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ABSTRACT:
Merchant ship-radiated noise, recorded on a single receiver in the 360–1100 Hz frequency band over 20 min, is

employed for seabed classification using an ensemble of deep learning (DL) algorithms. Five different convolutional

neural network architectures and one residual neural network are trained on synthetic data generated using 34 seabed

types, which span from soft-muddy to hard-sandy environments. The accuracy of all of the networks using fivefold

cross-validation was above 97%. Furthermore, the impact of the sound speed and water depth mismatch on the pre-

dictions is evaluated using five simulated test cases, where the deeper and more complex architectures proved to be

more robust against this variability. In addition, to assess the generalizability performance of the ensemble DL, the

networks were tested on data measured on three vertical line arrays in the Seabed Characterization Experiment in

2017, where 94% of the predictions indicated that mud over sand environments inferred in previous geoacoustic

inversions for the same area were the most likely sediments. This work presents evidence that the ensemble of DL

algorithms has learned how the signature of the sediments is encoded in the ship-radiated noise, providing a unified

classification result when tested on data collected at-sea. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Merchant ships are an active moving source of broadband

noise in the ocean environment and provide frequency and

spatial diversity, which can be recorded over great distances.

For this reason, these types of signals are excellent candidates

for passive geoacoustic inversions in shallow water.1 These

sources of opportunity, also known as ships of opportunity

(SOOs), usually travel in a straight line at a constant speed,

generating a characteristic signal that presents interference

patterns, referred to as striations. The average source spectra

of these broadband radiators have been modeled by Wales

and Heitmeyer2 over a 30–1200 Hz frequency band.

Recently, geoacoustic inversions using ship-radiated

noise have been an active area of research in which seabed

parameters, such as compressional sound speed and layer

thickness, are inferred using SOO spectrograms.3–7

Bayesian approaches4,8,9 and search algorithms5,6,10,11 are

commonly used for finding the optimal model for these

types of geoacoustic inversions. With the rich information

content that the broadband SOO noise contains about the

waveguide, researchers have used frequencies in the lower

bands of 20–140 Hz, as well as in the higher bands of

1700–3300 Hz, for parameter estimations.4,12

Machine and deep learning (DL) techniques can also be

used for inferring geoacoustic properties in the ocean envi-

ronment.13,14 Some approaches include neural and statistical

classifiers,15 artificial neural networks,16 generalized addi-

tive models,17 Bayesian learning,18 and convolutional neural

networks (CNNs).19,20 Different types of sound sources

have been used for this purpose; some examples are continu-

ous wave signals,16,19,21 linear frequency modulated sig-

nals,17 and explosive charges.20

Another approach for inferring geoacoustic properties is

by means of the signatures of the sediment encoded in the

propagated sound for classifying the signals from several

canonical seabed types. Efforts on using DL techniques for

seabed classification have been performed with classes that

span from soft-mud to hard-sand environments, using a few

canonical sediments. Van Komen et al.20,22 used CNNs for

simultaneously predicting source localization parameters

and classifying the sediment from four canonical seabed

types (deep mud, mud over sand, sandy silt, and sand) using

explosive charges in the 5–2500 Hz band and SOO spectro-

grams in the 300–1500 Hz band. Using the same four canon-

ical environments, Neilsen et al.19 implemented several

CNNs for simultaneously performing source localization

predictions and seabed classification with towed tonal sour-

ces in the mid frequency band. Frederick et al.21 used sev-

eral machine learning algorithms for classifying continuous
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wave signals from clay, silt, sand, and gravel sediments and

concluded that a broader spectrum of environments will help

with the generalization performance of the models. A similar

approach for seabed classification is followed in this work,

but it expands the number of seabed types to 34 classes,

which are found in the literature from different areas of the

world that span from soft-muddy to hard-sandy sediments.

In this paper, an ensemble of DL algorithms is applied

to SOO spectrograms in the 360–1100 Hz frequency band

over 20 min to classify the sediment using 34 seabed types.

For this study, five CNNs and one residual network (ResNet)

are considered for the classification task. Due to the lack of

measured SOO data, DL algorithms are trained using simu-

lated data (from a physics-based model) with environment

and source track variability that contain sufficient informa-

tion content for the networks to learn. To test the ability of

the networks to correctly classify samples not used during

training, fivefold cross-validation (CV) results are reported

and show validation accuracy above 97% for all of the DL

architectures. In addition, several simulated test cases were

created to evaluate the impact of the sound speed profile

(SSP) mismatch on the generalizability of the networks.

To further assess the generalization performance of the

DL algorithms, the trained networks were applied to 69

measured SOO spectrograms collected during the Seabed

Characterization Experiment in 2017 (SBCEX 2017) in the

New England Mud Patch Area. The merchant ships were

identified using the automatic identification system (AIS)

data retrieved from the Marine Cadastre.23 The seabed clas-

sification across all of the CNNs and ResNet—the ensemble

of DL algorithms—consistently point to the same seabed

types that correspond to muddy environments, which were

reported in previous geoacoustic inversions at the same

area. These results show the ability of DL algorithms to dis-

tinguish among a wide variety of seabed types using broad-

band SOO spectrograms.

II. MEASURED DATA

A. Experiment

The data used in this paper were collected by three ver-

tical line arrays (VLAs), which were deployed in the

SBCEX 2017 in the New England Mud Patch area, as shown

in Fig. 1. VLA1-MPL and VLA2-MPL were composed of

16 hydrophones each and were deployed by the Marine

Physical Laboratory of the Scripps Institution of

Oceanography (MPL). VLA-UD was deployed by the

University of Delaware (UD) and had a total of 8 hydro-

phones. For this paper, only the hydrophone located approx-

imately in the center of the water column at a depth of 33 m

above the seafloor is used. The water depth in the area was

about 75 m with some changes in bathymetry between 72

and 78 m. The details about the positions and recording

times for each VLA are listed in Table I. VLA-UD was con-

tinuously recording from March 7, 2017—which corre-

sponds to Julian day (JD) 66—until April 8, 2017 (JD 98)

for a total of 32.08 days. VLA1-MPL and VLA2-MPL,

however, followed a more intermittent schedule for a total

recording time of 9.1 and 7.5 days, respectively.

B. Identified ships

As shown in Fig. 1, the SBCEX 2017 area was near two

shipping lanes. The merchant vessels in the area in which the

VLAs were recording were identified using AIS data

retrieved from the Marine Cadastre.23 Northern and southern

shipping lanes were active for the duration of the experiment

and several merchant ships were identified passing by close

to the three receivers. One example of a ship recorded simul-

taneously at the three VLAs is shown in Fig. 2(a), where the

vessel Viking Bravery was moving from the southern to the

northern shipping lane parallel to the arrays. Each blue

marker on the map in Fig. 2 represents a data sample from

the AIS, where parameters such as course over ground, ship

speed, latitude, longitude, and draft were reported. The speed

of this ship remained constant at 14.66 kn. The closest point

of approach (CPA) range is computed based on the location

of the vessel, i.e., its reported latitude and longitude. The

CPAs for Viking Bravery were 3.30, 3.09, and 2.87 km for

VLA1-MPL, VLA2-MPL, and VLA-UD, respectively.

Figures 2(b)–2(d) show the spectrograms of the Viking

Bravery received at three locations where a nested set of

hyperbolas (also known as striations) with the vertices occur-

ring at CPA are observed; the spectrograms exhibit well-

defined striations, which span a broad frequency band. These

spectrograms have a time spacing of 5 s with a frequency

FIG. 1. (Color online) The positions of VLA1-MPL, VLA2-MPL, and

VLA-UD during SBCEX 2017 along with arrows indicating the shipping

lanes.

TABLE I. Information about the receivers.

Parameter VLA1-MPL VLA2-MPL VLA-UD

Latitude 40.470 N 40.442 N 40.460 N

Longitude 70.597 W 70.527 W 70.563 W

Starting date March 22

ðJD81Þ
March 23

ðJD82Þ
March 7

ðJD66Þ
Ending date April 3

ðJD93Þ
April 2

ðJD92Þ
April 8

ðJD98Þ
Recorded time 9.1 days 7.5 days 32.1 days
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step of 6.1 Hz. The black dotted lines on top of the spectro-

grams indicate the CPA positions, which occur at different

geo-times for the three receivers.

