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Limit of strong ion coupling due to electron shielding
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We show that strong coupling between ions in an ultracold neutral plasma is limited by electron screening. While
electron screening reduces the quasiequilibrium ion temperature, it also reduces the ion-ion electrical potential
energy. The net result is that the ratio of nearest-neighbor potential energy to kinetic energy in quasiequilibrium
is constant and limited to approximately 1 unless the electrons are heated by some external source. We support
these conclusions by reporting measurements of the ion velocity distribution in an ultracold neutral calcium
plasma. These results match previously reported simulations of Yukawa systems. Theoretical considerations are
used to determine the screened nearest-neighbor potential energy in the plasma.
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I. INTRODUCTION

Ultracold neutral plasmas are strongly coupled Coulomb
systems. Strong coupling occurs when the nearest-neighbor
(Coulomb) potential energy is greater than the average kinetic
energy per particle. The degree of strong coupling between
ions is traditionally characterized by the parameter

�ii = Z2q2

4πε0awskBT
, (1)

where Z is the ion charge state, q is the fundamental charge,
aws = (3/4πn)1/3 is the Wigner-Seitz radius or the average dis-
tance between ions in the plasma, n is the plasma density, and
T is the temperature. These plasmas are typically generated by
photoionizing laser-cooled gases [1] or gases in an ultrasonic
jet [2]. They are diagnosed using three-body recombination
[3–8], thermalization rates [9–12], electron evaporation or rf
absorption [3,13–18], charged particle imaging and detection
[2,19], and optical fluorescence [12,20,21] and absorption
[22–24]. Theoretical calculations and simulations [25–32] give
great insights into the properties of these plasmas.

Achieving a higher value of the strong coupling parameter
is a high priority in this field. One of the primary objectives
of ultracold plasma studies is understanding how strong
coupling changes the description of basic plasma or atomic
processes. As the plasma becomes more strongly coupled, the
fundamental assumptions that make fluid approximations valid
break down. Collisional processes that are well understood in
terms of interactions between discrete atoms or ions in the
plasma, such as three-body recombination, should take on a
many-body nature. While evidence for this is seen for dense
Rydberg gases [33], only limited evidence for departures from
traditional plasma physics has been reported in the literature
(see, for example [5,10]).

At early times in the plasma evolution the ion temperature is
dominated by disorder-induced heating (DIH). Although ions
are formed with essentially zero kinetic energy in ultracold
neutral plasmas, they have an excess of electrical potential
energy due to the random spatial distribution of nearest
neighbors in the plasma. In the absence of correlation and
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shielding effects in the final state, the initially T ∼ mK ions
heat up to the correlation temperature [23]

Tc = 2

3

q2

4πε0awskB

(2)

on the time scale of the inverse ion plasma frequency 1/ωi =
(nq2/miε0)−1/2, where mi is the ion mass. In the absence of
electron shielding, the ion temperature is determined by the
density alone.

In neutral plasmas, electrons form a screening background
for the ions. This changes the ion dynamics. If the electron
temperature is not too low, the ion interaction can be modeled
with a Yukawa potential

uY
ii = q2

4πε0

e−r/λD

r
, (3)

where λD = (kBTeε0/nq2)1/2 is the Debye length and kB is
Boltzmann’s constant. At very low electron temperatures, the
number of electrons per Debye sphere decreases to values
less than one, and the Yukawa model may not accurately
represent ion-ion interactions under these conditions [23].
Electron screening can be parameterized using the inverse
scaled screening length κ ≡ aws/λD. The parameter κ exhibits
a strong temperature dependence κ ∼ T

−1/2
e , and a weak

density dependence κ ∼ n1/6.
Previous studies have shown that electron screening can

significantly reduce the ion temperature and slow the DIH
time scale [10,12]. At first sight this appears to increase
�. However, because electron screening reduces the nearest-
neighbor electrical potential energy, the net effect of electron
shielding on the ratio of the actual nearest-neighbor potential
energy to kinetic energy is not immediately clear.

