
Understanding and compensating for noise on IBM quantum computers
Scott Johnstun and Jean-François Van Huele

Citation: American Journal of Physics 89, 935 (2021); doi: 10.1119/10.0006204
View online: https://doi.org/10.1119/10.0006204
View Table of Contents: https://aapt.scitation.org/toc/ajp/89/10
Published by the American Association of Physics Teachers

ARTICLES YOU MAY BE INTERESTED IN

Tidal effects in a spacecraft
American Journal of Physics 89, 909 (2021); https://doi.org/10.1119/10.0005070

Isotropic inertia tensor without symmetry of mass distribution
American Journal of Physics 89, 916 (2021); https://doi.org/10.1119/10.0005416

A new graphical depiction of the barn and pole paradox
American Journal of Physics 89, 927 (2021); https://doi.org/10.1119/10.0004982

Molecular dynamics simulation of synchronization of a driven particle
American Journal of Physics 89, 975 (2021); https://doi.org/10.1119/10.0005037

Broken pencils and moving rulers: After an unpublished book by Mitchell Feigenbaum
American Journal of Physics 89, 955 (2021); https://doi.org/10.1119/10.0005154

Using Hilbert curves to organize, sample, and sonify solar data
American Journal of Physics 89, 943 (2021); https://doi.org/10.1119/10.0005403

https://images.scitation.org/redirect.spark?MID=176720&plid=1118597&setID=405125&channelID=0&CID=367296&banID=519856410&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c5903c3a8ba0b65f51ac351554cfbc0eef60c7ed&location=
https://aapt.scitation.org/author/Johnstun%2C+Scott
https://aapt.scitation.org/author/van+Huele%2C+Jean-Fran%C3%A7ois
/loi/ajp
https://doi.org/10.1119/10.0006204
https://aapt.scitation.org/toc/ajp/89/10
https://aapt.scitation.org/publisher/
https://aapt.scitation.org/doi/10.1119/10.0005070
https://doi.org/10.1119/10.0005070
https://aapt.scitation.org/doi/10.1119/10.0005416
https://doi.org/10.1119/10.0005416
https://aapt.scitation.org/doi/10.1119/10.0004982
https://doi.org/10.1119/10.0004982
https://aapt.scitation.org/doi/10.1119/10.0005037
https://doi.org/10.1119/10.0005037
https://aapt.scitation.org/doi/10.1119/10.0005154
https://doi.org/10.1119/10.0005154
https://aapt.scitation.org/doi/10.1119/10.0005403
https://doi.org/10.1119/10.0005403

Understanding and compensating for noise on IBM quantum
computers

Scott Johnstuna) and Jean-François Van Hueleb)

Department of Physics and Astronomy, Brigham Young University, Provo, 84602 Utah

(Received 10 September 2020; accepted 21 August 2021)

Quantum algorithms offer efficient solutions to computational problems that are expensive to solve

classically. Publicly available quantum computers, such as those provided by IBM, can now be

used to run small quantum circuits that execute quantum algorithms. However, these quantum

computers are highly prone to noise. Here, we introduce important concepts of quantum circuit

noise and connectivity that must be addressed to obtain reliable results on quantum computers. We

utilize several examples to show how noise scales with circuit depth. We present Simon’s

algorithm, a quantum algorithm for solving a computational problem of the same name, explain

how to implement it in IBM’s Qiskit platform, and compare the results of running it both on a

noiseless simulator and on physical hardware subject to noise. We discuss the impact of Qiskit’s

transpiler, which adapts ideal quantum circuits for physical hardware with limited connectivity

between qubits. We show that even circuits of only a few qubits can have their success rate

significantly reduced by quantum noise unless specific measures are taken to minimize its impact.
2021 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/10.0006204

I. INTRODUCTION

In recent years, our understanding of the usefulness of
quantum mechanics in the computational and information
theory has expanded significantly. From the inception of
quantum computing in 1985 when Richard Feynman adapted
the idea of reversible classical computing and applied it to
quantum systems,1 the field has grown to become a main-
stream research area in the 21st century. Peter Shor showed
why quantum computation is more than a frivolous link
between the otherwise distinct fields of computer science
and quantum mechanics when he published an algorithm
using quantum mechanics to factor large numbers exponen-
tially faster than a classical computer.2,3 Quantum algo-
rithms, therefore, have consequences in the fields of
cryptography and information security. Since then, other
important quantum algorithms have been developed, such as
Grover’s efficient quantum algorithm for searching a data-
base;4,5 Harrow, Hassidim, and Lloyd’s algorithm for solv-
ing linear systems of equations;6 and quantum algorithms for
use in speeding up machine learning computations.7 As society
evolves to become increasingly dependent on information, it is
clear that efficient quantum algorithms can play a major role
in optimizing the computations we must perform to acquire
and process the desired information.

In addition to these theoretical developments, advances
have been made in producing the physical hardware neces-
sary to run these algorithms. Companies, such as IBM,
Google, and others,8 have utilized Josephson junctions9 to
manufacture quantum computers with as many as 53 qubits.
At the end of 2019, Google claimed to have achieved quan-
tum supremacy by using such a quantum computer to com-
pute laser scattering distributions in less time than a classical
supercomputer would be able to.10 It is safe to say that we
are on the cusp of many more developments in quantum
computing hardware.

