and Xμ vectors instead of both axial vectors. The

decay amplitudes are

M ¼ hN0Xj
1

2
ðεp − εnÞeXμJ

μ
1jN�i

¼ 1

2
ðεp − εnÞeh12CjJμ1j12Cð17.23ÞiϵXμ ð80Þ

and

M ¼ hN0Xj
1

2
ðεp − εnÞeCV;CO

ð1Þ
3S jN�i

¼ 1

2
ðεp − εnÞeCV;C Λ ϵμ�ϵXμ; ð81Þ

where

CV;C Λ ϵμ� ¼ h12CjJμ1j12Cð17.23Þi; ð82Þ

and the resulting decay width is [see Eq. (58)]

Γ
12C
X ðN� → N0XÞ ¼ ðεp − εnÞ2

αC2
V;CΛ2

8m2
N�

pX;C

�
1þ p2

X;C

3m2
X

�
:

ð83Þ

As with beryllium, we can relate the X decay rate to the
photon decay rate and form a ratio that is independent of
nuclear matrix elements. Unfortunately, the procedure is
less straightforward than in the beryllium case, because, as
is clear from the mX → 0 limit of Eq. (83), the analysis
above is not appropriate for the photon decay. This is
simply because, when the photon is substituted for X in

Oð1Þ
3S , the result is not gauge invariant. Instead of using O

ð1Þ
3S

immediately, we must first determine the gauge-invariant
operator that mediates photon decay and then relate it to

Oð1Þ
3S . The decay amplitude is

M ¼ hN0Xj
1

2
eCγ;COγjN�i; ð84Þ

where Oγ is the gauge-invariant operator and Cγ;C is its
Wilson coefficient.
At leading order, there appear to be two possible

dimension-five gauge-invariant operators:

Oγ ¼
1

Λ
FμνN†

0∂νN�μ and O0
γ ¼

1

Λ
FμνN�μ∂νN

†
0; ð85Þ

where Fμν is the usual electromagnetic field strength.
However, integrating by parts, we find

Oγ ¼ −O0
γ −

1

Λ
N�μN

†
0∂νFμν: ð86Þ

Given the photon equation of motion ∂μFμν ¼ JνEM, the last
term is suppressed by the small coupling in the photon
current. To leading order, then, the two operators are
interchangeable, and the difference involving the current
JνEM can be incorporated systematically through Feynman
diagrams. We can therefore simply consider Oγ.
To relateOγ toO

ð1Þ
3S , we replace F

μν → Xμν inOγ and use

1

Λ
XμνN†

0∂νN�μ ¼
1

Λ
ð∂μXνÞN†

0∂νN�μ −
1

Λ
ð∂νXμÞN†

0∂νN�μ

¼ 1

Λ
ð∂μXνÞN†

0∂νN�μ þ
mN�EX

Λ
N†

0N
μ
�Xμ;

ð87Þ

where, in the second line, we have applied the identity
given in Eq. (33). The second term on the right has the same

form as Oð1Þ
3S in Eq. (29). The first mediates the D-wave

decay and is smaller than the dimension-three term by a
factor of v2X ∼ 0.03 [see Eq. (36) and Table I], so we neglect

it. We find, then, that theWilson coefficients ofOð1Þ
3S andOγ

are related by

Cγ;C ¼ CV;C
Λ2

mN�EX
: ð88Þ
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With this identification, we can calculate the decay ampli-
tude for the photon decay and determine an expression for
the ratio of X boson and photon widths that is independent
of nuclear matrix elements.
It is instructive to determine the decay amplitude in a

general way that encompasses both the massless and
massive vector cases. Specifically, we determine the
amplitude

M ¼ hN0Xj
1

2
εeCγ;COV jN�i; ð89Þ

where

OV ¼ κ

Λ
ð∂μVνÞN†

0∂νN�μ −
1

Λ
ð∂νVμÞN†

0∂νN�μ: ð90Þ

When κ ¼ 1, OV is Oγ, the gauge-invariant operator of
Eq. (85) that mediates decays to a massless photon. But

when κ ¼ 0, OV is proportional to Oð1Þ
3S , the operator that

mediates decays to a massive X, and we expect to recover
the decay width calculated in Eq. (83). The amplitude is