In this paper we present fluorescence measurements of
an ultracold neutral Ca plasma. From our measurements we
extract the time evolving rms width of the velocity distribution
by fitting the data to a Voigt profile. Using an expansion model
we find the electron and ion temperature as a function of
time. By varying the initial electron temperature we generate
plasmas with varying degrees of electron shielding. We show
that we can generate plasmas with very cold ions by mitigating
the effects of DIH through electron shielding. We compare our
experimental results to two molecular dynamics simulations,
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which show good agreement with each other and with our
data. We use theoretical considerations to extract the screened
ion-ion potential energy in the plasma. We suggest that
although electron screening reduces heating due to DIH, it
also reduces the nearest-neighbor potential energy in such a
way that the ratio of potential energy to kinetic energy is
independent of the electron temperature.

II. EXPERIMENT

We cool and trap approximately 20 million 40Ca atoms in
a magneto-optical trap (MOT) at a temperature of a few mK.
The spatial density profile is Gaussian and has the form n(r) =
n0 exp(−r2/2σ 2), with peak density n0 � 2 × 1010 cm−3 and
σ = 0.2–0.4 mm. We ionize these laser-cooled atoms using
ns-duration laser pulses at wavelengths of 423 and 390 nm
that drive the 4s2 1S0 → 4s4p 1P o

1 and the 4s4p 1P o
1 →

continuum transitions, respectively.
The initial ion and electron temperatures, Ti(0) and Te(0),

are controlled in the experiment but change in time. The initial
ion temperature in the plasma is approximately equal to the
few mK temperature of the neutral atoms in the MOT. It
changes as ions undergo DIH and as the plasma expands. The
plasma is not confined by the MOT, and it freely expands into
the surrounding vacuum. The expansion velocity is typically
determined by electron temperature and the ion mass. As long
as the electron temperature is not too low, the asymptotic
expansion velocity is vexp = (kBTe/mi)

1/2 [34]. The initial
electron energy in the plasma is equal to the difference
between the ionizing laser photon energy and the calcium
ionization energy. In our experiment this typically ranges from
Te = 2Ee/3kB = 0.5–150 K.

We probe the ion velocity distribution using laser-induced
fluorescence. We use a low-power cw laser beam detuned from
resonance at a wavelength of 397 nm, corresponding to the Ca+
4s2S1/2 → 4p2P ◦

1/2 transition. The laser beam is collimated to
a diameter of 4 mm, attenuated to 2.5 mW, aligned to spatially
overlap the calcium plasma, and retroreflected. The maximum
probe laser beam intensity in the retroreflected configuration
is approximately equal to the saturation intensity, where
the saturation intensity is Isat = 46 mW/cm2. Fluorescence
photons at this same wavelength are collected as a function of
time after the plasma is generated using a 1-GHz bandwidth
photomultiplier tube and digital oscilloscope. We repeat this
process for a range of probe laser beam offset frequencies from
0 to about ±250 MHz.

III. DATA ANALYSIS

We extract the time evolving ion velocity vi,rms by fitting
the fluorescence data to a Voigt profile. The Voigt profile is
a mathematical representation of the absorption cross section
per atom. It is the convolution of a Lorentzian and a Gaussian
line shape

V (ν) =
∫ ∞

−∞
L(ν − ν ′)G(ν ′)dν ′ (4)

with the Lorenztian and Gaussian profiles given by

L(ν) = γ /π

ν2 + γ 2
(5)

and

G(ν) = 1√
2πνrms

exp
[−ν2/2ν2

rms

]
, (6)

respectively. In these equations, ν is the detuning from
resonance, γ is half the natural linewidth of the atomic
transition (the HWHM of the Lorentzian line shape), and νrms
is the rms Gaussian width. The integral defined in Eq. (4) can
be evaluated as

V (ν) = Re[w(z)]√
2πνrms

. (7)

The term in the numerator is the complex error function,
and it is given by w(z) = e−z2

erfc (−iz), where z is (ν +
iγ )/

√
2νrms, and erfc is the complementary error function.

In the analysis, the Lorentzian half width is equal to 11 MHz,
half the natural linewidth of the 397 nm transition. However
it is power broadened to 13.2 MHz (HWHM). The Gaussian
width νrms is extracted as a fit parameter. It is converted to
the rms width of the velocity distribution using the Doppler
shift, vi,rms = (kBTi/mi)

1/2 = λνrms, allowing us to map out
the width of the ion velocity distribution as a function of time.