All of the ships recorded on one or more of the VLAs

are listed in Table II. Location parameters, inferred from the

AIS data, such as CPA with respect to each VLA and mean

ship speed (vsh), are reported as well. The symbols next to

the CPA parameter for each VLA indicate a qualitative

description of the signal measured at that location. The sym-

bol “þ” represents a SOO spectrogram with clearly identifi-

able striation patterns, whereas a “�” indicates that the

striations are visually present but with a low signal-to-noise

ratio (SNR). In addition, an “*” signifies that the data sam-

ple contains a loud noise event that is different than the

broadband noise generated by the ship in question. In total,

69 ship events were found at the 3 receivers from 51 identi-

fied vessels. The CPA ranges vary from 0.64 to 13.30 km,

and the ship speeds vary from 8 to 20 kn.

III. METHODOLOGY

To train a supervised machine or DL model, a large

labeled database is needed that has sufficient information

content to capture the variety found in the testing scenarios.

However, in ocean acoustics, at-sea labeled data are scarce

because of the costliness of obtaining such measurements.

In this work, 69 data samples have been extracted—an

insufficient number for training a DL algorithm. Our

approach is to simulate the training data with the range-

independent, normal-mode propagation model, ORCA24 by

using 34 representative sediments found in the literature,

which span from muddy to sandy environments. The simu-

lated source-receiver configuration is similar to the one used

for the measured data, where a merchant ship is moving

with constant speed in a straight line relative to a receiver.

This synthetic dataset is used for training and validating an

ensemble of six DL algorithms, which are used as a compos-

ite classifier to determine the most likely seabed type for

each spectrogram. Then, the trained networks are applied to

five simulated test cases to evaluate the impact of the sound

speed and water depth mismatch. Finally, the ensemble of

trained networks is applied to the measured SOO spectro-

grams to assess the generalization ability of the DL algo-

rithms for classifying the sediment using real-world data.

A. Data simulation

The scope of this work is to evaluate the ability of DL

algorithms to distinguish among different types of seabeds

when a priori information about the sediment is not avail-

able. To serve this purpose, the variability present in the

measured samples is represented by including enough envi-

ronmental variability in the simulated training dataset.

FIG. 2. (Color online) (a) The map indicating the position of the ship retrieved from the AIS data. The arrow indicates the direction of the vessel Viking

Bravery, which was recorded at (b) VLA2-MPL, (c) VLA-UD, and (d) VLA1-MPL in the SBCEX 2017 on March 30, 2017 (JD 90). The spectrograms are

shown for the three receivers as a function of the geo-time (UTC) and frequency.
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A key question for seabed classification efforts is how

to divide the wide variety of seafloors in the shallow oceans

into different classes. In prior work,15,19–22 four or five dis-

tinct seabed classes were used to represent the different,

general types of sediments. However, a broader spectrum of

environments will help with the generalization performance

of the DL algorithms.20–22 To expand the catalog of seabed

classes, a measure of the acoustic similarity is needed to

help select the seabed classes that are acoustically distinct

enough to be learned by the classifier. The 34 seabed classes

used in this work (Table III) were reported in peer-reviewed

literature on shallow ocean studies. These 34 seabed classes

are selected because the transmission losses modeled over

the frequency (one-third octave band center frequencies

250–1250 Hz and ranges 1–15 km) have a Pearson correla-

tion of 0.8 or less. (See Ref. 25 for details on the method.)

This measure of acoustic similarity helps guide the choice

of a seabed catalog that captures the acoustic variability

likely to be found in the measured data.

The 34 seabeds are listed in Table III along with the

sound speed at the top of the sediment and reference from

which the seabed parameterization was obtained. The sea-

bed label names with the suffix “_sbc” were inferred in pre-

vious studies for the SBCEX 2017 in the New England Mud

Patch Area; a detailed summary about these geoacoustic

inversions can be found in Wilson et al.26 A deep mud

environment studied in the Gulf of Mexico27 is also

included (#7) among the possible classes. The seabed names

with the suffix “_35m” were modeled using the nominal

sound speed, density, and attenuation parameters found in

TABLE II. The list of ships recorded during the SBCEX 2017. The CPA ranges (in km) with respect to VLA1-MPL, VLA2-MPL, and VLA-UD are labeled

as R-1, R-2, and R-UD, respectively. The speed of the ship, vsh (in kn), is assumed to be constant. Symbols next to the CPA indicate a qualitative description

of the signal. Superscripts “þ” and “�” indicate that the SOO spectrogram has high or low SNR, respectively. Subscript “�” represents that a loud noise

event, different than the broadband noise generated by the ship, was present.

# Ship name R-1 R-2 R-UD vsh JD # Ship name R-1 R-2 R-UD vsh JD

1 MATAQUITO — — 9:5þ� 19.4 67 27 MSC GISELLE — — 6.5þ 18.3 85

2 ALICE OLDENDORFF — — 0.6þ 8.3 67 28 FEDOR 8.6� — — 11.6 86

3 PAGNA — — 13:3þ� 17.5 69 29 BRITISH TRANQUILLITY 8.5� 12.0� 9:8�� 13.5 86

4 JIA SHENG SHAN — — 9:1þ� 11.2 69 30 CPO BALTIMORE 9:3þ� — — 14.7 86

5 EVER LIVING — — 5.8þ 18.4 72 31 TORM SAONE 8.6� — — 13 87

6 ZIM QINGDAO — — 8:8�� 11.3 73 32 ARDMORE SEAVANTAGE — — 5.0þ 15.4 87

7 STI CLAPHAM — — 4:6þ� 11.8 73 33 LEOPARD — — 10.1þ 13.2 87

8 NYK RUMINA — — 5.0þ 19.8 73 34 CMA CGM MOLIERE — — 9.8� 15.9 89

9 BARBARA — — 5:7þ� 19.9 75 35 HAFNIA GREEN — 2.8þ 4:8þ� 10.9 89

10 MSC BREMEN — — 10:0þ� 18.4 76 36 MSC NERISSA 8.7þ — 9.8þ 15.6 90

11 OREGON HIGHWAY — — 0:7þ� 15.3 77 37 VIKING BRAVERY 3.3þ 3.1þ 2.9þ 14.7 90

12 MSC LAUSANNE — — 5.5� 12 77 38 MAERSK MATSUYAMA 7.2þ 4.6þ 6:6�� 11.6 90

13 NYK RIGEL — — 5:2þ� 19.9 80 39 TOMBARRA 6.4þ 3.2þ — 16.3 90

14 ZIM SHANGHAI — — 5:3þ� 17.9 80 40 ATLANTIC SEA 9.3þ 12.7þ 10.6þ 17.6 90

15 TRANSPORT — — 1.5þ 8.4 80 41 KAZDANGA — 1:9þ� — 9.2 92

16 BOW PIONEER — — 4:7þ� 11.9 80 42 NYK DIANA 8:6þ� — 9:8þ� 18.9 93

17 DISCOVERY BAY — — 5.9þ 13.3 81 43 CHEMICAL PIONEER 8.5þ — — 16.2 93

18 MSC ESTHI — — 11:1�� 17.8 81 44 DENAK VOYAGER 6:7þ� — 5:5þ� 10.3 93

19 ATLANTIC CONVEYOR 9.0þ 12.2þ 10.2þ 16.1 83 45 ARCTIC BREEZE 8.2þ — — 14.3 93

20 MSC ANIELLO — 3.6þ — 14.3 83 46 PAGANELLA — — 4:8þ� 14.9 93

21 MSC KALAMATA 5.9þ 3.1þ 4.9þ 16.7 83 47 MSC KOLKATA — — 4:7þ� 9.6 93

22 CORRIDO — 4.0(þ) — 14.6 84 48 ALICE OLDENDORFF — — 10.3þ 10.7 94

23 YM UNANIMITY — 3.8þ — 9.1 84 49 MSC AMERICA — — 6:6þ� 16 95

24 MINERVA ZOE 8.6� — — 12.3 85 50 CSCL AMERICA — — 10þ� 21.2 96

25 BBC TENNESSEE 7:4�� 4:2þ� — 8.3 85 51 STEALTH BERANA — — 5:2þ� 13.7 96

26 CHEM VENUS 9.3� — — 12.9 85

TABLE III. The list of the 34 sediments used for simulation. Column “#”

corresponds to the seabed number used for identification in the results. ctop
1

is the value of the sound speed at the top of the first layer reported in the

paper specified in the reference (Ref) column.