Quantum computation has commercial applications with
financial consequences due to its influence in cryptography,
which is essential for companies that deal with communication

and information security. The United States government has
passed the National Quantum Initiative Act,11 allocating fund-
ing to universities and companies in an effort to stimulate the
development of quantum information technology. As of the
writing of this paper, the National Institute of Science and
Technology is working to replace current encryption algo-
rithms with ones that are quantum secure.12

With these exciting developments in software, hardware,
and applications, the literature on quantum algorithms has
grown correspondingly larger. We refer the interested reader
to the quantum information American Journal of Physics
Resource Letter for a summary of the subject up to 2016.13

Textbooks on the subject introduce quantum algorithmic
design and cover many of the fundamental algorithms in
quantum computation.16,17 Online textbooks and tutorials are
also widely available online.18–20 Some authors have pro-
posed classroom experiments and simulations to educate
students on quantum computation and algorithms,21 and
others have presented methods for introducing students of
computer science to quantum algorithms.22 Other recent
treatments of this topic in AJP include a computational pro-
ject on quantum computing14 and a realization of the
Deutsch algorithm using optical devices.15 Research groups
are using publicly available quantum computers built and
maintained by IBM to run and test algorithms.23–25 In May
2020, the National Science Foundation initiated an effort
with the White House Office of Science and Technology to
develop additional resources for teaching quantum informa-
tion science and technology.26 It is clear that quantum com-
puting is slowly yet surely becoming a staple of the
undergraduate physics experience.

In this article, we call attention to the important issue of
the difference in performance between quantum circuits in
simulators and quantum circuits implemented on physical
quantum computers. We specifically apply this performance
comparison to Simon’s algorithm27 as it runs on currently
available quantum computers. Our illustration is appropriate
for introducing discrepancies between the results of simula-
tions of quantum computers and experiments on physical

935 Am. J. Phys. 89 (10), October 2021 http://aapt.org/ajp # 2021 Published under an exclusive license by AAPT 935

https://doi.org/10.1119/10.0006204
http://crossmark.crossref.org/dialog/?doi=10.1119/10.0006204&domain=pdf&date_stamp=2021-09-16

quantum computers. Our intention is not to provide a com-
prehensive introduction to quantum computation, since that
is available elsewhere;16–18 instead, we want to guide stu-
dents towards an understanding of how the physical limita-
tions of real devices affect the success rate of quantum
algorithms.

The paper is organized as follows. In Sec. II, we describe
sources of noise in IBM quantum computers using a few
examples of simple quantum circuits. In Sec. III, we intro-
duce an example problem, Simon’s problem, that can be
solved more efficiently with a quantum algorithm than a
classical algorithm. The algorithmic solution is detailed in
Sec. IV, and Sec. V shows the implementation and results of
running the algorithm on physical quantum computers in
comparison to simulations. In Sec. VI, we discuss several
lessons to be learned from our experiments and analysis.28

We include three suggested problems with solutions in the
supplementary material.29 In the process, we also provide
the PYTHON code used to setup and solve Simon’s problem
and generate data for readers to familiarize themselves with
it, to reproduce our algorithmic results, and to expand upon
them.30

II. NOISE AND TRANSPILATION IN QUANTUM

COMPUTERS

In spite of the significant technical progress of quantum
computers in recent years, they are still subject to various
types of noise. IBM claims that errors due to such noise are
fundamental.33 We consider noise to be any undesired
source that changes the quantum system. Because of the
prevalence of noise, any quantum algorithm that is to be
implemented and put to use in real-life scenarios must be
able to perform its task with a high probability of success
despite the presence of such noise. It has been shown that
an approximation to a quantum algorithm can perform bet-
ter than the exact version when noise is present: In the case
of the quantum algorithm known as the quantum fourier
transform (QFT), analytical methods have indicated that in
the presence of decoherence, an approximation of the algo-
rithm can provide better performance than its full version.34

Including random gate defects in numerical calculations has
also revealed that the approximate QFT can still perform its
task to an acceptable degree of success in spite of such
defects.37

Noise can come from systematic sources, such as noise
introduced by hardware imperfections like incorrect pulse
timing. It can also come from stochastic sources, such as
thermal noise (also referred to as Johnson–Nyquist noise)
causing voltage and current fluctuations proportional to tem-
perature; quantum noise from fluctuations in the phase and
amplitude of the physical qubit that have an effect even at
zero temperature; and classical 1/f noise from fluctuation in
local electromagnetic fields, which causes dephasing in
qubits.31,32

Public access to physical available quantum computers is
provided by IBM through the PYTHON package Qiskit,38

which provides an excellent opportunity for students and
educators to build and execute quantum circuits that imple-
ment quantum algorithms. Results from these experiments
can easily be compared to the results of Qiskit’s QASM sim-
ulator,39 providing excellent insight into the performance of
quantum algorithms on current quantum computers. In this
paper, we use Qiskit to run our simulations and perform

experiments on IBM quantum computers. A guide on instal-
ling this software for personal or classroom use can be found
online.40 A tutorial series specific to coding quantum algo-
rithms is also available online.19,20 We will not detail setting
up the environment since instructional resources are plentiful
online.18,41,42

In physical quantum computers, including those provided
by IBM, errors tend to scale with circuit depth. For our pur-
poses, a circuit’s depth is defined by the number of quantum
gates it contains. Each gate in a quantum computer has an
error rate determined by the qubit it acts on. In addition,
gates that act on two qubits suffer from errors that depend
on both physical qubits being used. Error rates for two-
qubit gates are typically higher than those for single-qubit
gates, so a circuit made of two-qubit gates will experience
more noise than a circuit of the same number of single-
qubit gates.

A. Transpilation

The limited connectivity between qubits in physical quan-
tum computers is another challenge preventing two-qubit
gates from acting on any arbitrary pair of qubits. Figure 1
shows the connectivity of two quantum computers at IBM:
the five-qubit computer ibmq_london and the 15-qubit
computer ibmq_melbourne. Each qubit is represented by
a node, and connections between qubits are represented by
edges. We can see that the nodes are not fully connected,
indicating that some pairs of qubits cannot directly commu-
nicate. For example, a two-qubit gate cannot be directly
applied on qubits 0 and 2. However, limited connectivity is
not an issue that prohibits algorithmic design.43 Two-qubit
gates can be chained between intermediate qubits that are
connected in a way that the desired operation is applied on
two unconnected qubits, and the intermediate qubits are
returned to their original state. However, this increases the
circuit depth, which increases the error rate of the circuit
when run on physical devices.

