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Scalar field theories with particular Uð1Þ-symmetric potentials contain nontopological soliton solutions
called Q-balls. Promoting the Uð1Þ to a gauge symmetry leads to the more complicated situation of gauged
Q-balls. The soliton solutions to the resulting set of nonlinear differential equations have markedly different
properties, such as a maximal possible size and charge. Despite these differences, we discover a relation
that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from the
more easily obtained properties of global Q-balls. These results provide a new guide to understanding
gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.

DOI: 10.1103/PhysRevD.103.116004

I. INTRODUCTION

Q-balls are stable nontopological solitons that can arise
in theories involving complex scalars ϕ [1] (for a review,
see Ref. [2]). In the case of global Q-balls, ϕ carries a
conserved global charge and the solitons are stabilized by a
scalar potential that provides an attractive force [3]. Global
Q-balls have been proposed as dark matter [4,5] due to their
potential occurrence in supersymmetric models and pro-
vide in particular a simple realization of macroscopic dark
matter [6,7].
The analytic construction of Q-balls requires solving a

nonlinear differential equation. In certain potentials, the
equation can be solved exactly [8–11]. For many other
cases, numerical solutions can be efficiently obtained via
computer programs such as AnyBubble [12]. Recently, it was
shown that almost all aspects of global Q-balls can be
understood essentially analytically, even for potentials
which are not exactly solvable [13]. Extremely accurate
analytical expressions were obtained for global Q-ball
properties such as radius, charge, and energy in some
nonsolvable scenarios which essentially obviate the need
for numerical studies [13]. It appears that for all intents and
purposes single-field global Q-balls are a solved problem.

The system’s complexity increases if ϕ is charged under
a local symmetry, which leads to gauged Q-balls [14–16].
Given the prevalence of gauge bosons in the Standard
Model and its extensions, understanding gauged Q-balls is
important phenomenologically. However, they are consid-
erably more difficult to describe, both analytically and
numerically. On the analytic side, no exactly solvable
examples are known to us. Numerical studies are made
difficult by the gauge field, which appears in the scalar
potential as a field whose kinetic term has the opposite sign.
This makes numerical studies (using, e.g., the ever-popular
shooting method) far more tedious to implement.
In this paper, we extend the methods of Ref. [13] to

gauged Q-balls. In so doing, we reveal a close connection
between global Q-balls and gauged Q-balls. This enables us
to use our understanding of global Q-balls to analytically
calculate the properties of these gauged Q-balls—such as
radius, charge, and energy. Furthermore, we find simple
expressions for the scalar and gauge field profiles that can
be used to solve the differential equations efficiently using
finite-element methods. This work paves the way for
detailed phenomenological studies of these objects.
In the next section, we review global Q-balls and

establish our notation. Section III introduces gauged
Q-balls and analytical approximations for the scalar and
gauge field profiles. In Sec. IV, we present a method for
solving the Q-ball differential equations using finite-
element methods rather than the shooting method. The
novel mapping between global and gauged solutions is
given in Sec. V. The accuracy of our analytical predictions
for the Q-ball profiles and observables, such as energy,
mass, and radius, is established in Sec. VI. We also derive
quantities of interest such as the parametric regions of
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Q-ball stability before concluding in Sec. VII. A derivation
of the Q-ball energy and alternative derivation of the
mapping formula is given in Appendixes A and B,
respectively.

II. REVIEW OF GLOBAL Q-BALLS

The Lagrangian density for a complex scalar ϕ,

L ¼ j∂μϕj2 − UðjϕjÞ; ð1Þ

enjoys an explicit global Uð1Þ symmetry ϕ → eiαϕ. The
conserved charge Q under this symmetry is ϕ number,
normalized so that QðϕÞ ¼ 1. To preserve the Uð1Þ
symmetry, we require hϕi ¼ 0 in the vacuum. We choose
the potential energy to be zero in the vacuum by setting
Uð0Þ ¼ 0 and enforce that the vacuum is a stable minimum
of the potential by

dU
djϕj

����
ϕ¼0

¼ 0;
d2U
dϕdϕ�

����
ϕ¼0

¼ m2
ϕ; ð2Þ

where mϕ is the mass of the complex scalar. In this
scenario, Coleman [1] showed that nontopological solitons,
Q-balls, exist when the function UðjϕjÞ=jϕj2 has a mini-
mum at 0 < ϕ0 < ∞ such that