# Seabed label ctop
1 Ref # Seabed label ctop

1 Ref

0 Lin_sbc 1387 39 17 Dahl2020_sbc 1479 4

1 Knobles_sbc 1436 40 18 Brown_sbc 1479 41

2 Dahl_sbc 1445 42 19 Michalopoulou_sbc 1491 43

3 Belcourt_2_sbc 1445 44 20 Clay_35m 1500 28

4 Potty_sbc 1452 45 21 Tollefsen_sbc 1508 46

5 Wan_2_sbc 1452 47 22 Malta_a 1510 30

6 Belcourt_1_sbc 1453 44 23 West_Florida 1540 29

7 Deep_mud 1454 27 24 Korean_c 1553 31

8 Barclay_2_sbc 1455 48 25 Korean_a 1558 32

9 Barclay_3_sbc 1459 48 26 Korean_k 1567 33

10 Bonnel_1_sbc 1464 49 27 Silt_35m 1575 28

11 Wan_1_sbc 1467 50 28 Sand 1592 38

12 Mud_over_sand_sbc 1469 40 29 Sandy_silt 1592 34

13 Barclay_1_sbc 1470 48 30 Knobles14j 1650 35

14 Mud_35m 1470 28 31 NewJersey_a 1704 36

15 Bonnel_2_sbc 1471 51 32 Korean_h 1757 37

16 Bonnel_3_sbc 1474 51 33 Gravel_35m 1800 28
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Jensen et al.28 for mud (#14), clay (#20), silt (#27), and

gravel (#33) environments to define a 35 m-thick layer over

a hard-sand half-space. Harder sediments from different

areas of the world are also considered, such as the ones stud-

ied in the West Florida sand shelf29 (#23), Malta Plateau in

the Mediterranean Sea30 (#22), Mid-eastern Yellow Sea31

(#24), Northern East China Sea32 (#25), Jinhae Bay—off the

coast of Southeast Korea33 (#26), New England in the

Middle Atlantic Bight34 (#28), New Jersey Continental

Shelf (#30, #31),35,36 and Western Continental Margin of

the East Sea37 (#32). The conclusion of a study on several

sandy sea bottoms by Zhou et al.38 is also included as

seabed type #28.

These 34 seabed classes have been sorted based on the

sound speed at the top of the first layer (ctop
1 ). The values of

ctop
1 are the values reported in the papers and have not been

modified based on the water sound speed. The sediments

numbered 0–15 have a sound speed ratio less than one,

whereas the sediments numbered 16–33 have a ratio greater

than one. This ordering allows us to have a representative

sorted list that goes from softer (mud) to harder (sand)

sediments.

Each seabed type has a different layer structure that

goes from a simple one-layer sediment over a half space to a

more complicated environment, which is composed of sev-

eral thin layers. Eight examples of the sediment layering are

shown in Fig. 3. The parameters involved in the modeling

are the layer thickness and density (g/cm3), attenuation (db/

m-kHz), and sound speed (m/s) at the top and bottom of

each layer. Seabeds #7, #12, #29, and #28 correspond to the

four canonical environments used in Refs. 19, 20, and 22 for

deep mud, mud over sand, sandy silt, and sandy sediments,

respectively. The layering structure for these four seabed

classes can be found in Ref. 19.

The environmental variability in the ocean includes not

only the seafloor but also the water column sound speed and

depth. For the training dataset, ten SSPs measured during

SBCEX 2017, shown in Fig. 4, are used with each of the 34

seabeds for a total of 340 different environments. The SSPs

measured in situ are shown in Fig. 4 as solid black lines

with bottom sound speeds from 1470.5 to 1472.4 m/s, which

are similar to the profiles used in the previous geo-acoustic

inversions in the SBCEX 2017 that were on the order of

1469.6 6 2.24 m/s. The water depth used for simulating the

training data was 75 m with the receiver position at 33 m

above the seafloor.

The range of source parameters used to generate the

synthetic training dataset was selected to account for the full

range of values covered by the measured data samples

(Table II). To make sure that the source parameter space is

completely sampled, some labels for the CPA range and

ship speed (vsh) are held fixed for all of the environments.

For each of the 340 different environments, the CPA range

has 5 fixed values of 2, 5, 8, 11, and 14 km, whereas vsh has

3 fixed values of 10, 14, and 18 kn. Additional values of the

source parameters are randomly drawn from a uniform dis-

tribution between the minimum and maximum values in

Table IV for each of the 340 environments. All of the

FIG. 3. (Color online) Examples of the sediment profiles used for simulating the training datasets. The compressional SSPs are shown as thick black lines,

whereas the legend contains the compressional attenuation (a) and density (q) for the water (subscript w), the top (superscript t) and bottom (superscript b)

of each layer (subscript i ¼ 1� n, where n is the number of layers), and the half-space (subscript hs).
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combinations of this sampling result in 405 different sets of

source parameters per environment; a total of 137 700 data

samples are generated for training the DL algorithms.

To analyze the performance of the networks in the face

of environmental mismatch, five additional datasets have

been simulated with environments not used for training.

Tests A1 and A2 were created to evaluate the impact on the

SSP mismatch using the same water depth of 75 m but with

the SSPs shifted by 610 m/s with respect to the range of

SSPs used for the training data, as depicted in Fig. 4 by the

lines with the square and circle markers. For tests B1 and

B2, the water depth was shifted by þ3 m (78 m) and �3 m

(72 m), respectively, using one of the SSPs from the training

data. Test C is the most challenging case and was simulated

using a single downward refracting SSP at 75 m water depth,

as shown in Fig. 4 by the line with triangle markers. The

source location parameters used for the five test cases are as

shown in Table IV, following the same approach as for the

training data. Thus, each synthetic test case is composed of

405 samples for each of the 34 seabed types listed in Table

III, yielding a total of 13 770 data samples.

The synthetic SOO spectrograms are generated using

the simulated ocean response and a modeled source spec-

trum. The simulated acoustic channel response is obtained

from ORCA, a range-independent, elastic, normal-mode

model.24 The broadband source ship noise spectral density,

S(f) in dB, re 1 lPa2/Hz, is modeled by the Wales and

Heitmeyer2 equation as

Sðf Þ ¼ S0 � 10 log ðf 3:594Þ

þ 10 log ðð1þ ðf=340Þ2Þ0:917Þ; (1)

where S0 represents the baseline source level of the ship in

decibels and f is the frequency. The empirical value found

was S0 ¼ 230 dB, and they applied this model over the

30–1200 Hz band. However, during the SBCEX 2017, sev-

eral loud noise events frequently happened below 350 Hz.

For this reason, the frequency band of 360–1100 Hz was

selected to make sure that the measured and modeled signals

have a common well-studied band with a clearly identifiable

signal. Examples of the simulated SOO spectrograms for

four seabed types (#0, #7, #20, and #28) are shown in Fig. 5

for three CPA ranges of 1, 3, and 8 km with a constant ship

speed of 10 kn and source depth of 10 m. The 20-min spec-

trograms were generated using a 5 s time interval with a fre-

quency spacing of 6.1 Hz, yielding a matrix with 243� 123

spectral density levels. The selected time and frequency res-

olutions allowed us to capture the details in the striations of

the SOO samples and keep a well-defined aspect ratio.

B. DL algorithms

To obtain robust predictions, an ensemble of DL models

is trained for seabed classification. Having a set of diverse

DL architectures will increase the reliability of the predic-

tions and guard against incorrect responses. When a new

sample is presented, if all of the networks agree to a unified

answer, then the selected class is likely to be correct because

each network might have learned different representative

patterns during training.