Qiskit performs the circuit transformations necessary to
ensure that the software description of a quantum circuit can
be implemented on a physical quantum system through a
process called transpilation. This includes the aforemen-
tioned fix for limited connectivity as well as a decomposition
of common gates into sequences of U2 and controlled-NOT
(CNOT) gates, which we refer to as U2 and cX gates, respec-
tively. The U2 and cX gates are very important, because they
are two gates that form part of a universal set.44 This means
that for any input state, we can build a circuit with gates in
this set that maps it to any possible output state. The U2 gate
is a single-qubit gate parameterized by two angles / and k.
When acting on the single-qubit computational basis
fj0i; j1ig, U2 takes on the form

U2ð/; kÞ ¼
1ffiffiffi
2
p 1 �eik

ei/ eið/þkÞ

" #
� ��U2ð/; kÞ ��; (1)

where the symbol on the right depicts the gate as it appears
on circuit diagrams per convention. This gate can manipu-
late a single qubit from one state to another. The cX gate
acts on the two-qubit computational basis fj00i; j01i;
j10i; j11ig, which is the tensor product of the single-qubit
computational basis with itself. In this basis, cX takes on the
form

936 Am. J. Phys., Vol. 89, No. 10, October 2021 S. Johnstun and J.-F. Van Huele 936

(2)

Note that we have used Qiskit’s little endian convention,
which associates the leftmost (more significant) digits in the
ket with lower qubits on the circuit diagram (higher qubit
index). The qubit with a black dot on the circuit diagram is
called the control qubit, and the qubit with a circled cross is
the target qubit. The action of a cX gate is to apply a NOT
(X) gate to the target qubit in the subspace where the control
qubit is in the j1i state. For example, using the circuit in
Eq. (2), cXj10i ¼ j10i and cXj01i ¼ j11i, since the left digit
in the ket is the target qubit and the right digit is the control
qubit

X¼ 01

10

� �
���X��: (3)

In practice, we will see that the increase in circuit depth
resulting from transpilation quickly makes the execution of
quantum circuits highly error-prone, rendering their results
unreliable.

B. Noise demonstration

In this section, we present a few examples to characterize
errors in IBM quantum computers, both from physical noise
and from algorithmic compromises performed by Qiskit’s
transpiler. As we progress through our examples, we will
gradually increase the complexity of the circuit, both in num-
ber of qubits and number of gates, and see how noise
increases simultaneously. For explanations and tutorials
about setting up and running the circuits in our examples,
see Chapter 2 of the Qiskit Textbook.18

Our first example is a simple circuit composed of a single
Hadamard gate that acts on one qubit. The circuit then mea-
sures that qubit. The base circuit is shown in Fig. 2(a), while
Fig. 2(b) shows the circuit after it has been transpiled to run
on the real hardware. This illustrates the simplest nontrivial
transpilation possible, requiring only a relabeling of the
Hadamard gate

H¼ 1ffiffiffi
2
p

1 1

1�1

" #
���H��

to U2ð0; pÞ. When we run the circuits depicted in Figs. 2(a)
and 2(b) 1000 times on a simulator and real quantum com-
puting device, respectively, we obtain the measurement
probability distributions shown in Table I. Although the sim-
ulator’s final state is a uniform superposition of the j0i and
j1i states, the measurement probabilities are slightly uneven.
This is due to sampling error. The experiment on the quan-
tum computer is also subject to such sampling error, but it
additionally experiences physical noise. Judging by the simi-
larity of the simulator results and the device results, it
appears that any errors resulting from physical implementa-
tion are similar in magnitude to sampling error.

Our second example features a single qubit gate and a
two-qubit gate between two physically unconnected qubits.
The original circuit, pictured in Fig. 2(c), includes a single
cX gate, controlled by qubit 0 and acting on qubit 2. These
two gates act together to entangle qubits 0 and 2. These
qubits are not directly connected, as seen in Fig. 1(a). After
applying the transpilation and obtaining the circuit shown in
in Fig. 2(d), we see that Qiskit has added three intermediate
cX gates between qubits q1 and q2. These three gates swap
the states of the two qubits they act on. The resulting effect
is that the state that qubit q2 starts in is moved onto qubit q1,
after which it is the target of the cX gate controlled by qubit
q0. The resulting entangled state of qubits q0 and q2 in the
simulator is theoretically the same as the entangled state of
qubits q0 and q1 in the physical implementation, but in prac-
tice, it is expected to be slightly different due to errors.

We again ran 1000 trials of the circuits pictured in Figs.
2(c) and 2(d) on both the simulator and real device; results
are shown in Table I. In this case, we can see a more signifi-
cant difference between the simulator results and the experi-
mental results: some of the j00i and j11i states have changed
to j01i and j10i states.

Our final example is a simple phase estimation algorithm
circuit.45 All gates and combinations of gates that act on
quantum computers are unitary operators. Unitary operators
have the special property that their eigenvalues always take
on the form eiu for some real angle u between 0 and 2p. The
phase estimation algorithm is used to estimate the phase u of
any unitary operator and, thus, allow the determination of

Fig. 1. (Color online) Qubit connectivity of ibmq_london and ibmq_melbourne as published by IBM. The colored circles in the figures indicate the error

rate of single-qubit gates applied on the circled qubit. The colored arrows between pairs of qubits indicate the error rate of cX gates applied between the pair.

Note the limited connectivity between qubits. In Sec. V D, we will see how transpilation issues can be overcome even on ibmq_melbourne. Image obtained

from the IBM quantum experience (Ref. 47).