0 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Uðϕ0Þ

ϕ2
0

s
≡ ω0 < mϕ: ð3Þ

Spherical Q-ball solutions have the form

ϕðt; x⃗Þ ¼ ϕ0ffiffiffi
2

p fðrÞeiωGt ð4Þ

for a constant ω0 < ωG < mϕ. We choose ωG to be
positive, which results in a positive charge Q of the
Q-ball. It is convenient to define the dimensionless
quantities

ρ≡ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
; ΩG ≡ ωGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ − ω2

0

q ;

Ω0 ≡ ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q ; Φ0 ≡ ϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q : ð5Þ

We can then write the Lagrangian as

L ¼ 4πΦ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q Z
dρρ2

�
−
1

2
f02 þ 1

2
f2Ω2

G

−
UðfÞ

Φ2
0ðm2

ϕ − ω2
0Þ2

�
; ð6Þ

where a prime denotes a derivative with respect to ρ. The
equation of motion for f is

f00 þ 2

ρ
f0 ¼ 1

Φ2
0ðm2

ϕ − ω2
0Þ2

dU
df

− Ω2
Gf: ð7Þ

Q-ball solutions for f satisfy this nonlinear differential
equation along with the boundary conditions
f0ðρ → 0Þ ¼ 0 ¼ fðρ → ∞Þ.
As an explicit example, we consider the most generic

Uð1Þ-symmetric sextic potential studied in Ref. [13]. This
can be parametrized as

UðfÞ ¼ ϕ2
0

�
m2

ϕ − ω2
0

2
f2ð1 − f2Þ2 þ ω2

0

2
f2
�
: ð8Þ

The differential equation of Eq. (7) then takes the form

f00 þ 2

ρ
f0 ¼ fð1 − κ2G − 4f2 þ 3f4Þ; ð9Þ

where κ2G ≡ Ω2
G −Ω2

0. The solutions depend on the single
parameter κG ∈ ð0; 1Þ, which also determines the (dimen-
sionless) Q-ball radius R�.1

For small κG, the Q-balls are large and the relation
R�ðκGÞ can be calculated analytically at leading order
to be R�ðκGÞ ¼ 1=κ2G [13]. For these large Q-balls, the
exact Q-ball profile is close to a step function fðρÞ≃
1 − Θðρ − R�Þ; this is the so-called thin-wall limit [1]. As
shown in Ref. [13], an even better profile for these thin-wall
Q-balls around ρ ∼ R� ≫ 1 is

fTðρÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2e2ðρ−R�Þ
p : ð10Þ

This is called the transition profile, since it describes the
rapid transition from the nearly constant f ≃ 1 inside the
Q-ball to f ≃ 0 outside the Q-ball. The transition profile is
actually a very good approximation to the full profile for all
ρ and even works reasonably well for smaller Q-balls [13].
We also present here a new relation for R�ðκGÞ,

R�ðκGÞ ¼
1

κ2G
−

1

4κG
þ 3

2
− 2κG þ 1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2G

p ; ð11Þ

which provides an approximation to the numerical result
(shown in Fig. 1), that is accurate to better than 2% in the
region κG < 0.84 (or R� ≳ 1.5) that leads to stable Q-balls
(i.e., Q-balls with E < mϕQ). This relation can be used to
produce extremely accurate expressions of the global

1The definition of R� is somewhat ambiguous as f transitions
smoothly from its value at the center of the Q-ball to its value
outside, but a useful definition is f00ðρ ¼ R�Þ ¼ 0.
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Q-ball’s energy and charge as a function of radius using the
expressions in Ref. [13].

III. GAUGED Q-BALLS

Gauged Q-balls result from promoting the global Uð1Þ
symmetry to a local symmetry. The Lagrangian density is

L ¼ jDμϕj2 − UðjϕjÞ − 1

4
FμνFμν; ð12Þ

where Dμ ¼ ∂μ − ieAμ is the gauge covariant derivative
and Fμν ¼ ∂μAν − ∂νAμ is the field-strength tensor. The
parameter e is the gauge coupling normalized so that ϕ has
charge one. After making the static charge ansatz [14],

ϕðt; x⃗Þ ¼ ϕ0ffiffiffi
2

p fðrÞeiωt; A0ðt; x⃗Þ ¼ A0ðrÞ; Aiðt; x⃗Þ ¼ 0;