M ¼ 1

2
εeCγ;C

1

Λ
ϵ�μϵVν½κpμ

Vp
ν� − ðpV · p�Þημν�; ð91Þ

which leads to the decay width

Γ
12C
V ðN� → N0VÞ

¼ ε2
αC2

γ;C

24Λ2
pV;C

�
3m2

V þ 2ð2 − κÞp2
V;C þ ð1 − κÞ2 p

4
V;C

m2
V

�
:

ð92Þ
For the photon, we take κ ¼ 1, mV → 0, and ε ¼ 1 to

obtain

Γ
12C
γ ðN� → N0γÞ ¼

αC2
γ;C

12Λ2
p3
γ;C: ð93Þ

For the massive vector X boson, we take κ ¼ 0 and ε ¼
εp − εn to find

Γ
12C
X ðN� → N0XÞ ¼ ðεp − εnÞ2

αC2
γ;C

8Λ2
pX;CE2

X;C

�
1þ p2

X;C

3m2
X

�
:

ð94Þ

Using Eq. (88) to write Cγ;C in terms of CV;C, we recover
exactly the result of Eq. (83), confirming the Wilson
coefficient relation of Eq. (88).
Combining Eqs. (93) and (94) yields

Γ
12C
X

Γ
12C
γ

¼ 3

2
ðεp − εnÞ2

pX;C

p3
γ;C

E2
X;C

�
1þp2

X;C

3m2
X

�
≈ 0.25ðεp − εnÞ2;

ð95Þ

where we have set mX ¼ 17 MeV in deriving the final
numerical result. The ratio is independent of nuclear matrix
elements, as desired, and the singularity as mX → 0 is now
readily understood.

C. Helium decays to vector X bosons

For 4He, it is also straightforward to calculate the decay
rate into the X boson. The 0− state cannot decay to vector
bosons, but the 0þ state can. The 0þ state has the same
isospin as the ground state, and so the amplitudes are

M ¼ hN0Xj
1

2
ðεp þ εnÞeXμJ

μ
0jN�i

¼ 1

2
ðεp þ εnÞeh4HejJμ0j4Heð20.21ÞiϵXμ ð96Þ

and

M ¼ hN0Xj
1

2
ðεp þ εnÞeCV;HeO

ð1Þ
4P jN�i

¼ 1

2
ðεp þ εnÞeCV;Hep

μ
�ϵXμ: ð97Þ

Matching these two amplitudes, the Wilson coefficient is
determined by

CV;Hep
μ
� ¼ Pμ

Xνh4HejJν0j4Heð20.21Þi; ð98Þ

where Pμ
Xν, defined in Eq. (67), projects into the subspace

orthogonal to pμ
X. The nuclear states are scalars, so the

Lorentz index in the matrix element must be attached to a
linear combination of the particle momenta. By momentum
conservation, this can be chosen to be a combination of pμ

�
and pμ

X, but the latter vanishes when contracted with the X
polarization vector. The resulting decay rate is

Γ
4He
X ðN� → N0XÞ ¼ ðεp þ εnÞ2

αC2
V;He

8m2
X

p3
X;He: ð99Þ

Following the 8Be and 12C examples above, we hope to
normalize the X decay rate to the photon decay rate.
Unfortunately, the relevant 4He excited states do not decay
to photons. For the 0− state, the spin-parity analysis of
Sec. III showed that decays to vector bosons, either
massless or massive, are forbidden. This is also easily
seen from the operator point of view. The only gauge-
invariant operator that could mediate a photon decay is

1

Λ2
εμναβFμν∂αN

†
0∂βN�: ð100Þ

Upon integration by parts, we find this operator vanishes,
either because of the symmetry of the derivative operator or
by the Bianchi equation, εμναβ∂βFμν ¼ 0.
The 0þ state can decay to a massive vector boson, but

unfortunately, it cannot also decay to a photon. When N� is
the 0þ state, we can write the gauge-invariant operator
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OE0 ¼
1

Λ2
Fμν∂μN

†
0∂νN�: ð101Þ

However, if we use this operator to calculate the decay
width ΓðN� → N0γÞ, we find the amplitude vanishes. This
occurs because we can integrate OE0 by parts and use the
photon equation of motion ∂μFμν ¼ 0þ JνEM. It is this
leading zero that is captured by the amplitude, reflecting the
fact that the 0þ excited state cannot decay into the ground
state and an on-shell photon. The piece that is higher order
in the electromagnetic coupling,