937 Am. J. Phys., Vol. 89, No. 10, October 2021 S. Johnstun and J.-F. Van Huele 937

the eigenvalue. This algorithm is incorporated within the
aforementioned Shor’s algorithm, as well as in algorithms
used for simulation of quantum systems46 (not to be con-
fused with quantum simulators). With larger versions of this
algorithm, the eigenvalue can be estimated to better accu-
racy. An in-depth tutorial on this algorithm can be found in
Sec. 3.8 of the Qiskit Textbook.18

By comparing Fig. 2(e) and 2(f), we can see that the tran-
spiler has significantly increased the depth of the circuit by
inserting a large number of cX gates. A comparison
between the simulation and experimental results after 1000
trials, shown in Table I, indicates that a large amount of

noise has entered the circuit. Whereas in previous exam-
ples, we would have been able to guess the correct proba-
bility distributions from the data, in this case, the originally
highly probable j11i state of the first two qubits in the cir-
cuit has fallen to a less than 10% probability of being
observed.

III. SIMON’S PROBLEM

Simon’s problem is a toy computational problem intro-
duced in 1994 by Daniel Simon. Its solution is known as
Simon’s algorithm. We present it as an example of a problem

Fig. 2. Effect of transpilation on several representative circuits. (a) Base and (b) transpiled circuit for a single gate that acts on one qubit. (a) Base and (b) tran-

spiled circuit that entangles two qubits that are not physically connected directly. (a) Base and (b) transpiled phase estimator circuit. After each circuit is run,

the qubits are measured. The symbols q0 and c0 are the names of a qubit and a classical bit, respectively. In this and all figures in this paper, qubits are initial-

ized to the j0i state and classical bits are initialized to 0.

Table I. Results of the circuits shown in Fig. 1 for runs on both the simulator and the real quantum hardware.

One qubit circuit

Outcome j0i j1i
Simulation 0.482 0.518

Experiment 0.538 0.462

Entangling circuit

Outcome j00i j01i j10i j11i
Simulation 0.495 0 0 0.505

Experiment 0.458 0.047 0.061 0.434

Phase estimator circuit

Outcome j000i j001i j010i j011i
Simulation 0.405 0.088 0.077 0.430

Experiment 0.484 0.149 0.033 0.085

Outcome j100i j101i j110i j111i
Simulation 0 0 0 0

Experiment 0.152 0.055 0.024 0.018

938 Am. J. Phys., Vol. 89, No. 10, October 2021 S. Johnstun and J.-F. Van Huele 938

that is solved more efficiently by a quantum algorithm than a
classical algorithm.

A. Problem description

In Simon’s problem, we are given a function f that maps n-
bit integers to ðn�1Þ-bit integers. This function has the prop-
erty that there is some nonzero n-bit number a for which, if x
and y are any two n-bit numbers, then f ðxÞ ¼ f ðyÞ if and only
if y ¼ x � a, where � indicates bitwise modulo-2 addition
(also known as the XOR operation). In this case, we see that
f ðxÞ ¼ f ðx � aÞ, so the function is periodic under the � oper-
ation. The task of Simon’s problem is to find the period a.

B. Classical solution

Classically, if we seek to find the period a, we must test
many different values of x and keep track of x and the output
f(x) until we find a different input y where f ðxÞ ¼ f ðyÞ. Once
this happens, we find a by calculating x � y. As x is an n-bit
number, there are 2n possible values to use as input, and
each x has exactly one y for which f ðxÞ ¼ f ðyÞ, so there are
2n=2 ¼ 2n�1 pairs of x and y values. This means that we
must compute f(x) for up to 2n�1 distinct values of x in order
to find a, so the algorithm scales exponentially in n, the num-
ber of bits in a.

C. Quantum solution

In contrast, the quantum solution to this problem requires
an amount of circuit runs that is only linear in n to find a. This
is accomplished by putting the n input qubits into a balanced
superposition of all possible states before calculating f.
Putting a register into this state is a standard quantum compu-
tational procedure that allows for speedup in many problems.
The result of the quantum circuit that implements Simon’s
algorithm requires classical postprocessing to find a, since the
circuit does not provide the value of a directly. This means
that the outcomes measured on the quantum computer need to
be manipulated to extract the value of a. The algorithmic
solution, Simon’s algorithm, is detailed in Sec. IV.

IV. SIMON’S QUANTUM ALGORITHM

A. Quantum operations

We use a quantum circuit of 2n�1 qubits with readout onto a
classical register of n bits. As a reminder, a classical bit can only
store a value of 0 or 1, whereas a qubit can store any normalized
superposition of the j0i and j1i basis states. A schematic for the
operations to be performed is presented in Fig. 3. We represent
our basis states with the convention that jxin refers to n qubits
whose state is the n-bit binary expansion of x. For example,

j4i3 ¼ j1ij0ij0i since 4 ¼ 1 � 22 þ 0 � 21 þ 0 � 20. The first n
qubits, initialized to the state j0in, are used as input qubits to f,
and the next n � 1 are used as the output and initialized to the
state j0in�1. We assume that the given function f has been pro-
vided in a perfect black box that computes the output f(x) via a
ð2n� 1Þ-qubit unitary transformation Uf. We will see in the fol-
lowing derivation that the input register’s state changes through-
out the course of the algorithm.