For this study, five different CNN architectures and one

residual neural network (ResNet) are implemented. CNNs

are a DL tool used for temporally or spatially correlated sig-

nals.13 CNNs are useful for learning representative features

in the convolutional layers by sliding filters (or kernels)

across the data. It is common to use maximum pooling at

the output of such filters to downsample the feature maps by

keeping only the largest value in a given moving window.

More information on CNNs can be found in Goodfellow

et al.52 A ResNet is, in essence, a CNN with skip connec-

tions that improve the gradient flow through the network

and enables the training of deeper architectures.53 In the

area of ocean acoustics, ResNet algorithms have been

recently used by Niu et al.54 for source localization using

multi-frequency magnitude-only data. The topologies of the

networks, along with data pre-processing and augmentation

techniques used for training, are presented in this section.

1. Network architectures

The architectures of the CNNs implemented for this

work are summarized in Table V. Each convolutional layer

is composed of convolutions that can be followed by

FIG. 4. (Color online) The SSPs used for simulating the training and testing

datasets.

TABLE IV. The source parameter selections for the training and testing

datasets. Some fixed values for the CPA range and ship speed are used for

each environment. Additional source parameters are drawn randomly for

each environment. All combinations of these 3 source parameters produces

405 data samples for each environment.

Minimum

value

Maximum

value

Number

fixed

Number

random

CPA (km) 0.5 15 5 10

vsh (kn) 8 20 3 6

Zs (m) 6 12 0 3
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maximum pooling to decrease the dimensionality of the net-

work. The output of these convolutional layers is sent to the

fully connected (FC) layers, which then assign a score to

each of the 34 outputs—one associated with each seabed

type. Several approaches for the design of the networks are

considered. First, a shallow CNN with only three convolu-

tional layers, with maximum pooling in all of them, and two

FC layers were implemented. For this network, named

Selkie3 (presented in Ref. 22), data are input in two formats,

one-dimensional (1D) and two-dimensional (2D). The 1D

input format is structured such that each frequency

corresponds to a channel, having a total of 123 channels

with 243 points each. The 2D input format is a single chan-

nel spectrogram with size 243� 123.

Two deeper CNNs, Selkie5 and CNN5-UD, with five

convolutional layers were implemented using only the 2D

input format of the spectrograms. Selkie5, also presented in

Ref. 22, has two FC layers, and pooling was not employed.

CNN5-UD was inspired by the network implemented in

Neilsen et al.,19 where max pooling is applied in the first

two layers, and one single FC layer is used at the end. In

addition, the well-known CNN topology, AlexNet,55 is also

FIG. 5. (Color online) Examples of the synthetic SOO spectrograms for CPA ranges ¼ 1, 3, and 8 km with constant ship speed ¼10 kn and source depth

¼10 m. Seabeds 0, 7, 20, and 28 correspond to mud over sand, deep mud, clay, and sandy environments, respectively. The color represents the received level

(RL) in dB Re 1 lPa2=Hz.
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implemented using only half of the network architecture

corresponding to five convolutional layers and is referred to

as HalfAlexNet throughout this study. A ResNet with 18

layers, named ResNet18, was implemented following the

configuration suggested in He et al.56 Table VI presents the

architecture of ResNet18, composed of eight basic blocks

presented as convn_x. Kernels of size 3� 3 were used in all

of the layers with an average pooling layer of size 4� 4

after the convolutions. Finally, a FC layer is used to perform

the classification from the 34 seabed types. The key differ-

ence between ResNet and the other CNNs is that “skip con-

nections” connect the beginning of each block such that

information from earlier in the network is available at later

stages.

The DL algorithms were written in the open-source

PyTorch framework.57 Rectified linear unit (ReLu) activa-

tion functions,58 followed by batch normalization, were

employed for training the networks. The AdamW opti-

mizer,59 a variant of the Adam optimizer60 with decouple

weight decay regularization, is implemented using the

cosine annealing learning rate procedure described in Van

Komen et al.20

2. Data pre-processing

Whereas the spectral shape of the broadband noise from

the transiting ships is captured by Eq. (1), the exact spectral

levels depend on the detailed characteristics of each ship.

This difference is represented by the S0 in Eq. (1). To miti-

gate the effects of unknown S0 values for the ships listed in

Table II, the data samples are normalized individually based

on their standard deviation for both measured and simulated

data. For each spectrogram, X, the standard deviation (r) is

computed as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KL

XK

i¼1

XL

j¼1

Xðti; fjÞ � �X
� �2

vuut ; (2)

where Xðti; fjÞ is the spectral density re 1 lPa2/Hz in linear

units of the spectrogram at time ti and frequency fj; K and L

are the numbers of times and frequencies, respectively; and
�X is the mean value across the spectrogram. Then, the nor-

malized spectral densities in dB (XL) are calculated as

XL ¼ 20 log
X

r

� �
: (3)

3. Data augmentation

Data augmentation is often used for improving the gen-

eralization performance of the DL models.61 A common

approach is to implement data augmentation into a dataset

by applying a small amount of random noise to each sam-

ple.62 Because the background noise level in the ocean

varies with the frequency, we use the realistic wind noise

spectrum found in Fig. 1 of Hildebrand.63 Specifically the

wind noise spectrum denoted as level #2 is used to define

the maximum amount of noise applied to the spectrograms

during the training process. For each epoch, when a data

sample is drawn, a different random noise signal is added;

each random noise signal is drawn from a uniform distribu-

tion with maximum values denoted by the wind noise spec-

trum and minimum values of 0 dB, forming a matrix that

matches the dimensions of the input spectrograms. This

additive noise matrix is then applied to each spectrogram X

TABLE V. The CNN architectures. The parameters for each convolutional layer are presented as (kernel size)(stride)(padding)(number of channel outputs).

The value that follows the FC nomenclature corresponds to the number of neurons in that fully connected (FC) layer.

Layer Selkie3 (1D) Selkie3 (2D) Selkie5 (2D) CNN5-UD (2D)

Convolutional (5 � 1)(1 � 0)(2 � 0)(100) (5 � 5)(1 � 1)(0 � 2)(8) (9 � 9)(2 � 2)(4 � 4)(10) (9 � 5)(1 � 1)(4 � 2)(32)

Maximum pool (2 � 1)(2 � 0)(1 � 0) (2 � 2)(2 � 2)(1 � 1) — (5 � 3)(3 � 2)(2 � 1)

Convolutional (5 � 1)(1 � 0)(0 � 0)(50) (5 � 5)(1 � 1)(0 � 0)(16) (7 � 7)(2 � 2)(3 � 3)(20) (5 � 3)(1 � 1)(2 � 1)(64)

Maximum pool (2 � 1)(2 � 0)(1 � 0) (2 � 2)(2 � 2)(1 � 1) — (5 � 3)(3 � 2)(2 � 1)

Convolutional (5 � 1)(1 � 0)(0 � 0)(20) (5 � 5)(2 � 1)(0 � 0)(4) (5 � 5)(2 � 2)(2 � 2)(30) (3 � 3)(2 � 2)(1 � 1)(128)

Maximum pool (2 � 1)(2 � 0)(1 � 0) (2 � 2)(2 � 2)(1 � 1) — —

Convolutional — — (5 � 5)(2 � 2)(2 � 2)(40) (3 � 3)(2 � 1)(1 � 1)(64)

Convolutional — — (5� 5)(1 � 1)(0 � 0)(20) (3 � 3)(1 � 1)(1 � 1)(32)

FC - 2000 FC - 2000 FC - 3000 FC - 2000

FC - 500 FC - 500 FC - 2000 —

Output (34 classes)

TABLE VI. The architecture of ResNet-18. The description shows the num-

ber of blocks in parenthesis, kernel size, number of kernels, and the stride

applied to the input.

Layer name Description

Conv1 ð�1Þ 3� 3, 12, Stride 1

Conv2_x ð�2Þ 3� 3; 12

3� 3; 12

� �
, Stride 1

Conv3_x ð�2Þ 3� 3; 24

3� 3; 24

� �
, Stride 2

Conv4_x ð�2Þ 3� 3; 48

3� 3; 48

� �
, Stride 2

Conv5_x ð�2Þ 3� 3; 96

3� 3; 96

� �
, Stride 2

Pool1 ð�1Þ Average pooling, 4� 4

FC ð�1Þ FC layer, 34-d, softmax
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when it is drawn during the training, as X ¼ X þ Noiserand,

before computing the normalization factor r in Eq. (2).