1

Λ2
JνEMN

†
0∂νN�; ð102Þ

is nonvanishing and mediates the E0 transition 0þ →
4Heeþe− shown in Fig. 4. This is an electromagnetic
transition, but one in which the photon is never on-shell.
It is possible, however, to normalize the X boson decay to

the 0þ E0 transition. Following the procedure of Sec. VII B,

we relate OE0 to Oð1Þ
4P . The E0 decay amplitude is

M ¼ hN0Xj
1

2
eCE0OE0jN�i; ð103Þ

where CE0 is the Wilson coefficient of the OE0 operator.
Similar decays to eþe− from the 0− state can only appear
though operators of higher dimension and are consequently
neglected.
We can relate the OE0 operator to the massive vector

operator Oð1Þ
4P in Eq. (40) by using the X equations of

motion. If we begin with the same operator as in Eq. (101),
but replace Fμν with the X field strength Xμν, we have

1

Λ2
Xμν∂μN

†
0∂νN�: ð104Þ

Integrating by parts and using the X equations of motion
∂μXμν þm2

XX
ν ¼ JνX, we find this operator includes

m2
X

Λ2
XμN†

0∂μN�; ð105Þ

which is exactly the form ofOð1Þ
4P in Eq. (40). The remaining

term that includes the Xμ current is subleading, because it
contains additional factors of the small X coupling, and its
effects can be included diagrammatically. The Wilson

coefficients of Oð1Þ
4P and OE0 are therefore related by

CE0 ¼
Λ2

m2
X
CV;He: ð106Þ

Now that we have related the Wilson coefficients, we can
calculate the E0 decay width. In Lorentz gauge, ∂μAμ ¼ 0,
and so the E0 operator of Eq. (101) is

OE0 ¼
1

Λ2
ð∂μAν − ∂νAμÞð∂μN�Þ∂νN

†
0

¼ −
1

Λ2
½∂μ∂νAν − ∂2Aμ�N†

0∂μN�

¼ 1

Λ2
N†

0ð∂μN�Þ∂2Aμ; ð107Þ

which makes clear that the interaction vanishes when the
photon is on-shell. We use this vertex to calculate the N�
decay shown in the left panel of Fig. 4. Summing over final
state spins, we find the squared amplitude

X
spin

jMj2 ¼ e4C2
E0

Λ4
½2ðpþ · p0Þðp− · p0Þ

−m2
N0
ðpþ · p−Þ −m2

em2
N0
�; ð108Þ

where p� is the e� momentum, and p0 is the N0

momentum.
The integration over the three-body phase space is most

conveniently expressed as integrals over the electron and
positron energies, Eþ and E−,

ΓE0 ¼
α2C2

E0mN�

8πΛ4

Z
dEþdE−½m2

N� −m2
N0

− 2mN� ðEþ þ E−Þ þ 4EþE−�; ð109Þ

with the limits of integration chosen so that the outer (e.g.,
Eþ) limits of integration are

EþMin ¼ me; EþMax ¼
ðmN� −meÞ2 −m2

N0
þm2

e

2ðmN� −meÞ
;

ð110Þ
while the inner limits are

E−ð�Þ

¼ 1

2½mN� ðmN� − 2EþÞþm2
e�

× fðmN� −EþÞ½mN� ðmN� − 2EþÞ−m2
N0

þ 2m2
e�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

N� −E2þÞ½ðm2
N� − 2mN�Eþ −m2

N0
Þ2 − 4m2

N0
m2

e�
q

g;
ð111Þ

where the positive and negative signs correspond to the
maximum and minimum, respectively.