The algorithm starts by applying a Hadamard gate to each
of the n qubits in the input register to produce a normalized,
balanced superposition of every state from j0in to j2n�1in

H�nj0in ¼
1

2n=2

X2n�1

x¼0

jxin; (4)

where the �n superscript represents the tensor product of the
n Hadamard gates operating on the n-qubit register. We then
apply Uf on the input and output registers, yielding

Uf
1

2n=2

X2n�1

x¼0

jxinj0in�1

 !
¼ 1

2n=2

X2n�1

x¼0

jxinjf ðxÞin�1: (5)

We now perform a quantum measurement of the output register
and record the resulting ðn�1Þ-bit integer onto n � 1bits of the
classical register. The result of this measurement is irrelevant
for our solution, as the values of f(x) are completely indepen-
dent of a. However, the act of measurement itself is critical
because it collapses the superposition in the output register.
Since there are exactly two inputs, x̂ and ŷ ¼ x̂ � a, that corre-
spond to any particular output f̂ ¼ f ðx̂Þ ¼ f ðŷÞ, this measure-
ment leaves the circuit in the state

1ffiffiffi
2
p jx̂in þ jŷin
� �

jf ðx̂Þin�1: (6)

We can finally apply Hadamard gates to each qubit in
the input register, which results35 in an input register
state of

H�n 1ffiffiffi
2
p jx̂inþjŷin
� �� �

¼ 1

2
nþ1

2

X2n�1

x¼0

ð�1Þx̂�xþð�1Þŷ�x
	

jxin;

(7)

where x�y refers to the bitwise dot product between x and y,
taken modulo 2,

x � y ¼
Xn

i¼0

xiyi ðmod 2Þ:

If we then rewrite the coefficient of jxin as

ð�1Þx̂�x þ ð�1Þŷ�x ¼ ð�1Þx̂�x þ ð�1Þðx̂ � aÞ�x

¼ ð�1Þx̂�x þ ð�1Þðx̂�xÞ� ða�xÞ; (8)

it becomes clear that this coefficient is nonzero only when
a � x ¼ 0. Let I ¼ fx : a � x ¼ 0g. We can then rewrite the
state in Eq. (7) as

1

2
n�1

2

X
x2I

ð�1Þx̂�xjxin; (9)

Fig. 3. Schematic for the quantum algorithm solving Simon’s problem.

Slashes on the horizontal lines with a number indicate a register of that

many qubits. The n-qubit register is referred to as the input register and the

ðn� 1Þ-qubit register as the output register. The lines at the bottom are an n-

bit classical register.

939 Am. J. Phys., Vol. 89, No. 10, October 2021 S. Johnstun and J.-F. Van Huele 939

where the summation is taken only over those x values for
which a�x¼0. If we finally measure the input register and
record the result onto the n-bit classical register, we are guar-
anteed to read out a number z that satisfies z � a ¼ 0. If the cir-
cuit is run m times (m � n) and n unique results are recorded,
we can build a system of n modulo-2 equations, which we can
solve to find a. This is the classical postprocessing.

Each of the n individual z values has a probability of
1=2n�1 of being measured. After m runs of the circuit, the
probability of being able to determine a is no smaller than36

Pmin ¼ 1� 1

2m�nþ1
: (10)

We can, thus, determine a to a high probability with a linear
number of circuit runs, or shots, in n; this probability
increases as the quantity m � n increases. For example, if
m ¼ nþ 4, we have over 96% probability of determining a
after m shots. This reveals the exponential speedup of the
quantum algorithm over the classical one.

B. Classical postprocessing

After n unique z values have been obtained, we can turn
the system of n equations

z0 � a ¼ 0 mod 2ð Þ;
z1 � a ¼ 0 mod 2ð Þ;

..

.

zn � a ¼ 0 mod 2ð Þ;

(11)

into a matrix equation

Za ¼ 0;

where the ith row of the matrix Z is the binary expansion of zi.
Applying Gaussian elimination modulo 2 then reveals a single
nontrivial solution which is a, the binary expansion of a.

V. QUANTUM ALGORITHM IMPLEMENTATION

A. Constructing the circuit

We described the transformations needed to implement
Simon’s algorithm in Sec. IV. In Appendix B of the

supplementary material,29 we detail the construction of the
quantum circuit that performs these operations. Both the
base circuits and transpiled versions of the circuits for n¼ 3
and n¼ 6 are also shown in the supplementary material. As
with the examples in Sec. II B, the transpiler significantly
increases the quantity of cX gates. The value n¼ 6 was
chosen, because it is sufficiently small to allow Simon’s
problem to be solved on a quantum computer of as low as 11
qubits. We also constructed a circuit for n¼ 3, the largest n
value for which Simon’s algorithm can fit on a five-qubit
quantum computer.

B. Results

Using Qiskit, we can run the circuits on both the simulator
and the real quantum computing hardware. We perform m
shots, where m ranges from three to ten for the n¼ 3 case
and from 6 to 15 in the n¼ 6 case. The lower bounds three
and six are chosen, because they are the minimum number of
shots after which unique determination of a is possible for
the respective problem sizes. The upper bounds of 10 and 15
are chosen somewhat arbitrary and simply represent a point
at which further incrementing the number of shots ceases to
be useful.

As a measure of success, we introduce the ratio P of trials,
in which we are able to uniquely determine a in postprocess-
ing to the total number of trials for that m value. For each
value of m, we perform 1000 trials on the simulator with one
a value (for n¼ 3) and 100 trials with each of sixteen differ-
ent a values (for n¼ 6). The experimental results were
obtained using the five-qubit computer ibmq_ourense for
n¼ 3 and the 15-qubit ibmq_16_melbourne for n¼ 6.47

These machines are publicly available and shared with other
users, so in our trials we experienced queue times that ranged
from a few seconds to an hour. Due to this limitation, we
performed only a few trials for each m value; 20 trials of m
shots were performed in order to determine the success rate
of the algorithm.

The simulator and experimental results as well as a com-
parison with the theoretical bound from Eq. (10) are plotted
in Fig. 4. The simulator results show that for a noiseless cir-
cuit, the probability of finding a approaches 1 after a suffi-
cient number of shots. We note that for smaller values of

Fig. 4. (Color online) Probability of being able to determine a uniquely after m shots for n¼ 3 (left) and n¼ 6 (right). Each plot compares the theoretical prob-

ability of success with the results of running the algorithm on an ideal simulator and a real IBM quantum computing device; the right plot also shows the results

for an optimized n¼ 8 circuit on a real device. For the results, each data point represents the proportion of multiple independent trials, in which a is able to be

uniquely determined for the given value of m and n.