ð13Þ

and defining dimensionless quantities

Ω≡ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ−ω2
0

q ; AðρÞ≡A0ðρÞ
ϕ0

; α≡eΦ0; κ2≡Ω2−Ω2
0;

ð14Þ

we rewrite the Lagrangian as

L ¼ 4πΦ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q Z
dρ ρ2

�
−
1

2
f02 þ 1

2
A02

þ 1

2
f2ðΩ − αAÞ2 − UðfÞ

Φ2
0ðm2

ϕ − ω2
0Þ2

	
: ð15Þ

This has the form of two scalar fields under the influence of
the potential

Vðf; AÞ ¼ 1

2
f2ðΩ − αAÞ2 − UðfÞ

Φ2
0ðm2

ϕ − ω2
0Þ2

: ð16Þ

However, it is important to notice that in this analogy the A
field’s kinetic term has the wrong sign. The two equations
of motion

f00 þ 2

ρ
f0 ¼ −

∂V
∂f ¼ 1

Φ2
0ðm2

ϕ − ω2
0Þ2

dU
df

− ðΩ − αAÞ2f;

ð17Þ

A00 þ 2

ρ
A0 ¼ þ ∂V

∂A ¼ αf2ðAα − ΩÞ ð18Þ

are to be solved subject to the boundary conditions

lim
ρ→0

f0 ¼ lim
ρ→∞

f ¼ lim
ρ→0

A0 ¼ lim
ρ→∞

A ¼ 0: ð19Þ

In the analogy of two fields moving in the potential V, ρ
becomes a time coordinate and the terms with an explicit
1=ρ can be interpreted as time-dependent friction terms. As
shown below, this analogy greatly aids our understanding
of the Q-ball solutions.
The scalar frequency ω is restricted to the region

ω0 < ω ≤ mϕ; this is similar to the global Q-ball case,
except that it is possible to have gauged Q-balls with
ω ¼ mϕ (or κ ¼ 1) [15], where no global Q-balls exist. In
Sec. VI, we show that a stronger lower bound on ω exists.
The conserved charge Q is defined in the usual way

as the integral over the time component of the scalar
current [14]

Q ¼ 4πΦ2
0

Z
dρ ρ2f2ðΩ − αAÞ ð20Þ

¼ −
4πΦ2

0

α
lim
ρ→∞

ρ2A0; ð21Þ

where the second line uses Eq. (18) and integration by
parts. This implies that for large ρ,

A ¼ αQ
4πΦ2

0ρ
; ð22Þ

up to corrections that fall off faster than 1=ρ [14]. The
gauged Q-ball energy E is obtained from the Hamiltonian,

E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
¼ 4πΦ2

0

Z
dρ ρ2

�
1

2
f02 þ 1

2
A02

þ 1

2
f2ðΩ − αAÞ2 þ UðfÞ

Φ2
0ðm2

ϕ − ω2
0Þ2

	

ð23Þ

¼ ΩQþ 4πΦ2
0

3

Z
dρρ2ðf02 − A02Þ: ð24Þ

The second expression corrects a typo in Ref. [14] and is
derived in Appendix A. The energy and charge also satisfy
the nontrivial differential equation [17]

dE
dω

¼ ω
dQ
dω

: ð25Þ

This is a powerful relation among the Q-ball observables
and, in particular, allows ω to be interpreted as the chemical
potential.
For concreteness, we restrict most of our discussion to

the sextic scalar potential of Eq. (8), although we expect our
results to be qualitatively applicable to a far larger class
of potentials. Just like in the global case we only study
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ground-state Q-balls, which have no nodes; excited gauged
Q-balls in the same potential have been discussed
in Ref. [18].