FIG. 4. Feynman diagrams for the E0 transition (left) and the
decay into Xμ (right).
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In general, the integral does not have a simple solution.
However, neglecting the electron mass results in

ΓE0 ≈
α2C2

E0m
5
N�

8πΛ4

�
1

96

�
1 − 8

m2
N0

m2
N�

þ 8
m6

N0

m6
N�

−
m8

N0

m8
N�

�

þ m4
N0

4m4
N�

ln
mN�
mN0

�

≈
α2C2

E0m
5
N�

8πΛ4

2

15

�
mN� −mN0

mN0

�
5

≈
α2C2

E0m
5
N�

8πΛ4
ð6.03 × 10−13Þ: ð112Þ

Evaluating the integral numerically with the electron mass
included, we find the final numerical coefficient changes by
a tiny amount to 5.97 × 10−13.
Combining Eqs. (99) and (112), and using Eq. (106) to

relate CE0 and CV;He, we find that the ratio of the X width to
the E0 width is

Γ
4He
X

ΓE0
≈

ðεp þ εnÞ2
6.0 × 10−13

π

α

m2
Xp

3
X;He

m5
N�

≈ 360ðεp þ εnÞ2; ð113Þ

where ΓE0 ¼ ð3.3� 1Þ × 10−4 eV [35] and we have set
mX ¼ 17 MeV in deriving the final numerical result. The
ratio is independent of nuclear matrix elements and is larger
than ratios of X widths to photon widths derived here, since
the E0 transition is a 3-body decay.

D. Vector X summary

For the case of a vector boson, the nuclear decay widths
are functions of mX and the couplings εp and εn. The
constraints on these parameters from all other experiments
have been determined in Refs. [10,11]. A bound fromNA48/
2 on the process π → Xγ [45] requires jεpj < 1.2 × 10−3,
that is, that the X boson be protophobic. Once this constraint
is satisfied, no other constraints further restrict the values of
mX and εn favored by the beryllium anomaly.
In Figs. 5 and 6, we plot the regions of the ðmX; εnÞ plane

that can explain the beryllium anomaly, with mX ¼
17.01� 0.16 MeV and [30]

FIG. 5. Predictions for decay widths into a protophobic X gauge boson in the ðεn; mXÞ plane for the fixed values of εp indicated, where
εn is the X boson’s coupling to neutrons, and mX is its mass. The blue shaded regions are favored by the 8Be anomaly, with isospin
mixing included [see Eq. (78)]. Also shown are solid black contours of ΓX=ΓE0 for 4Heð20.21Þ decays and dashed red contours of ΓX=Γγ

for 12Cð17.23Þ decays.

DYNAMICAL EVIDENCE FOR A FIFTH FORCE EXPLANATION … PHYS. REV. D 102, 036016 (2020)

036016-15



Γð8Beð18.15Þ → 8BeXÞ
Γð8Beð18.15Þ → 8BeγÞ ¼ ð6� 1Þ × 10−6: ð114Þ

The three panels are for the purely protophobic case
εp ¼ 0 and the minimal and maximal allowed values
εp ¼ �1.2 × 10−3. In Fig. 5, we use the theoretical pre-
diction of Eq. (78), which includes the isospin mixing of
the beryllium excited states. In Fig. 6, we use the theoretical
prediction of Eq. (79), which includes both isospin mixing
and isospin breaking. The rate of the ATOMKI beryllium
anomaly requires εn ≈ 10−2.
In Figs. 5 and 6, we also overlay black contours for

Γð4Heð20.21Þ → 4HeXÞ normalized to the E0 decay width,
using Eq. (113). We see that for vector X bosons that can
explain the beryllium anomaly, the predicted value of the
helium decay width is

Γð4Heð20.21Þ → 4HeXÞ ¼ ð1 − 11Þ × 10−2ΓE0

¼ ð0.3 − 3.6Þ × 10−5 eV: ð115Þ

This theoretical prediction overlaps with the experimen-
tally measured range of Γð4Heð20.49Þ → 4HeXÞ ¼ ð4.0�
1.2Þ × 10−5 eV given in Eq. (4). The comparison at present
is clouded by the experimental uncertainties regarding the

E1 background discussed in Sec. I, and the fact that the
prediction of Eq. (115) is for on-resonance decay, while the
measurement of Eq. (4) is for off-resonance decay. But with
those uncertainties in mind, the protophobic vector boson
currently provides an amazingly consistent explanation of
both the beryllium and helium anomalies. We strongly
recommend that the experimental measurement be updated
to include the E1 background and that a future measure-
ment at the 4Heð20.21Þ resonance be made to provide an
unambiguous test of the prediction of Eq. (115).
Finally, in Figs. 5 and 6, we also overlay red contours for