940 Am. J. Phys., Vol. 89, No. 10, October 2021 S. Johnstun and J.-F. Van Huele 940

m � n, the probability of success is slightly better for the
smaller n value. In addition, the simulation probabilities are
always greater than or equal to the theoretical lower bounds,
which verifies the correct performance of our implementa-
tion in ideal conditions.

The experimental results show a quite low probability of
success with the n¼ 3 algorithm for all values of m; the suc-
cess rate never rises above 15%, and it even reaches zero for
some values of m. More significantly, the n¼ 6 algorithm
was never able to complete its task for any value of m. In the
next section, we will address the cause of such low
probabilities.

C. Error analysis

Due to the nonzero error rate of cX gates on IBM quantum
computers, we have seen that adding cX gates to the circuit
causes it to perform significantly worse than expected. For
our n¼6 circuit, the transpiler added 57 cX gates to a circuit
which originally had only 11, for a total of 68 cX gates. Even
if we were to make the most optimistic assumption and take
the minimum error rate of 1:669� 10�2 (as shown in Fig. 1(b))
for all cX connections, the probability Pno error;cX that no cX
gates error out in the transpiled circuit would be

Pno errors;cX;transpiled ¼ 1� 0:016 69ð Þ62 ¼ 31:8%;

compared to

Pnoerrors;cX;original¼ 1�0:01669ð Þ11¼98:3%;

for the original, nontranspiled circuit. Since the actual error
rate for most of the cX gates in our circuit is actually larger
than this rate, it is practically inevitable that some cX gate
will not perform its task correctly. In terms of our algorithm,
this means that the Uf gate, which applies the function f to
the qubits, could be affected so much that it represents an
entirely different function.

We have not taken into account the single-qubit U2 error
rate depicted in Fig. 1(b). (Recall that Hadamard gates are con-
verted into the equivalent U2ð0; pÞ during transpilation.)
Because the circuit requires exactly 2n Hadamard gates and the
single-qubit nature of these gates avoids any connectivity
issues, the U2 gates contribute to less error in the circuit than
the cX gates. In addition, the greatest U2 error rate of any qubit
on ibmq_16_melbourne was 5:014� 10�3 at calibration
time, which is an order of magnitude lower than the cX error
rates. For our n¼ 6 circuit, then, the worst case estimate of the
probability Pno error;H that no H gate in the circuit has an error is

Pno error;H ¼ 1� 0:005 014ð Þ12 ¼ 94:1%;

which is the same pre- and post-transpilation.
The quantity of cX gates added, along with the significant

error rate of the cX gates, is the reason for the difference in
success between running our algorithm in simulations and on
a quantum computer.

D. Overcoming transpilation issues

In an attempt to confirm that the transpiler’s introduction
of a significant number of cX gates is responsible for the low
success rates in our algorithm’s performance on a quantum
computer, we constructed a circuit with a Uf gate

corresponding to the parameter a¼10000001. This particular
value of a minimizes the number of cX gates necessary, and
no ancilla qubits are needed to make up for connectivity
restrictions, so this circuit is expected to perform its task as
well as possible for its n value. This n¼8 circuit is the largest
n that can fit on the 15-qubit ibmq_16_melbourne.
Using an appropriate mapping, we produced a circuit for
n¼8, which is shown in the supplementary material.29 The
only difference between the pre- and post-transpilation cir-
cuits is the change from H gates to U2 gates; the number of
cX gates is the same.

Using the same testing protocol described in the introduc-
tory paragraph of Sec. V A, we performed 20 trials of m
shots of this n¼ 8 circuit for m ranging from 8 to 17. The
results of these trials are also plotted in Fig. 4 in comparison
to the n¼ 6 results. The behavior of P as a function of m is
rather flat and random, which is indicative of small fluctua-
tions close to zero. We emphasize the fact that we observed
a nonzero probability of success for most values of m, which
is a significant improvement over the results from the n¼ 6
case. This result suggests that the increased quantity of cX
gates was indeed a major factor in the low success rate we
saw for the n¼ 6 circuit.

The rate of success for this circuit was still rather low
compared to both simulations on smaller problems and theo-
retical estimates. We suspect that this is simply due to the
error rates of gates implemented on ibmq_16_melbourne
as discussed in Sec. V C.

VI. DISCUSSION

Our simulations of an ideal quantum computer free of
noise displayed the correctness of our implementation of
Simon’s algorithm. In the presence of noise on IBM quantum
computers, we see that the algorithm performs very poorly.
In addition to this, the benefit of performing many shots
diminishes, which means that the algorithm loses its expo-
nential speedup over the classical algorithm; ordinarily, the
speedup would originate in the fact that we could guarantee
success up to a probability arbitrary close to 1 with a number
of shots linear in n.

Qiskit’s transpiler changes our circuit in a way that allows
for the physical limitations of the quantum computer to be
overcome while theoretically leaving the algorithm unaf-
fected, but it also introduces an unruly amount of cX gates
into the circuit, which are subject to higher error rates than
single-qubit gates. Since the number of cX gates in Uf scales
at least linearly with n (being the length of the target number
a), the algorithm, therefore, suffers worse performance as n
increases. When we minimized the impact of the transpiler
with a new circuit in Sec. V D, we saw an improved success
rate, which supports this conclusion.

We have not discussed error correction protocols in this
paper. Such protocols essentially repeat the algorithm multi-
ple times on multiple sets of data, thus increasing the number
of qubits and gates required. However, they may be able to
further improve the success of the algorithm when it runs on
actual quantum computers. In fact, quantum algorithms to be
put to commercial use will likely require such protocols in
their implementation. Currently, this requirement of addi-
tional qubits means that they are not yet appropriate for
addressing the noise found in the quantum computer we
used, but they are promising future prospects for helping
quantum algorithms perform their tasks more reliably. For

941 Am. J. Phys., Vol. 89, No. 10, October 2021 S. Johnstun and J.-F. Van Huele 941

more information on error correction, see the introductory
guide in Ref. 48 and relevant chapters in textbooks on quan-
tum computation.16,17

In conclusion, we have introduced the reader to challenges
due to noise and transpilation. These are challenges that
have an important impact on current quantum computers and
must be dealt with in order to understand results. We pre-
sented an example problem that was solved efficiently with a
quantum algorithm, implemented its algorithmic solution on
a simulator and a quantum computer, compared the results
from simulators and experiments, and demonstrated a way to
minimize the effects of transpilation.