IV. NUMERICAL METHODS

While the shooting method is quite successful for global
Q-balls [1], the addition of the gauge field makes finding
a solution using this method tedious, especially for large
Q-balls. We avoid this by changing coordinates and solving
the boundary value problem directly. A similar approach
was employed in Ref. [19].
In order to enforce the boundary conditions at ρ ¼ ∞,

we switch to a compactified coordinate y,

y ¼ ρ

1þ ρ=a
; ð26Þ

where a is a positive constant. The value of a makes no
real difference in obtaining numerical solutions. However,
choosing a much larger than the Q-ball radius ensures that
the most drastic compactification effects occur outside the
Q-ball. Clearly, y takes values y ∈ ½0; a� and so we can
require the conditions fðaÞ ¼ 0 and AðaÞ ¼ 0. The deriv-
atives become

d
dρ

¼ dy
dρ

d
dy

¼
�
1 −

y
a

�
2 d
dy

; ð27Þ

so the boundary conditions at y ¼ 0 are f0ð0Þ ¼ 0 and
A0ð0Þ ¼ 0 where primes denote a derivative with respect to
y. The set of equations�
1 −

y
a

�
4
�
f00 þ 2

y
f0
�

þ fðκ2 þ αAðαA − 2ΩÞ − 1þ 4f2 − 3f4Þ ¼ 0; ð28Þ
�
1 −

y
a

�
4
�
A00 þ 2

y
A0
�
− αf2ðαA −ΩÞ ¼ 0 ð29Þ

can then be solved by finite-element methods, using
Mathematica’s [20] routines, for instance, and quickly
converges to the exact solution if the initial guess is
reasonably accurate. In the next section, we present a
method for finding analytical test functions for f and A that
are close to the exact solutions. These can be successfully
used as initial seed functions for this method.

V. MAPPING GLOBAL Q-BALLS
TO GAUGED Q-BALLS

Much of the Q-ball profile can be understood by
comparing it to the motion of a particle moving in the
potential of Eq. (16),

Vðf; AÞ ¼ 1

2
f2½κ2 þ αAðαA − 2ΩÞ − ð1 − f2Þ2�: ð30Þ

For constant A, the potential in f ≥ 0 has three extrema,
one at f ¼ 0 and the other two at

f2� ¼ 1

3

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3κ2 − 3αAð2Ω − αAÞ

q �
; ð31Þ

fþ being a maximum and f− a minimum.
For global Q-balls, the second term in Vðf; 0Þ vanishes;

the scalar field starts close to the top of the potential at
f ≈ fþðA ¼ 0Þ. Eventually, the scalar rolls off and tran-
sitions to the second maximum at f ¼ 0. Figure 2 gives an
example global profile (blue curve of the left panel) along
with the potential that determines its dynamics (right
panel). Black points on the potential mark values of integer
ρ and illustrate that the field is nearly constant until ρ ≈ 20,
after which the field rolls quickly. The initial location of
the field profile on the potential was found in Ref. [13] by
matching the energy gap between the initial and final
maxima to the loss of energy due to the frictionlike term in
the equation of motion.
Similar arguments apply to gauged Q-balls. The primary

difference between the global and gauged cases is that the
evolving gauge field A causes the effective potential for
the scalar to change with ρ; see the left panel of Fig. 3. The
gauge field evolution changes the location and height of the
second maximum at fþ, and the scalar continues to follow
this maximum until a certain point when it transitions
quickly to the other maximum at f ¼ 0. Of course, this can
only occur when fþ exists, so the requirement that Eq. (31)
is real implies

1

3
þ κ2 ≥ αAð2Ω − αAÞ: ð32Þ

Notice that this condition is trivially satisfied in the global
case, i.e., for α → 0, but in the gauged case restricts αA to
two possible regions,

FIG. 1. The global Q-ball radius R� vs κG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

G − Ω2
0

p
for the

sextic potential [13] in red. The blue dotted line shows the
approximation κ2G ¼ 1=R�. The region κG ≳ 0.84 leads to un-
stable global Q-balls due to E > mϕQ [13].
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αA ≤ Ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 −
1

3

r
or αA ≥ Ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 −
1

3

r
: ð33Þ

As shown below, the second inequality in Eq. (33) is not
compatible with Q-ball solutions, leaving us with an upper
bound on αA when Ω0 ≥ 1=

ffiffiffi
3

p
.

As with the global case, we can determine the initial
values of the fields by energy considerations. Neglecting
the friction terms, we can write the equations of motion as

f00 þ ∂V
∂f ¼ 0; A00 −

∂V
∂A ¼ 0: ð34Þ

This means that the quantity

E ¼ 1

2
f02 −

1

2
A02 þ Vðf; AÞ ð35Þ

is conserved as a function of ρ,

dE
dρ

¼ f0
�
f00 þ ∂V

∂f
�
− A0

�
A00 −

∂V
∂A

�
¼ 0: ð36Þ

Of course, when the friction is included, this quantity is not
conserved and we immediately find that

dE
dρ

¼ −
2

ρ
ðf02 − A02Þ: ð37Þ

FIG. 2. Left: profiles for global fG and gauged f; αAQ-balls corresponding to R� ≈ 22. Right: effective potential for the global Q-ball.
Black points indicate the value of fG for integer values of ρ ∈ ½0; 30�.