With this processing, the networks will learn from data sam-

ples with different levels of noise at each iteration.

IV. RESULTS AND DISCUSSION

Seabed classification results for the training, validation,

and generalization stages are presented in this section for six

DL architectures. The training and validation of the net-

works was done using synthetic data to evaluate whether the

algorithms have learned to distinguish among the 34 seabed

types. To assess the performance of the DL algorithms

against environmental mismatch, the networks were tested

on several simulated test cases with SSPs and water depths

different from the ones used for training. The metric used

for evaluating the performance of the networks is classifica-

tion accuracy, which is calculated by counting the number

of times the network predicted the correct seabed class. For

further assessing the generalizability of the networks, the

trained models are applied to the 69 data samples measured

in the New England Mud Patch Area.

A. Training and validation

The six networks were tested with fivefold CV, where

the training data are randomly partitioned into five equally

sized segments. Then, five iterations of training and valida-

tion are performed such that for each iteration, a different

segment of the data is used for validation and the remaining

four segments are used for training.64 Results for the valida-

tion stage of the fivefold CV are shown in the summary

Table VII, where the average accuracy across the five

trained models per network is reported. The DL algorithms

exhibit an accuracy above 97% when tested on samples not

seen during training. This validation accuracy provides evi-

dence that the trained networks have learned how the signa-

tures of the 34 seabed classes are encoded in the

spectrograms.

B. Generalization results: Tests on simulated data

Five simulated test cases are used for evaluating the

ability of the networks to classify the sediment type when

the sound speed mismatch occurs in the water column. For

each test case, the classification accuracy is computed inde-

pendently for each seabed type based on predictions from

the five networks trained in the CV step. The mean and

median accuracies across the predictions are reported in

Table VII for the six DL architectures. Tests A1 and A2,

used for evaluating the impact of the SSP mismatch, exhibit

the best performances across all of the test cases with a

median accuracy in the range of 75.36%–98.17%. Tests B1

and B2, which have a water depth mismatch of 63 m, have

a lower median accuracy in the 56.12%–92.12% range. Test

C was the most challenging case—when a downward

refracting SSP was used for simulating the SOO spectro-

grams—and the median accuracy significantly dropped to

10.3%–54.12%. A pictorial representation of the networks’

median accuracy for the five test cases is shown in Fig. 6(a).

It is observed that networks with a deeper and more compli-

cated topology exhibit a higher accuracy for all of the test

cases, whereas Selkie3 (1D), with the simplest and shallow-

est architecture, has the lowest performance. In particular,

CNN5-UD, with a topology inspired by a previous study for

seabed classification using towed tonals,19 outperformed the

rest of the networks in every test. These results illustrate the

impact that environmental mismatch can have on seabed

classification efforts.

To further analyze the impact of environmental mis-

match on the performance of the DL algorithms, confusion

matrices for the five test cases are shown in Fig. 6. These

matrices show the percentage of times that the testing data

samples generated with a particular seabed are classified

from the 34 possible classes. These matrices give insights

into where the possible errors among classes are happening

for each test case. These results are presented for the five

trained DL models of CNN5-UD and lead to several obser-

vations about the classification performance for independent

seabed types. First, for all of the cases, the networks confuse

seabed korean_h (#32) with gravel_35m (#33) and vice

versa, having a low accuracy of less than 50%. It must be

noted that these two sediments have the highest sound speed

ratio used in this study and share similar sediment profiles.

Similarly, but to a lesser extend, seabeds #4, #5, and #10 are

often confused with each other. Another observation is that

in the face of the sound speed mismatch in the water column

(tests A1, A2, and C), seabed belcourt_2 (#6) is frequently

classified as belcourt_1 (#3) but, interestingly, the opposite

does not hold. One important finding is that the most robust

classes in this analysis correspond to some of the sediments

inferred in previous geacoustic inversions for the SBCEX

2017, indexed as seabed types #0, #1, #2, #3, #8, #18, and

TABLE VII. The validation results on the simulated data for the six trained networks. The mean/median values of accuracy in % are reported for the five

trained models per network for the synthetic test cases results.

Selkie3 (1D) Selkie3 (2D) Selkie5 CNN5-UD HalfAlexNet ResNet-18

Fivefold CV 99.15 98.51 98.81 99.99 97.15 99.96

Test A1 75.08/82.10 80.47/83.83 82.55/86.86 91.97/97.78 84.96/90.15 88.76/95.58

Test A2 72.34/75.36 76.8/83.83 80.81/87.98 90.4/98.17 82.55/89.58 87.89/94.84

Test B1 58.17/57.68 65.45/69.26 68.54/76.54 78.44/82.44 72.44/81.51 73.83/82.96

Test B2 57.39/56.12 64.73/64.62 71.49/77.83 81.25/92.12 73.76/79.36 74.95/84.37

Test C 17.76/10.3 41.46/39.88 35.37/30.72 53.11/54.12 37.2/30.12 48.29/48.64
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#19; these results indicate that although these classes repre-

sent a mud over sand environment from the same area, they

are unique enough for CNN5-UD to distinguish among

them with high accuracy even in the face of the downward

refracting SSP used for test C. These confusion matrices

show that incorrect classifications generally occur between

similar seabeds.

C. Generalization results: Test on measured data

The trained DL models were applied to the measured

SOO spectrograms listed in Table II to assess the generaliz-

ability of the networks on data collected at-sea.

Classification of the 69 samples collected from the merchant

ships moving next to 3 receivers located at different loca-

tions but similar depths in the SBCEX 2017 are shown in

Fig. 7. Classification results obtained from the five trained

models (from the CV step) for each of the six DL topologies

(described in Sec. III B 1) are presented in the form of a

stacked bar plot for the seabed type classifications using the

69 measured data samples, where the colors and patterned

symbols of the bars differentiate the network architectures.

Results indicate that over 94% of the time, all of the net-

works classify the SOO spectrograms as a mud over sand

sediment inferred in the SBCEX 2017, which is the same

area in which the samples were collected. Seabed types bel-

court_2_sbc (#3) and belcourt_1_sbc (#6) got 47.83% of the

overall predictions, making them the most likely sediments

in this DL analysis. Interestingly, these two seabeds were

inferred in the same study performed by Belcourt et al.,44

using a trans-dimensional Bayesian inversion approach on

the reflection coefficient data from two locations in the

SBCEX 2017 close to the VLAs and shipping lanes used for

this work. It should be noted that in the synthetic test cases,

seabed #6 was mistakenly classified as #3 in the face of a

SSP mismatch in the water column. Also, seabeds #4, #5,

and #10 were often confused with each other in the simu-

lated tests, and these three sediments combined got 25.12%

of the predictions when tested on the measured data

samples.

To further assess the classification results, a data-model

comparison for three of the recorded ships at different posi-

tions is shown in Fig. 8. The spectrograms have been nor-

malized, based on their standard deviation as explained in

Sec. III B 2, to mitigate the effects of the unknown source

level intrinsic to each ship. For each VLA, one example of a

measured ship spectrogram and a modeled ship spectrogram

(using seabed #3) is presented. The source parameters used

for simulating the spectrograms were inferred based on the

speeds and positions of the ships reported in the AIS data-

base; each ship’s Global Positioning System (GPS) data

from the database are shown in the right column of Fig. 8.

The vessels used for this comparison are as follows. With a

CPA range of 8.96 km with respect to VLA1-MPL on JD 83

at 03:26 UTC, the vessel Atlantic Conveyor was transiting

in the northern shipping lane at a constant speed of 16.1 kn.

FIG. 6. (Color online) (a) The median classification performance of six DL architectures on the synthetic test cases. The confusion matrices for [(b),(c)] tests

A1 and A2 with the SSPs shifted by 610 m/s, [(d),(e)] tests B1 and B2 with 63 m water depth mismatch, and (f) test C with a downward refracting SSP.