As the plasma evolves, the plasma ions are accelerated ra-
dially outwards. The acceleration is well approximated by the
expression a = (kBTe/miσ

2)r [25]. This directed expansion
adds to the thermal motion of the ions. In our experiment we
measure the total rms width of the velocity distribution, which
contains contributions from both the random thermal motion as
well as the accelerated expansion. Fortunately, the time scale
for expansion is slower than the time scale for DIH, and the
contributions of each of these effects can be cleanly separated.

Using the vi,rms found from the Voigt fitting we are able to
extract the ion temperature. The ion temperature is determined
by the self-similar solution to the Vlasov equations and can be
related to the rms ion velocity as [21]

vi,rms =
√

kB

mi

{
t2

τ 2
exp

[Te(t) + Ti(t)] + Ti(t)

}
, (8)

where τexp, the characteristic expansion time, is given by τexp =√
miσ (0)2/kB[Te(0) + Ti(0)] ∼ 2 μs and the time evolving

ion and electron temperatures are given by Tα(t) = Tα(0)/(1 +
t2/τ 2

exp) and the subscript α = i,e. In Fig. 1 we have plotted
the vi,rms calculated from this model and the vi,rms found by
fitting a Voigt profile to the fluorescence data of one of our
plasmas. Rearranging Eq. (8) we solve for the ion temperature
Ti(t)

Ti(t) = miv
2
i,rms

kB

−
Te(0) t2

τ 2
exp

1 + t2

τ 2
exp

. (9)

The initial ion temperature is assumed to be negligible
compared to the initial electron temperature. On the 200–1000
ns timescale the plasma has not expanded.

When the electron temperature is not known, it is possible
to estimate its value using the expansion model in Eq. (8).
This is useful for plasmas that evolve from cold Rydberg
gases, for example, where the initial electron temperature is
not well defined. At these small initial electron temperatures,
the electron temperature extracted from the expansion model
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FIG. 1. The time evolving rms width of the ion velocity distribu-
tion for an ultracold calcium plasma at a density of approximately
0.9 × 1010 cm−3 and electron temperature of Te = 50 K. The rms
velocity width is found using a fit to a Voigt profile, where the
Gaussian frequency width is extracted as a fit parameter and converted
to the velocity width through the Doppler shift. The model described
by Eq. (8) is plotted as the gray dashed line. Rabi oscillations dominate
the fluorescence signal during the first 15 ns. These coherences give
anomalously large apparent rms velocities in our line-shape model,
as shown by the sharply falling line at early times in the experimental
vi,rms.

has been shown to overestimate the electron temperature at late
times [34]. However, it is likely that the model is reasonably
accurate at early times before the plasma has expanded.

IV. EXPERIMENTAL RESULTS

As the initial electron temperature decreases, the plasma
expansion rate and ion thermalization rate changes. In Fig. 2
we plot the average Ti = miv

2
rms/kB after the DIH process has

completed. We also plot the characteristic DIH time for a range
of electron temperatures. This characteristic time is taken to
be the time when the ion temperature oscillation due to DIH
is at its maximum. This can be seen in Fig. 1 at approximately
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FIG. 2. The equilibrium ion temperature after DIH (triangles)
and the characteristic DIH time (circles) plotted as a function of
the electron temperature extracted from the expansion model. It
is evident from this plot that electron screening reduces the ion
temperature and extends the DIH time. The density for all these
plasmas is approximately 0.9 × 1010 cm−3 and the inverse scaled
screening length κ ranges from about 0.4 to 1.0.

110 ns, where the measured vi,rms (black line) passes slightly
above the model (gray dashed line). The electron and ion
temperatures are both extracted from the expansion model
given by Eq. (8). Plasmas with smaller Te have smaller values
of Ti . The electron shielding length decreases with decreasing
Te, softening the ion-ion Coulomb interaction. As the ions
move under the influence of the screened Coulomb force of the
neighboring ions, they acquire less kinetic energy compared
to the unscreened case.