FIG. 3. Black points indicate the values of the gauged Q-ball profiles for integer values of ρ ∈ ½0; 30�. Left: effective potentials for f
given for specific values of AðρÞ. Right: contour plot of the potential V as a function of f and αA.
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This justifies our interpretation of the term on the right-
hand side of the equation as a friction.
For constant f, the potential for A has one extremum at

Amax ¼
Ω
α
: ð38Þ

Again, Eqs. (24) and (37) indicate that f0 and A0 affect the
energy differently. The f profile behaves according to our
usual intuition, but the A kinetic term has the opposite sign.
Consequently, as Eq. (38) is a minimum in V, the dynamics
of the system drive A uphill either toward A ¼ 0 or A → ∞.
If A is larger than Amax, it diverges as ρ → ∞, which clearly
does not satisfy the Q-ball boundary conditions. This
implies that for Q-ball solutions Ω − αA > 0, which has
two consequences: first, because the right-hand side of A
equation of motion

A00 þ 2

ρ
A0 ¼ −αf2ðΩ − AαÞ ð39Þ

is always negative, A is monotonically decreasing for
Q-ball solutions [14]. Second, as the system evolves, the
negative term under the square root in Eq. (31) becomes
smaller so the value of fþ grows. For some solutions, such
as the one shown in Fig. 3, the “force” from the A gradient
pushes f uphill toward this growing fþ.
While the gauge field does affect the total Q-ball

dynamics, it seems to play a relatively minor role when
f transitions from near one to near zero. This observation
suggests a relationship between the global Q-ball solutions
and gauged Q-ball solutions. To explore this, we need
analytic expressions for A and f. Beginning at the thin-wall
limit, we approximate f by a step function, fðρÞ ¼
1 − Θðρ − R�Þ, and then solve the equation of motion,
Eq. (18), for A. By demanding that AðρÞ and its derivative
be continuous at ρ ¼ R�, one finds [14]

AðρÞ ¼ Ω
α

8<
:

1 − sinh ðαρÞ
cosh ðαR�Þαρ ; ρ < R�;

αR�−tanh ðαR�Þ
αρ ; ρ ≥ R�:

ð40Þ

Remarkably, this result is a good approximation to the exact
gauge field solution even beyond the thin-wall regime.
This result indicates that the derivative of αA is small if

the Q-ball radius R� is large,

jαA0ðR�Þj ¼ Ω
R�

���� tanhðαR�Þ − αR�

αR�

���� < Ω
R� ; ð41Þ

which implies that αA is essentially constant over the
transition. We can then refine our analysis of the scalar
profile by solving the f equation of motion around ρ ∼ R�
with a constant A,

f00 þ 2

ρ
f0 ¼ 1

Φ2
0ðm2

ϕ − ω2
0Þ2

dU
df

− ½Ω − αAðR�Þ�2f: ð42Þ

Equation (42) is exactly the form of the equation for the
global Q-ball, Eq. (7), with the global value of ΩG given by

ΩG ¼ Ω − αAðR�Þ: ð43Þ

Since the derivative of αA is small, it does not contribute
significantly to the friction over the transition region. This
means that the frictional effects over the transition are
also nearly identical to the global case. Since the relation
between ΩG and R� is determined by the friction, if the R�
dependence of the global Q-ball parameter ΩGðR�Þ is
known, we can determine the R� dependence of the gauged
Q-ball ΩðR�Þ via

ΩðR�Þ ¼ ΩGðR�ÞαR� cothðαR�Þ; ð44Þ

where we have used Eq. (43) and the thin-wall formula of
Eq. (40) for AðR�Þ.
Equation (44) is the key result of our paper. It provides a

mapping from global Q-balls—for which the relation
ΩGðR�Þ is much easier to obtain both analytically and
numerically—and gauged Q-balls with any α. Furthermore,
the scalar transition profiles for the gauged Q-balls are
expected to be identical to the transition profiles for the
corresponding global Q-balls [Eq. (10)]. As we now show,
this rather simple argument leads to accurate analytic
descriptions of gauged Q-balls.