Γð12Cð17.23Þ → 12CXÞ normalized to the photon decay
width, using Eq. (95). For parameters that explain the
beryllium anomaly, the carbon width is expected to be in
the range

Γð12Cð17.23Þ → 12CXÞ
¼ ð1 − 5Þ × 10−5Γð12Cð17.23Þ → 12CγÞ
¼ ð0.4 − 2.2Þ × 10−3 eV: ð116Þ

The expected branching ratios for decays to X are similar
for the beryllium and carbon cases, and an observation
of these carbon decays, with the predicted branching
ratio and consistent with mX ≈ 17 MeV, would provide
overwhelming evidence for both the existing beryllium

FIG. 6. As in Fig. 5, but with both isospin mixing and isospin breaking included (see Eq. (79)).
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and helium anomalies and the protophobic vector boson
explanation.

VIII. GENERAL SPIN-1 COUPLINGS

The 4He experimental setup, with its ability to run at
off-resonance energies, has the potential to provide addi-
tional discriminating power among possible X parities. We
illustrate how this works by assuming a spin-1 X with both
vector and axial vector couplings to quarks. Similar
remarks apply to the case of a spin-0 X boson with both
scalar and pseudoscalar interactions, although, as noted at
the end of Sec. V, spin-0 states with mixed parity are now
strongly disfavored as explanations of the 8Be and 4He
anomalies.
If the X boson is a mixture of vector and axial vector, it

could generically be produced by both the 0− and 0þ 4He
excited states. For the purposes of this analysis, we
consider the true excited state N� to be a linear combination
of 0− and 0þ. The full production cross section is then split
up into σ− and σþ with

σ� ≡ σðpþ 3H → 0�Þ: ð117Þ

Since X is assumed to be produced through both states,
the complete X production cross section is

σX ¼ σ−
Γð0− → XÞ

Γ−
þ σþ

Γð0þ → XÞ
Γþ

; ð118Þ

where Γ� is the total width of the 0� excited state. Because
the experimental signal is normalized to the E0 electro-
magnetic transition, which occurs only through the 0þ
state, we define σE0 in a similar way as

σE0 ¼ σþ
ΓE0

Γþ
: ð119Þ

Consequently, the ratio of the production cross sections is

σX
σE0

¼ Γð0þ → XÞ
ΓE0

þ σ−Γþ
σþΓ−

Γð0− → XÞ
ΓE0

: ð120Þ

This ratio is proportional to the number of X decay events
divided by the number of E0 events recorded by the
experiment. The goal is to extract the X decay widths of
the two individual states, with the E0 width and the two
total widths Γ� known experimentally. The more subtle
quantity is σ−=σþ.
One might hope to obtain these cross sections from the

widths by using the relation

σðpþ 3H → N�Þ ¼
4π2ð2J� þ 1Þ

M�
ΓðN� → pþ 3HÞ

× δðE2
CM −M2�Þ; ð121Þ

treating N� as a bound state of p and 3H with massM� and
spin J�. However, for off-shell running, one should broaden
the δ function into the resonance peak. This can be
approximated by taking the narrow width approximation
in reverse,

δðE2
CM −M2�Þ →

M�Γ�=π
ðE2

CM −M2�Þ2 þM2�Γ2�
; ð122Þ

leading to the relation

σðpþ 3H → N�Þ ¼
4πð2J� þ 1ÞΓ�

ðE2
CM −M2�Þ2 þM2�Γ2�

× ΓðN� → pþ 3HÞ: ð123Þ
In this result, Γ� is the full width of the bound state,
whereas the particular production mode may only be
related to a particular partial width. The 0þ nearly always
decays to protons, but the 0− decays to proton final states
only 76% of the time [46]. We therefore obtain

σ−
σþ

¼ 0.76Γ2
−

Γ2þ

ðE2
CM −M2þÞ2 þM2þΓ2þ

ðE2
CM −M2

−Þ2 þM2
−Γ2

−
; ð124Þ

where M� is the nuclear mass of the 0� excited state.
Putting everything together, we find

σX
σE0

¼ Γð0þ → XÞ
ΓE0

þ 0.76Γ−

Γþ

ðE2
CM −M2þÞ2 þM2þΓ2þ

ðE2
CM −M2

−Þ2 þM2
−Γ2

−

Γð0− → XÞ
ΓE0

;