The confusion matrices are presented for the five DL models trained for CNN5-UD. The correct predictions are located along the diagonal cells. The color

indicates the percentage of the number of predictions per seabed type in which the values in each row sum up to 100.
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FIG. 7. (Color online) The seabed classification results for 6 DL architectures tested on 69 measured SOO spectrograms. In total, 2070 predictions are reported,

corresponding to the 5 trained models per network type (indicated by the color). Seabed classes with an “*” were inferred in previous geoacoustic inversions for

the SBCEX 2017 area. The red dotted line in the center of the figure separates the sediments with sound speed ratios less than and greater than one.

FIG. 8. (Color online) The data-model comparison of the normalized spectrograms with respect to their standard deviation. The modeled spectrograms using sea-

bed #3 (left column) and measured spectrograms (middle column) for ship 21. The ATLANTIC CONVEYOR was measured at VLA1-MPL with CPA

¼ 8.96 km and vsh¼ 16.065 kn (top row), ship 23. The MSC KALAMATA was measured at VLA2-MPL with CPA¼ 3.6 km and vsh¼ 19.47 kn (middle row),

and ship 39. The VIKING BRAVERY was measured at VLA UD with CPA¼ 2.87 km and vsh ¼ 14.665 kn (bottom row). The location of the VLAs and the ship

locations from the AIS database over the time period displayed are shown in the right column, where the arrows indicate the direction of the vessel trajectory.
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The MSC Kalamata, on the other hand, was moving in the

southern shipping lane at 19.9 kn at a closer CPA range of

3.11 km with respect to VLA2-MPL on JD 83 at 18:30

UTC. The Viking Bravery was transiting across the shipping

lanes (from southern to northern shipping lane) with a simi-

lar CPA range (2.87 km with respect to VLA-UD) on JD 90

at 07:15 UTC but was moving slower with a constant speed

of 14.67 kn.

Whereas these merchant ships were moving through

different shipping lanes at different combinations of CPA

ranges and speeds and recorded at three different locations,

the spectrograms show the qualitative agreement between

the measured signals collected during the SBCEX 2017 and

SOO spectrograms modeled using the most likely seabed

type #3, belcourt_2_sbc. This agreement provides support

for the ensemble approach to DL for seabed classification.

Although the predictions for individual data samples with

one network might not always be accurate, the most likely

prediction from the ensemble gives a reasonable and more

reliable estimate of the seabed class.

V. CONCLUSIONS

An ensemble of DL algorithms was implemented for

seabed classification using 34 seabed types that spanned

from soft-muddy to hard-sandy environments. The models

were trained on 20-min normalized spectrograms over the

360–1100 Hz frequency band generated using the Wales-

Heitmeyer source spectrum for a merchant ship and range-

independent normal-mode model ORCA. Several

approaches were considered for the design of the networks

by using different complexity levels in the architectures.

The DL algorithms implemented in this study are as simple

as a shallow 3-layer CNN (Selkie3) and as complex as a

deep 18-layer ResNet (ResNet18). The validation results

show accuracy above 97% in the fivefold CV test for all of

the architectures. This performance indicates that the SOO

spectrograms have enough information content about the

waveguide for all of the networks to learn representative

patterns during training for distinguishing the 34 seabed

classes.

The generalization performance of the networks in the

face of an environmental mismatch in the water column was

evaluated using five simulated test cases. The more complex

and deeper architectures proved to be more robust against

SSP and water depth mismatch, whereas the shallowest net-

work had a lower performance. Selkie3, in both 1D and 2D

input formats, exhibited the lowest accuracy among all of

the networks. However, by using the 1D input format, the

median accuracy of the network decreased by about 10%

(onn average across the five test cases) with respect to the

2D format. This result shows the importance of taking into

account the relationship among adjacent frequency points in

the convolutional stage by keeping the 2D structure of the

data for these types of signals.

For further assessing the generalization performance of

the networks, the trained models were applied to 69 samples

collected in the SBCEX 2017. The results showed that 94%

of the time, the SOO spectrograms were classified as a mud

over sand sediments inferred from geoacoustic inversions of

data obtained in the same area. Moreover, the classifications

across all of the networks consistently indicated that the

most likely seabed type, with 35.65% of the overall predic-

tions, is belcourt_2_sbc (#3), obtained in Ref. 44, followed

by belcourt_1_sbc (#6) from the same study with 12.17% of

the predictions. The data model comparisons for ships tran-

siting different routes and moving at various speeds show

agreement between the simulated and measured ship-

radiated noises using belcourt_2_sbc (#3).

This work provides evidence that DL algorithms are

able to find representative patterns from SOOs for seabed

classification using a wide variety of seabed types. There are

many ways to build a DL architecture by tuning, for

instance, the depth, number of channels, kernel size, pool-

ing, and input format. These modifications change the pat-

terns that are learned during training from network to

network. By using an ensemble approach on the trained DL

models, when a unified prediction is obtained, then that

answer is more likely to be correct than relying on the pre-

diction from one single architecture. This behavior was

observed in this work, where the measured data samples

yielded a unified answer toward seabed #3 using six net-

works with diverse architectures. Furthermore, this study

demonstrated the importance of using simulated test cases to

evaluate the robustness of the networks independently

before applying them to data collected at-sea. This generali-

zation assessment is useful for designing DL architectures

suitable for the desired input data.

As a final remark, it is important to emphasize that the

selection of SSPs used for simulating the synthetic training

dataset is a key aspect to consider when using DL for classi-

fying the most likely effective seabed type. In this work, the

behavior of the water column in the SBCEX 2017 was well

studied and presented to the networks during training.

However, for waveguides with substantially different water

column depths and SSPs, new networks will need to be

trained using a synthetic dataset that encompasses the infor-

mation about the possible new water column.

ACKNOWLEDGMENTS

This work was funded by the Office of Naval Research

Contract No. N00014-19-C-2001. The SBCEX 2017 was

funded by the U.S. Navy Office of Naval Research. The

authors thank the captains and crews of RV Endeavor.

1C. Gervaise, B. G. Kinda, J. Bonnel, Y. St�ephan, and S. Vallez, “Passive

geoacoustic inversion with a single hydrophone using broadband ship

noise,” J. Acoust. Soc. Am. 131(3), 1999–2010 (2012).
2S. C. Wales and R. M. Heitmeyer, “An ensemble source spectra model

for merchant ship-radiated noise,” J. Acoust. Soc. Am. 111(3),

1211–1231 (2002).
3K. D. Heaney, “Rapid geoacoustic characterization using a surface ship of

opportunity,” IEEE J. Ocean. Eng. 29(1), 88–99 (2004).
4P. H. Dahl and D. R. Dall’Osto, “Estimation of seabed properties and

range from vector acoustic observations of underwater ship noise,”

J. Acoust. Soc. Am. 147(4), EL345–EL350 (2020).

J. Acoust. Soc. Am. 150 (2), August 2021 Escobar-Amado et al. 1445

https://doi.org/10.1121/10.0005936

https://doi.org/10.1121/1.3672688
https://doi.org/10.1121/1.1427355
https://doi.org/10.1109/JOE.2003.823286
https://doi.org/10.1121/10.0001089
https://doi.org/10.1121/10.0005936


5R. A. Koch and D. P. Knobles, “Geoacoustic inversion with ships as

sources,” J. Acoust. Soc. Am. 117(2), 626–637 (2005).
6S. A. Stotts and R. A. Koch, “Geoacoustic inversions and localizations

with adaptively beamformed data from a surface ship of opportunity

source,” J. Acoust. Soc. Am. 127, 84–95 (2010).
7M. Nicholas, J. S. Perkins, G. J. Orris, L. T. Fialkowski, and G. J. Heard,

“Environmental inversion and matched-field tracking with a surface ship

and an L-shaped receiver array,” J. Acoust. Soc. Am. 116(5), 2891–2901

(2004).
8D. Tollefsen and S. E. Dosso, “Bayesian geoacoustic inversion of ship

noise on a horizontal array,” J. Acoust. Soc. Am. 124(2), 788–795 (2008).
9D. P. Knobles, “Maximum entropy inference of seabed attenuation

parameters using ship radiated broadband noise,” J. Acoust. Soc. Am.