VI. RESULTS

We can now use these results to construct an analytical
estimate for the Q-ball profile. The mapping in Eq. (44)
provides the radius of the gauged Q-ball given the known
relationship ΩGðR�Þ from the global Q-ball [Eq. (11) or
Fig. 1]. The scalar profile fðρÞ is taken to be the transition
profile of global Q-balls [Eq. (10)]; this is well motivated
around ρ ∼ R� for large R� but happens to be a very good
approximation for all other cases as well. Finally, the gauge
profile AðρÞ is taken from Eq. (40). We can also use this
analytical profile to find approximations for Q [via
Eq. (20)] and E [via Eq. (24)]; since the resulting
expressions are lengthy we do not show them here.
These profiles serve as excellent seed functions for the

numerical solution of the differential equations described
in Sec. IV. Figure 4 shows a comparison between the
numerical calculations and our analytical estimates for one
choice of parameters. Note that the two solutions in Fig. 4
have the same potential parameters and scalar frequency ω,
but differ in their Q-ball observables such as radius, charge,
and energy. These two solutions correspond to the two
solutions for R� obtained from the mapping in Eq. (44). As
the plot illustrates, the analytical profiles for f and A match
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the numerical results remarkably well, especially for the
large Q-balls (right panel).
We now discuss the Q-ball observables for the bench-

mark point Ω0 ¼ 5 and α ¼ 1=100; we set ϕ0 ¼ mϕ

throughout and measure all dimensional quantities in units
of mϕ. The results for this benchmark are shown in Fig. 5.
In the top left panel, the numerical results for κ vs R�

(circles) are compared with the prediction obtained from
Eq. (44) (line). The other panels show the analogous results
for E=mϕ; Q, and ðE=mϕQÞ. Overall, there is excellent
agreement between the numerical and analytical results.
There are a number of features that restrict the allowable

Q-ball solutions. First, we must have ω ≤ mϕ (or κ ≤ 1) in
order for the Q-ball solution to relax to zero for large ρ.

FIG. 5. A comparison of predictions from Eq. (44) and numerical solutions for a sample benchmark Ω0 ¼ 5, α ¼ 0.01, ϕ0 ¼ mϕ.
Predicted stable and unstable solutions are shown as solid and dashed lines, respectively, and stable and unstable numerical solutions are
shown as filled and open points, respectively. The gray dotted line shows the global Q-ball case. The rectangle shows the largest
numerical solution.

FIG. 4. Profiles for the scalar field and gauge field for a thick-wall (left) Q-ball and a thin-wall (right) Q-ball. The exact numerical
results are denoted by the solid lines, while the thin-wall analytic approximation is given by the dashed lines.
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This typically2 implies a maximum Q-ball radius. Second,
we must have E ≤ mϕQ so that the Q-ball is stable against
decay to scalars. This constraint is most easily seen in the
top right panel of Fig. 5 and implies the existence of a
minimal Q-ball radius. We have shown this second insta-
bility by representing our prediction by a dashed line in the
unstable region. The numerical solutions show the same
instability; we have represented the last stable solution (the
stable solution with smallest R�) as a star.

Finally, we must impose the constraint of Eq. (33) that
demands that the scalar potential have a second maximum
away from f ¼ 0. This puts an upper bound on the radius
which, for this benchmark, is more restrictive than the
maximal radius determined by the relation ω ≤ mϕ. Using
Eq. (33) with A ¼ Að0Þ from our thin-wall expression,
Eq. (40), we can calculate this maximal radius R�

max and
impose this constraint on our analytical prediction shown in
the figure, ending the solid line before κ ¼ 1. Since the
thin-wall Að0Þ overestimates the true value, our maximal
radius is slightly smaller than the true maximal radius
(indicated by a rectangle in the plot), but the agreement is
still good.
One interesting feature in the κ vs R� plot is the existence

of a minimum allowed value of κ. An analytic expression

FIG. 6. A comparison of predictions from Eq. (44) and numerical solutions for benchmarks Ω0 ¼ 0, α ¼ 0.1 (left, blue), Ω0 ¼ 1,
α ¼ 0.1 (left, orange), Ω0 ¼ 0, α ¼ 0.4 (right, green), and Ω0 ¼ 1, α ¼ 0.2 (right, red). Conventions are as in Fig. 5.