ð125Þ

which relates the total number of X events observed at a
given ECM to the individual partial widths Γð0þ → XÞ
and Γð0− → XÞ.
As can be seen inFig. 1, by varying the protonbeamenergy

Ebeam, one can scan over the 0þ peak. By measuring the
variation of σX=σE0 in such a scan, which requires the proper
simulation of all relevant backgrounds, the two widths
Γð0� → XÞ can be extracted. In particular, if the ratio remains
constant, itwould suggest thatΓð0− → XÞ ¼ 0, implying that
theX boson is a pure vector. Such a result would also exclude
the possibility of X being a pseudoscalar.

IX. CONCLUSIONS

The transitions between energy levels of light nuclei are
a natural laboratory to explore ∼MeV mass particles with
ultraweak interactions with the standard model. These
nuclear transitions are able to probe models that are
interesting from the point of view of theories of dark
matter and dark forces, and they provide information
complementary to searches for such particles from accel-
erator and astrophysical sources.
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Several years ago, the ATOMKI group discovered a
resonance structure in the invariant mass of eþe− pairs
produced in the transition of an excited state of 8Be to its
ground state. The results have so far defied plausible
explanation through prosaic nuclear physics and are sug-
gestive of a new particle with a mass around 17 MeV. Since
then, the new particle interpretation has been bolstered by
the discovery of viable new particle explanations that are
consistent with all other experimental constraints. More
recently, the ATOMKI group has claimed to have con-
firmed their original results, both in 8Be, using new detector
elements, and by new observations in a transition of 4He
whose kinematics point to the same 17 MeV mass required
to explain the 8Be results.
In this work, we provide a comprehensive theoretical

analysis of these anomalies by examining the dynamical
consistency of the size of the two observed excesses. We
construct an effective field theory to describe the nuclear
transitions of interest, and we examine the possibility that
the new particle X is a scalar, pseudoscalar, vector, or axial
vector boson coupling to nucleons and electrons. We find
that it is very difficult to simultaneously explain the 8Be and
4He results with a spin-0 particle of either parity (or a
mixture). For the axial vector case, the EFT predicts that the
8Be and 4He decay widths differ by a factor of ∼102, in
contrast to the observations, which find that they are
similar, but this discrepancy could conceivably be recon-
ciled by significant uncertainty in nuclear matrix elements.
In thevector case, however, precisepredictionscanbemade

that are independent of nuclear physics matrix elements by
normalizing them to known electromagnetic transitions. The
result is that if theX boson is a vector particle, the protophobic
couplings required by the 8Be results predict rates for the 4He
transitions with no free parameters. The results are

Protophobic vector boson∶ Γð4Heð20.21Þ → 4HeXÞ
¼ ð0.3 − 3.6Þ × 10−5 eV;

ð126Þ

ATOMKIExperiment ½33; 34�∶ Γð4Heð20.21Þ → 4HeXÞ
¼ ð2.8 − 5.2Þ × 10−5 eV:

ð127Þ
The reported 7σ anomalies reported in 8Be and 4He
nuclear decays are both kinematically and dynamically
consistent with the production of a 17 MeV protophobic
gauge boson.
What is the path forward? Clearly, now is the time for

other collaborations to perform the same nuclear measure-
ments to check the ATOMKI results. But in this work, we
also propose simple modifications of the ATOMKI setup
that could provide incisive tests of the new particle
interpretation. The comparison between theory and experi-
ment will be sharpened considerably by including the E1
background in the experimental analysis and running on
the 4Heð20.21Þ 0þ resonance. In addition, scanning through
the 4Heð20.21Þ 0þ resonance can provide important infor-
mation to disentangle vector and axial vector X bosons
and quantify the properties of particles with mixed cou-
plings. Last, we find that the protophobic vector boson
could also be observable in the decays of the 12Cð17.23Þ 1−
excited state, and we have provided precise predictions for
this rate.
The results of this study therefore lay out a roadmap for

possible future measurements that will further shed light on
the ATOMKI anomalies. If the predictions are confirmed,
these measurements will provide overwhelming evidence
that a fifth force has been discovered.
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