ACKNOWLEDGMENTS

The authors acknowledge support from the College of
Physical and Mathematical Sciences at Brigham Young
University. The authors thank Jason Saunders and other
members of the Quantum Information and Dynamics
research group at Brigham Young University for useful
discussion and helpful feedback, as well as anonymous
referees for feedback on the manuscript.

a)Electronic mail: scottjohnstun@byu.net
b)Electronic mail: vanhuele@byu.edu
1Richard P. Feynman, “Quantum mechanical computers,” Opt. News 11,

11–20 (1985).
2Peter W. Shor, “Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer,” SIAM Rev. 41, 303–332

(1999).
3Edward Gerjuoy, “Shor’s factoring algorithm and modern cryptography.

An illustration of the capabilities inherent in quantum computers,” Am. J.

Phys. 73, 521–540 (2005).
4Lov K. Grover, “A fast quantum mechanical algorithm for database

search,” in STOC 1996: Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing (1996).

5Lov K. Grover, “From Schr€odinger’s equation to the quantum search algo-

rithm,” Am. J. Phys. 69, 769–777 (2001).
6Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd, “Quantum algorithm

for linear systems of equations,” Phys. Rev. Lett. 103, 150502 (2009).
7Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione, “An introduc-

tion to quantum machine learning,” Contemp. Phys. 56, 172–185 (2014).
8Wikipedia has an extensive list of companies involved in quantum

computing or communication <https://en.wikipedia.org/wiki/List_of_

companies_involved_in_quantum_computing_or_communication> (last

accessed December 30, 2020).
9Michel H. Devoret, John M. Martinis, and John Clarke, “Measurements of

macroscopic quantum tunneling out of the zero-voltage state of a current-

biased Josephson junction,” Phys. Rev. Lett. 55, 1908–1911 (1985).
10Frank Arute et al., “Quantum supremacy using a programmable supercon-

ducting processor,” Nature 574, 505–510 (2019).
11Christopher Monroe, Michael G. Raymer, and Jacob Taylor, “The U.S.

National Quantum Initiative: From act to action,” Science 364, 440–442

(2019).
12National Academies of Sciences, Engineering, and Medicine, in Quantum

Computing: Progress and Prospects, edited by Emily Grumbling and

Mark Horowitz (The National Academies Press, Washington, DC, 2019).
13Frederick W. Strauch, “Resource letter QI-1: Quantum information,” Am.

J. Phys. 84, 495–507 (2016).
14D. Candela, “Undergraduate computational physics projects on quantum

computing,” Am. J. Phys. 83, 688–702 (2015).
15Yohan Vianna, Mariana R. Barros, and Malena Hor-Meyll, “Classical realiza-

tion of the quantum Deutsch algorithm,” Am. J. Phys. 86, 914–923 (2018).
16Isaac Chuang and Michael Nielsen, Quantum Computation and Quantum

Information (Cambridge U. P., Cambridge, 2000).
17N. David Mermin, Quantum Computer Science (Cambridge U. P.,

Cambridge, 2007).
18Abraham Asfaw et al., Learn quantum computation using Qiskit <https://

qiskit.org/textbook/preface.html> (2020).

19Daniel Koch, Laura Wessing, and Paul M. Alsing, “Introduction to coding

quantum algorithms: A tutorial series using Qiskit,” e-print

arXiv:1903.04359v1 (2019).
20Daniel Koch et al., “Fundamentals in quantum algorithms: A tutorial

series using Qiskit continued,” e-print arXiv:2008.10647 (2020).
21Javier Rodr�ıguez-Laguna and Silvia N. Santalla, “Building an adiabatic

quantum computer simulation in the classroom,” Am. J. Phys. 86,

360–367 (2018).
22N. David Mermin, “From Cbits to Qbits: Teaching computer scientists

quantum mechanics,” Am. J. Phys. 71, 23–30 (2003).
23Chih-Chieh Chen et al., “Hybrid classical-quantum linear solver using

Noisy Intermediate-Scale Quantum machines,” Sci. Rep. 9, 16251 (2019).
24Sima E. Borujeni et al., “Quantum circuit representation of Bayesian

networks,” Expert Syst. Appl. 176, 114768 (2020).
25James R. Wootton, “Benchmarking near-term devices with quantum error

correction,” Quantum Sci. Technol. 5, 044044 (2020).
26Announcement by the National Science Foundation on May 18, 2020

<https://www.nsf.gov/news/special_reports/announcements/051820.jsp>
(last accessed December 30, 2020).