2The functional form of ΩGðR�Þ depends on the scalar
potential. Equation (44) implies that ΩGðR�Þ must fall off faster
than 1=R� at large R� in order to construct gauged Q-balls
without a maximal radius. We are not aware of such potentials
and global Q-balls in the literature.
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for this minimum value can be obtained; since this
minimum value must be less than or equal to one for
Q-balls to exist, we find the constraint

α≲ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð0.58Þ2 þ 9Ω2

0=2
p : ð45Þ

In particular, this predicts that there are no gauged Q-balls
with α > 0.58. Numerically, we find that the actual upper
limit for α is 0.52, in quantitative agreement with the above
mapping derivation. Note that it was pointed out in
Ref. [14] that for any scalar potential (and its implied
attractive force) there must be an upper bound on the
allowed gauge coupling (and its implied repulsive force) in
order to form a stable Q-ball.
The lower panels of Fig. 5 show the behavior ofQ and E

as a function of R�. They inherit both a minimal and a
maximal value from the corresponding radius. Our ana-
lytical predictions match the numerical results on the
(phenomenologically interesting) stable Q-ball branch.
We compare the analytical and numerical data for several

other benchmarks in Fig. 6. Our predictions show only
small deviations with respect to the numerical results for all
benchmarks. This illustrates that the mapping in Eq. (44)
holds qualitatively and quantitatively over the whole
parameter space.
For these benchmarks, R�

max is set by the condition κ ¼ 1
rather than by Eq. (33). Using Eq. (44) and the large-R�

relation κG ¼ 1=
ffiffiffiffiffiffi
R�p

[13], we find

α2R�
maxð1þ R�

maxΩ2
0Þ coth2ðR�

maxαÞ −Ω2
0 ¼ 1: ð46Þ

This equation cannot be solved analytically, but has the
limiting cases

R�
max ≃

(
1
α2
; for Ω0 ≲ α;

1
αΩ0

; for Ω0 ≫ α:
ð47Þ

Since both charge and energy grow with R� for large radii,
this R�

max also implies a maximal Q-ball charge and energy
for a given set of potential parameters. This qualitative
claim was made in Ref. [14], but here we provide easy-to-
use quantitative predictions.
We also note that in the limiting situation of large R�, the

expressions for charge and energy simplify to

Q ¼ 4π

α2
Φ2

0ðαR� cothðαR�Þ − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�2Ω2

0 þ R�
q

; ð48Þ

E ¼ πmϕR�Φ2
0csch

2ðαR�Þ
6α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 þ 1
p

× ½αR�ð4R�Ω2
0 þ 3Þ − 6ðR�Ω2

0 þ 1Þ sinhð2αR�Þ
þ αR�ð8R�Ω2

0 þ 9Þ coshð2αR�Þ�; ð49Þ

as derived in Appendix B. These are more approximate
than the full integrals used in our figures, but are signifi-
cantly more manageable and still make excellent predic-
tions at large R�.
Using our analytical approximations together with

numerical results, we can show that stable gauged Q-balls
have R� ≳ 1.5, which is similar to the lower limit found for
global Q-balls [13]. This matches the physical expectation
that the introduction of a repulsive force to a Q-ball should
not decrease the Q-ball radius.
We note that for Ω0 ¼ 0, the scalar profile is found to

be essentially constant in the interior of thin-wall Q-balls
(Fig. 4, right), and our approximations become more
accurate, especially for small α, where the solutions
approach the global Q-ball case. For larger Ω0, the
solutions deviate from the global case (Fig. 2, left), but
our results remain accurate. It would be interesting to
explore the dependence on Ω0 further; we leave this to
future work.