As Te decreases, the time scale for DIH increases. This
confirms observations in Refs. [10,12]. The low-temperature
electrons more effectively shield ions from their nearest
neighbors. The Coulomb force is reduced, and the ions take
longer to reach their “equilibrium” positions. The data in Fig. 2
show that the DIH time is extended by as much as a factor
of 2.

V. COMPARISON WITH MODELS

Molecular dynamics simulations of complex neutral plas-
mas were published in the 1990′s by Farouki, Hamaguchi,
and Dubin [35–38]. Those simulations showed that electron
shielding and correlation effects reduce the average electrical
potential energy of the plasma ions. Murillo showed that these
simulations can be applied to ultracold neutral plasmas [39].
A discussion of how that is done is given below.

A. Deriving the DIH ion temperature

The energy density per particle of the ultracold plasma can
be generically written as

E = 3

2
nkB(Te + Ti) + n2

2

∑
a,b

∫
d3r uab(r) gab(r), (10)

where the summation indexes represent electrons e or ions i.
The Coulomb potential is written as uab = (qaqb/4πε0)(1/r)
and the radial distribution function between species a and b

is gab(r). This expression assumes a uniform plasma density
n. While the potential energy terms in Eq. (10) are general,
the kinetic energy is written in terms of the temperatures Te

and Ti .
In order to quantify the ion heating during the DIH process,

we will examine Eq. (10) at two important instances in the
plasma evolution. The first instance is just after the plasma is
formed, after the electrons have thermalized with each other
but before the ions have moved (1/ωe ∼ 1 ns). Compared to
the other energy scales in the system at this moment, the ions
have essentially zero kinetic energy, and we will therefore set
the Ti to zero. We will call this instance the initial time.

The second instance is after the ions have thermalized with
each other but before the plasma has expanded. As shown
in Fig. 1, the ion thermalization time is approximately 100–
200 ns, whereas the expansion time τexp = 2 μs. Collisional
transfer of energy from the electrons to the ions (∼1 ms) is
much slower than the ion-ion collision rate because of the small
electron-to-ion mass ratio. Consequently the electrons and ions
maintain separate temperatures. We will call this instance, after
ion thermalization and before plasma expansion, the final time.
In Fig. 1 this corresponds to roughly 200 ns after the plasma
is formed
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Conserving energy, EI = EF , allows us to write[
3

2
nTe + n2

2

∫
d3r (uiigii + ueegee + 2ueigei)

]
I

=
[

3

2
n(Te + Ti)

]
F

+
[
n2

2

∫
d3r (uiigii + ueegee + 2ueigei)

]
F

, (11)

where EI and EF are the initial and final energy densities, and
the explicit r dependence of the potentials and distribution
functions has been suppressed.

We can solve this equation if we assume that the electron
temperature remains constant. In this case we can also ignore
the term ueegee on both sides of the equation because it remains
unchanged from the initial to final time. We can also ignore
the term ueigei because the constant Te approximation doesn’t
change the coupling between the electrons and ions when
the ions move. The dominant change occurs in the ion-ion
interaction.

With these approximations, Eq. (11) becomes[
3

2
nTi

]
F

=
[
n2

2

∫
d3r uii

]
I

−
[
n2

2

∫
d3r uiigii

]
F

. (12)

Note that the term gii in the initial state has been dropped be-
cause the initial state is completely disordered and [gii]I = 1.
We can make a connection with the Yukawa-MD simulations
of Refs. [35–38] by introducing the Yukawa potential. The
final state ion-ion potential can be trivially written as

uii = uY
ii + [

uii − uY
ii

]
. (13)

Similarly, we can express the radial distribution function as

gii(r) = [gii(r) − 1] + 1 = hii(r) + 1, (14)

where hii(r) is the pair correlation function. Inserting these
definitions into Eq. (12) and simplifying gives

3

2
nTi = −n2

2

∫
d3r uY

ii(hii + 1) − n2

2

∫
d3r

(
uii − uY

ii

)
hii

+ n2

2

∫
d3r uY

ii , (15)

where all quantities are evaluated in the final state. The second
term on the RHS is small and can be neglected. At small r the
quantity uii − uY

ii is small, and at large r the pair correlation
function hii(r) tends to zero. The last term on the RHS can
be evaluated directly and is equal to −(3/2)n�kBTi/κ