27Daniel R. Simon, “On the power of quantum computation,” in 1994
Proceedings of the 35th Annual Symposium on Foundations of Computer
Science (Institute of Electrical and Electronic Engineers Computer Society

Press, 1994), pp. 115–123.
28Some preliminary results of this analysis were submitted for presentation

at the 2020 Annual Conference of the Utah Academy of Sciences, Arts,

and Letters and are included in its proceedings.
29See supplementary material at https://www.scitation.org/doi/suppl/

10.1119/10.0006204 for several appendixes that expand and clarify our

discussion and results.
30Supplementary material: Demonstration of transpilation effects in

Qiskit <https://github.com/Dot145/QiskitTranspilationNoise/blob/master/

QuantumNoiseInQiskit.ipynb>.”
31Philip Krantz et al., “A quantum engineer’s guide to superconducting

qubits,” Appl. Phys. Rev. 6, 021318 (2019).
32For an enlightening description of noise sources by Will Oliver, see <https://

youtu.be/aGAb-GbrvMU?t<983> (last accessed December 30, 2020).
33See the IBM Research Blog post on dealing with errors in quantum com-

puters a <https://www.ibm.com/blogs/research/2014/06/dealing-with-errors-

in-quantum-computing/> (last accessed December 30, 2020).
34Adriano Barenco et al., “Approximate quantum Fourier transform and

decoherence,” Phys. Rev. A 54, 139–146 (1996).
35See Eq. (2.37) in Ref. 17.
36See Eq. (2.40) and the discussion leading up to it in Ref. 17.
37Y. S. Nam and R. Bl€umel, “Robustness of the quantum Fourier transform

with respect to static gate defects,” Phys. Rev. A 89, 042337 (2014).
38Gadi Aleksandrowicz et al., “Qiskit: An open-source framework for quan-

tum computing,” Zenodo (2019).
39Information on IBM quantum simulators can be found at <https://

www.ibm.com/quantum-computing/simulator/> (last accessed December

30, 2020).
40See the Qiskit page with information installing the package at <https://

qiskit.org/documentation/install.html#installing-qiskit> (last accessed

December 30, 2020).
41The Qiskit blog on medium is a helpful source for using Qiskit. It can be

found at <https://medium.com/@qiskit> (last accessed December 30, 2020).
42Qiskit also has a YouTube channel with video lectures and helpful tutorials

at <https://www.youtube.com/c/qiskit> (last accessed December 30, 2020).
43Clara R. Woods, “Evaluating IBM’s quantum compiler and quantum com-

puter architectures as they pertain to quantum walk simulation algo-

rithms,” Honors thesis (University of California, San Diego, 2019).
44See the Qiskit webpage on its transpiler, which can be found at <https://qiski-

t.org/documentation/apidoc/transpiler.html#supplementary-information> (last

accessed December 30, 2020).
45Krysta M. Svore, Matthew B. Hastings, and Michael Freedman, “Faster

phase estimation,” arXiv:1304.0741 (2013).
46Pedro M. Q. Cruz et al., “Optimizing quantum phase estimation for the

simulation of Hamiltonian eigenstates,” Quantum Sci. Technol. 5, 044005

(2020).
47These and other quantum computers at IBM can be accessed easily via the

IBM Quantum Experience, located at <https://quantum-computing.ibm.com/>
(last accessed December 30, 2020).

48Joschka Roffe, “Quantum error correction: An introductory guide,”

Contemp. Phys. 60, 225–245 (2019).

942 Am. J. Phys., Vol. 89, No. 10, October 2021 S. Johnstun and J.-F. Van Huele 942

mailto:scottjohnstun@byu.net
mailto:vanhuele@byu.edu
https://doi.org/10.1364/ON.11.2.000011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1119/1.1891170
https://doi.org/10.1119/1.1891170
https://doi.org/10.1119/1.1359518
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1080/00107514.2014.964942
https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication
https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication
https://doi.org/10.1103/PhysRevLett.55.1908
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.aax0578
https://doi.org/10.1119/1.4948608
https://doi.org/10.1119/1.4948608
https://doi.org/10.1119/1.4922296
https://doi.org/10.1119/1.5065506
https://qiskit.org/textbook/preface.html
https://qiskit.org/textbook/preface.html
http://arxiv.org/abs/arXiv:1903.04359v1
http://arxiv.org/abs/arXiv:2008.10647
https://doi.org/10.1119/1.5021360
https://doi.org/10.1119/1.1522741
https://doi.org/10.1038/s41598-019-52275-6
https://doi.org/10.1016/j.eswa.2021.114768
https://doi.org/10.1088/2058-9565/aba038
https://www.nsf.gov/news/special_reports/announcements/051820.jsp
https://www.scitation.org/doi/suppl/10.1119/10.0006204
https://www.scitation.org/doi/suppl/10.1119/10.0006204
https://github.com/Dot145/QiskitTranspilationNoise/blob/master/QuantumNoiseInQiskit.ipynb
https://github.com/Dot145/QiskitTranspilationNoise/blob/master/QuantumNoiseInQiskit.ipynb
https://doi.org/10.1063/1.5089550
https://youtu.be/aGAb-GbrvMU?t%3C983%3E
https://youtu.be/aGAb-GbrvMU?t%3C983%3E
https://youtu.be/aGAb-GbrvMU?t%3C983%3E
https://www.ibm.com/blogs/research/2014/06/dealing-with-errors-in-quantum-computing/
https://www.ibm.com/blogs/research/2014/06/dealing-with-errors-in-quantum-computing/
https://doi.org/10.1103/PhysRevA.54.139
https://doi.org/10.1103/PhysRevA.89.042337
https://www.ibm.com/quantum-computing/simulator/
https://www.ibm.com/quantum-computing/simulator/
https://qiskit.org/documentation/install.html#installing-qiskit
https://qiskit.org/documentation/install.html#installing-qiskit
https://medium.com/
https://www.youtube.com/c/qiskit
https://qiskit.org/documentation/apidoc/transpiler.html#supplementary-information
https://qiskit.org/documentation/apidoc/transpiler.html#supplementary-information
http://arxiv.org/abs/arXiv:1304.0741
https://doi.org/10.1088/2058-9565/abaa2c
https://quantum-computing.ibm.com/
https://doi.org/10.1080/00107514.2019.1667078

	s1
	s2
	s2A
	d1
	d2
	d3
	s2B
	f1
	s3
	f2
	t1
	s3A
	s3B
	s3C
	s4
	d4
	d5
	d6
	d7
	s4A
	d8
	d9
	f3
	d10
	d11
	s4B
	s5
	s5A
	s5B
	f4
	s5C
	s5D
	s6
	n1
	n2
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48