138, 3563–3575 (2015).
10C. Park, W. Seong, and P. Gerstoft, “Geoacoustic inversion in time

domain using ship of opportunity noise recorded on a horizontal towed

array,” J. Acoust. Soc. Am. 117(4), 1933–1941 (2005).
11D. J. Battle, P. Gerstoft, W. A. Kuperman, W. S. Hodgkiss, and M.

Siderius, “Geoacoustic inversion of tow-ship noise via near-field-

matched-field processing,” IEEE J. Ocean. Eng. 28(3), 454–467 (2003).
12X. Zhang, N. C. Durofchalk, H. Niu, L. Wu, R. Zhang, K. G. Sabra, X.

Zhang, N. C. Durofchalk, H. Niu, L. Wu, and R. Zhang, “Geoacoustic

inversion using ray-based blind deconvolution of shipping sources,”

J. Acoust. Soc. Am. 147, 285–299 (2020).
13M. J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M. A. Roch, S. Gannot, C.

A. Deledalle, and W. Li, “Machine learning in acoustics: Theory and

applications,” arXiv:3590(2019) (2019).
14Y. Stephan, X. Demoulin, and O. Sarzeaud, “Neural direct approaches for

geoacoustic inversion,” J. Comput. Acoust. 06(01n02), 151–166 (1998).
15Z. H. Michalopoulou, D. Alexandrou, and C. de Moustier, “Application

of neural and statistical classifiers to the problem of seafloor character-

ization,” IEEE J. Ocean. Eng. 20(3), 190–197 (1995).
16J. Benson, N. R. Chapman, and A. Antoniou, “Geoacoustic model inver-

sion using artificial neural networks,” Inverse Probl. 16, 1627–1639

(2000).
17J. Piccolo, G. Haramuniz, and Z.-H. Michalopoulou, “Geoacoustic inver-

sion with generalized additive models,” J. Acoust. Soc. Am. 145(6),

EL463–EL468 (2019).
18H. Niu, P. Gerstoft, E. Ozanich, Z. Li, R. Zhang, Z. Gong, and H. Wang,

“Block sparse Bayesian learning for broadband mode extraction in shal-

low water from a vertical array,” J. Acoust. Soc. Am. 147(6), 3729–3739

(2020).
19T. B. Neilsen, C. D. Escobar-Amado, M. C. Acree, W. S. Hodgkiss, D. F.

Van Komen, D. P. Knobles, M. Badiey, and J. Castro-Correa, “Learning

location and seabed type from a moving mid-frequency source,”

J. Acoust. Soc. Am. 149(1), 692–705 (2021).
20D. F. Van Komen, T. B. Neilsen, K. Howarth, D. P. Knobles, and P. H.

Dahl, “Seabed and range estimation of impulsive time series using a con-

volutional neural network,” J. Acoust. Soc. Am. 147(5), EL403–EL408

(2020).
21C. Frederick, S. Villar, and Z. H. Michalopoulou, “Seabed classification

using physics-based modeling and machine learning,” arXiv:859 (2020).
22D. F. Van Komen, T. B. Neilsen, D. B. Mortenson, M. C. Acree, D. P.

Knobles, M. Badiey, and W. S. Hodgkiss, “Seabed type and source

parameters predictions using ship spectrograms in convolutional neural

networks,” J. Acoust. Soc. Am. 149(2), 1198–1210 (2021).
23Bureau of Ocean Energy Management (BOEM) and National Oceanic

and Atmospheric Administration (NOAA), available at https://marineca-

dastre.gov/ais/ (AIS_2017_03_Zone19 and AIS_2017_04_Zone19) (Last

viewed August 7, 2020).
24E. K. Westwood, C. T. Tindle, and N. R. Chapman, “A normal mode

model for acousto-elastic ocean environments,” J. Acoust. Soc. Am.

100(6), 3631–3645 (1996).
25D. J. Forman, T. B. Neilsen, D. F. Van Komen, and D. P. Knobles,

“Validating deep learning seabed classification via acoustic similarity,”

JASA Express Lett. 1(4), 040802 (2021).
26P. S. Wilson, D. P. Knobles, and T. B. Neilsen, “Guest editorial an over-

view of the seabed characterization experiment,” IEEE J. Ocean. Eng.

45(1), 1–13 (2020).
27D. P. Knobles, R. A. Koch, L. A. Thompson, K. C. Focke, and P. E.

Eisman, “Broadband sound propagation in shallow water and geoacoustic

inversion,” J. Acoust. Soc. Am. 113(1), 205–222 (2003).

28F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt,

Computational Ocean Acoustics, 2nd ed. (Springer, New York, 2011), p.

39.
29D. P. Knobles, R. A. Koch, and M. S. Haire, “Geoacoustic inversion stud-

ies,” Oceans Conf. Rec. 2, 737–744 (2001).
30S. E. Dosso, P. M. Giles, G. H. Brooke, D. F. McCammon, S. Pecknold,

and P. C. Hines, “Linear and nonlinear measures of ocean acoustic envi-

ronmental sensitivity,” J. Acoust. Soc. Am. 121(1), 42–45 (2007).
31W.-H. Ryang, J.-H. Jin, and J. Hahn, “Geoacoustic model at the YSDP-

105 Long-core Site in the Mid-eastern Yellow Sea,” J. Korean Earth Sci.

Soc. 40(1), 24–36 (2019).
32W. H. Ryang, S. P. Kim, S. Kim, and D. C. Kim, “Geoacoustic model of

the transverse acoustic variability experiment area in the northern East

China Sea,” Geoscie. J. 17(3), 267–278 (2013).
33H. Kwon, J. W. Choi, W.-H. Ryang, S.-U. Son, and S.-k. Jung,

“Measurements of mid-frequency bottom-interacting signals and geoa-

coustic inversion in Jinhae Bay, Southeast Korea,” J. Acoust. Soc. Am.

145(3), 1205–1211 (2019).
34G. R. Potty, J. H. Miller, and J. F. Lynch, “Inversion for sediment geoa-

coustic properties at the New England Bight,” J. Acoust. Soc. Am.

114(4), 1874–1887 (2003).
35D. P. Knobles, J. A. Goff, R. A. Koch, P. S. Wilson, and J. A. Shooter,

“Effect of inhomogeneous sub-bottom layering on broadband acoustic

propagation,” IEEE J. Ocean. Eng. 35(4), 732–743 (2010).
36Y.-M. Jiang, N. R. Chapman, and M. Badiey, “Quantifying the uncer-

tainty of geoacoustic parameter estimates for the New Jersey shelf by

inverting air gun data,” J. Acoust. Soc. Am. 121(4), 1879–1894 (2007).
37W.-H. Ryang, S.-P. Kim, D.-C. Kim, and J. Hahn, “Geoacoustic model of

coastal bottom strata at Jeongdongjin in the Korean Continental Margin

of the East Sea,” J. Korean Earth Sci. Soc. 37, 200–210 (2016).
38J.-X. Zhou, X.-Z. Zhang, and D. P. Knobles, “Low-frequency geoacoustic

model for the effective properties of sandy seabottoms,” J. Acoust. Soc.

Am. 125(5), 2847–2866 (2009).
39Y. T. Lin, J. Bonnel, D. P. Knobles, and P. S. Wilson, “Broadband wave-

form geoacoustic inversions with absolute travel time,” IEEE J. Ocean.

Eng. 45(1), 174–188 (2020).
40D. P. Knobles, P. S. Wilson, J. A. Goff, L. Wan, M. J. Buckingham, J. D.

Chaytor, and M. Badiey, “Maximum entropy derived statistics of sound-

speed structure in a fine-grained sediment inferred from sparse broadband

acoustic measurements on the New England continental shelf,” IEEE J.