VII. CONCLUSION

Global Q-balls are curious objects that arise in
certain Uð1Þ-symmetric scalar field theories and can be
studied analytically and numerically with relative
ease. Promoting the Uð1Þ symmetry to a gauge
symmetry complicates the discussion significantly and
has eluded analytical descriptions outside of some limit-
ing cases.
In this paper, we have exhibited a method to obtain

essentially all properties of gauged Q-balls via a mapping
from global Q-balls. Since the latter can be easily
obtained numerically and often even analytically, this
mapping allows for an excellent prediction of the gauged
Q-ball properties without the need to solve the coupled,
nonlinear differential equations. Our analytical expres-
sions also make possible the solution of the differential
equations by finite-element methods rather than the
shooting method.
Finally, we stress that our analytical approximations are

best in the thin-wall or large-radius limit. Smaller Q-balls
show larger deviations, but these are also the Q-balls that
are easiest to study numerically, providing good comple-
mentarity. Importantly, our analytical approximations also
serve as good seed functions for numerical finite-element
methods, significantly simplifying the numerical study of
thick-wall gauged Q-balls.
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APPENDIX A: ENERGY OF GAUGED Q-BALLS

In this appendix, we derive the form of the energy given
in Eq (24). We begin with the Lagrangian and rescale the
radial coordinate ρ → χρ. This yields

L¼4πΦ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ−ω2
0

q Z
dρρ2χ

�
−
1

2
f02þ1

2
A02þχ2Vðf;AÞ

�
;

ðA1Þ

where Vðf; AÞ is defined in Eq. (16). We now consider the
variation of the Lagrangian with respect to χ and then
set χ ¼ 1. The variation has two parts, first the explicit
dependence on χ and second the variation that appears
because functions now depend on χ, fðρÞ → fðρχÞ. This
second collection of terms, with χ then set to one, is simply
the usual variation of the Lagrangian and so vanishes by
definition. Requiring the other term in the variation to also
vanish yields the constraint

0 ¼
Z

dρρ2
�
−
1

2
f02 þ 1

2
A02 þ 3Vðf; AÞ

�
: ðA2Þ

We can use this constraint to remove the explicit
dependence on UðfÞ from the energy in Eq. (23),

E ¼ 4πΦ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
×
Z

dρρ2
�
1

3
f02 þ 2

3
A02 þ f2ðαA −ΩÞ2

�

¼ 4πΦ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
×
Z

dρρ2
�
1

3
f02 þ 2

3
A02 þ 1

αρ2
ðαA − ΩÞðρ2A0Þ0

�
;

ðA3Þ

where in the last line we have used the A equation of motion
in (18). The third term is then integrated by parts to produce

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q ¼ ΩQþ 4πΦ2
0

3

Z
dρρ2ðf02 − A02Þ: ðA4Þ

This result is useful in that it only depends on the change in
f and A. Alternatively, the form

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q ¼ ΩQþ 8πΦ2
0

Z
dρ ρ2Vðf; AÞ ðA5Þ

can also be used to determine the energy without any use of
the derivatives of f and A.

APPENDIX B: AN ALTERNATIVE MAPPING
DERIVATION

As an alternative to the derivation of the mapping
equation (44) in Sec. V we provide here a derivation in
the thin-wall limit, i.e., for large R�. For this, we consider
the simplest thin-wall ansatz for the profiles [14], where f
is a step function, fðρÞ ≃ 1 − Θðρ − R�Þ, and A is given by
Eq. (40). We can easily integrate these functions to obtain
the charge Q [14],

Q ¼ 4πΩΦ2
0

α3
ðαR� − tanhðαR�ÞÞ; ðB1Þ

and the energy [Eq. (24)],

E ¼ ωQþ πϕ2
0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q R�2 −
4πϕ2

0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
×
Ω2ðαR�ðsech2ðαR�Þ þ 2Þ − 3 tanhðαR�ÞÞ

2α3
; ðB2Þ

using the results from Ref. [13] to properly integrate over
the discontinuous f02. Notice that the last term in E goes to
zero for α → 0, leading back to the global case. Now we
can use Eq. (25) in the form dE=dR� ¼ ωðR�ÞdQ=dR� to
obtain—and solve—a differential equation for ωðR�Þ,
yielding

ωðR�Þ ¼ cothðαR�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cR�2 þ α2ðm2

ϕ − ω2
0ÞR�

q
: ðB3Þ

Here, c is an integration constant that is difficult to obtain,
but we can get c ¼ α2ω2

0 þOðα3Þ from matching to the
global case κ2 ≃ 1=R� (valid roughly for R� > 2). This
gives us

ωðR�Þ ¼ αR� cothðαR�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ

m2
ϕ − ω2

0

R�

s
; ðB4Þ

which is identical to the more general mapping formula

in Eq. (44) in the large R� limit due to ωG ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ

m2
ϕ−ω

2
0

R�

q
[13].
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