Ocean. Eng. 45(1), 161–173 (2020).
41E. M. Brown, Y. T. Lin, J. D. Chaytor, and W. L. Siegmann,

“Geoacoustic inversion for a New England Mud Patch sediment using the

silt-suspension theory of marine mud,” IEEE J. Ocean. Eng. 45(1),

144–160 (2020).
42P. H. Dahl and D. R. Dall’Osto, “Vector acoustic analysis of time-

separated modal arrivals from explosive sound sources during the 2017

seabed characterization experiment,” IEEE J. Ocean. Eng. 45(1), 131–143

(2020).
43Z. H. Michalopoulou and P. Gerstoft, “Multipath broadband localization,

bathymetry, and sediment inversion,” IEEE J. Ocean. Eng. 45(1), 92–102

(2020).
44J. Belcourt, C. W. Holland, S. E. Dosso, J. Dettmer, and J. A. Goff,

“Depth-dependent geoacoustic inferences with dispersion at the New

England Mud Patch via reflection coefficient inversion,” IEEE J. Ocean.

Eng. 45(1), 69–91 (2020).
45G. R. Potty and J. H. Miller, “Effect of shear on modal arrival times,”

IEEE J. Ocean. Eng. 45(1), 103–115 (2020).
46D. Tollefsen, S. E. Dosso, and D. P. Knobles, “Ship-of-opportunity noise

inversions for geoacoustic profiles of a layered mud-sand seabed,” IEEE

J. Ocean. Eng. 45(1), 189–200 (2020).
47L. Wan, M. Badiey, D. P. Knobles, and P. S. Wilson, “The Airy phase of

explosive sounds in shallow water,” J. Acoust. Soc. Am. 143(3),

EL199–EL205 (2018).
48D. R. Barclay, D. A. Bevans, and M. J. Buckingham, “Estimation of the

geoacoustic properties of the New England Mud Patch from the vertical

coherence of the ambient noise in the water column,” IEEE J. Ocean.

Eng. 45(1), 51–59 (2020).
49J. Bonnel, Y.-T. Lin, D. Eleftherakis, J. A. Goff, S. Dosso, R. Chapman,

J. H. Miller, and G. R. Potty, “Geoacoustic inversion on the New England

Mud Patch using warping and dispersion curves of high-order modes,”

J. Acoust. Soc. Am. 143(5), EL405–EL411 (2018).

1446 J. Acoust. Soc. Am. 150 (2), August 2021 Escobar-Amado et al.

https://doi.org/10.1121/10.0005936

https://doi.org/10.1121/1.1848175
https://doi.org/10.1121/1.3257207
https://doi.org/10.1121/1.1802755
https://doi.org/10.1121/1.2940581
https://doi.org/10.1121/1.4936907
https://doi.org/10.1121/1.1862574
https://doi.org/10.1109/JOE.2003.816679
https://doi.org/10.1121/10.0000605
http://arxiv.org/abs/arXiv:3590(2019)
https://doi.org/10.1142/S0218396X98000120
https://doi.org/10.1109/48.393074
https://doi.org/10.1088/0266-5611/16/6/302
https://doi.org/10.1121/1.5110244
https://doi.org/10.1121/10.0001322
https://doi.org/10.1121/10.0003361
https://doi.org/10.1121/10.0001216
http://arxiv.org/abs/arXiv:859
https://doi.org/10.1121/10.0003502
https://marinecadastre.gov/ais/
https://marinecadastre.gov/ais/
https://doi.org/10.1121/1.417226
https://doi.org/10.1121/10.0004138
https://doi.org/10.1109/JOE.2019.2956606
https://doi.org/10.1121/1.1521930
https://doi.org/10.1109/OCEANS.2001.968212
https://doi.org/10.1121/1.2382719
https://doi.org/10.5467/JKESS.2018.40.1.24
https://doi.org/10.5467/JKESS.2018.40.1.24
https://doi.org/10.1007/s12303-013-0039-6
https://doi.org/10.1121/1.5092609
https://doi.org/10.1121/1.1605391
https://doi.org/10.1109/JOE.2010.2066810
https://doi.org/10.1121/1.2642137
https://doi.org/10.5467/JKESS.2016.37.4.200
https://doi.org/10.1121/1.3089218
https://doi.org/10.1121/1.3089218
https://doi.org/10.1109/JOE.2019.2919859
https://doi.org/10.1109/JOE.2019.2919859
https://doi.org/10.1109/JOE.2019.2922717
https://doi.org/10.1109/JOE.2019.2922717
https://doi.org/10.1109/JOE.2019.2934604
https://doi.org/10.1109/JOE.2019.2902500
https://doi.org/10.1109/JOE.2019.2896681
https://doi.org/10.1109/JOE.2019.2900115
https://doi.org/10.1109/JOE.2019.2900115
https://doi.org/10.1109/JOE.2019.2925920
https://doi.org/10.1109/JOE.2019.2908026
https://doi.org/10.1109/JOE.2019.2908026
https://doi.org/10.1121/1.5026023
https://doi.org/10.1109/JOE.2019.2932651
https://doi.org/10.1109/JOE.2019.2932651
https://doi.org/10.1121/1.5039769
https://doi.org/10.1121/10.0005936


50L. Wan, M. Badiey, D. P. Knobles, P. S. Wilson, and J. A. Goff,

“Estimates of low-frequency sound speed and attenuation in a surface

mud layer using low-order modes,” IEEE J. Ocean. Eng. 45(1), 201–211

(2020).
51J. Bonnel, S. E. Dosso, D. Eleftherakis, and N. R. Chapman, “Trans-

dimensional inversion of modal dispersion data on the New England Mud

Patch,” IEEE J. Ocean. Eng. 45(1), 116–130 (2020).
52I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press,

Cambridge, MA, 2016).
53K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (2016).
54H. Niu, Z. Gong, E. Ozanich, P. Gerstoft, H. Wang, and Z. Li, “Deep-

learning source localization using multi-frequency magnitude-only data,”

J. Acoust. Soc. Am. 146(1), 211–222 (2019).
55A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems
(NIPS’12) (Curran Associates Inc., Red Hook, NY, 2012), Vol. 1, pp.

1097–1105.
56K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2016), pp. 770–778.

57A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, and L. Antiga, “PyTorch: An imperative

style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems (2019), pp. 8024–8035.

58V. Nair and G. E. Hinton, “Rectified linear units improve restricted

Boltzmann machines,” in Proceedings of the 27th International
Conference on Machine Learning (ICML-10) (Omnipress, Madison, WI,

2010), pp. 801–814, available at https://icml.cc/Conferences/2010/papers/

432.pdf (Last viewed: August 17, 2021).
59I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”

arXiv:1711.05101 (2017).
60D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-

mization,” in 3rd International Conference on Learning Representations,
ICLR (2015), Conference Track Proceedings 1–15.

61K. Imai and D. A. Van Dyk, “A Bayesian analysis of the multinomial

probit model using marginal data augmentation,” J. Econometr. 124(2),

311–334 (2005).
62L. T�oth, G. Kov�acs, and D. Van Compernolle, “A perceptually inspired

data augmentation method for noise robust CNN acoustic models,” in

International Conference on Speech and Computer (Springer, Cham,

2018), pp. 697–706.
63J. Hildebrand, “Anthropogenic and natural sources of ambient noise in the

ocean,” Mar. Ecol. Prog. Ser. 395, 5–20 (2009).
64R. Kohavi, “A study of cross-validation and bootstrap for accuracy esti-

mation and model selection,” in Proceedings of the Twelfth International
Conference on Machine Learning (ICML’95) (Morgan Kaufmann, San

Francisco, CA, 1995), pp. 1137–1143.

J. Acoust. Soc. Am. 150 (2), August 2021 Escobar-Amado et al. 1447

https://doi.org/10.1121/10.0005936

https://doi.org/10.1109/JOE.2019.2923861
https://doi.org/10.1109/JOE.2019.2896389
https://doi.org/10.1121/1.5116016
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
http://arxiv.org/abs/arXiv:1711.05101
https://doi.org/10.1016/j.jeconom.2004.02.002
https://doi.org/10.3354/meps08353
https://doi.org/10.1121/10.0005936

	s1
	l
	n1
	n2
	s2
	s2A
	s2B
	f1
	t1
	s3
	s3A
	f2
	t2
	t3
	f3
	d1
	s3B
	s3B1
	f4
	t4
	f5
	s3B2
	d2
	d3
	s3B3
	t5
	t6
	s4
	s4A
	s4B
	t7
	s4C
	f6
	f7
	f8
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64