2. The
first term on the RHS has been tabulated using molecular
dynamics (MD) simulations [35–38]. It is the potential energy
of the Yukawa ions after the DIH process has completed. In
order to compare directly with the MD simulations, we need
to convert from energy density to energy per particle. This is
done by multiplying by the volume and dividing by the number
of ions. We find the final ion temperature to be

3

2
kBTi = −n

2

∫
d3r uY

ii(hii + 1) − 3�

2κ2
kBTi. (16)

While this expression could be simplified further, we will leave
it in this form in order to more easily compare with the results
of previously published MD simulations.

The MD simulations by Hamaguchi tabulate the
temperature-scaled “excess energy” per particle u ≡ Û/NkT ,
which is written as [37]

u = �

⎡
⎣ 1

N

N−1∑
j=1

N∑
k=j+1

̂(|	ξk − 	ξj |) − 3

2κ2
− κ

2

+ 1

2

∑
n
=0

exp (−κ |n| �)

|n| �

⎤
⎦ . (17)

We recognize the first term on the RHS of Eq. (17) as the
integral in Eq. (16) divided by kBTi . The last term on the
RHS of Eq. (17) explicitly accounts for the periodic boundary
conditions, which we will neglect because we are considering
an infinite-sized plasma. Equation (17) includes the energy of
the Debye sheath, −κ/2. To get the “true” potential energy per
particle, we add this back in and multiply by kBTi ,(

u

�
+ κ

2

)
kBTi� = �kBTi

N

N−1∑
j=1

N∑
k=j+1

̂(|	ξk − 	ξj |)

− 3�

2κ2
kBTi. (18)

Comparing this with Eq. (16) gives

Ti = 2

3

q2

4πε0awskB

( u

�
+ κ

2

)
. (19)

This derivation is complementary to the one presented in
Ref. [39]. Its presentation here provides information regarding
the approximations and assumptions used in obtaining this
result.

B. Experimental and theoretical DIH ion temperature

Using Eq. (19) and the MD results of Hamaguchi et al.
[35–38], we can predict the ion temperature after the DIH
process has completed. This determination requires an iterative
process because the ion temperature appears in the RHS of
Eq. (19) in the u/� term [23]. One begins by choosing an
initial ion temperature, density, and electron κ . From this the
ion � can be calculated. The tables in Refs. [35–38] then give
the value of u/�. This can be inserted into Eq. (19) which
gives a new ion temperature. The process is repeated until
the ion temperature and � converge to a self-consistent limit.
The resulting � as a function of κ is plotted in Fig. 3. As κ

increases, the Debye length λD becomes smaller. The electrons
more effectively shield the neighboring ions from one another
and the final DIH temperature decreases. The � vs κ plot is a
plot of 1/Ti vs 1/

√
Te.

A more recent MD simulation was published that calculated
the influence of electron shielding on the ion DIH temperature
[10]. This MD simulation of Yukawa-shielded calcium ions
started with the ions at rest, randomly positioned in a cell.
The ions were allowed to move in the field generated by
all of the other shielded ions in the cell (with periodic
boundary conditions). After several ω−1

i , the average ion
kinetic energy was calculated and from this the ion temperature
was determined. The result is given in Eq. (6) in Ref. [10].
This is plotted as a dashed line in Fig. 3. The κ domain of this
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FIG. 3. Theoretical and experimental plots of the unscreened ion
coupling parameter � as a function of the electron screening κ . The
solid gray line is derived from MD simulations [35–38]. The dotted
black line is from a recent MD simulation of an ultracold plasma [10].
The results of this work are also plotted as black circles with estimated
error bars. The two rightmost experimental data points correspond
to plasmas with low initial electron temperatures, as described in
the text. Under these conditions, the model of Eq. (9) tends to
overestimate the electron temperature, as suggested by the arrows.

calculation is somewhat limited because the plasma becomes
nonideal when κ > 1 in the singly-ionized plasma used in the
study, and in those conditions for that plasma it is not clear that
the Yukawa approximation is valid. The excellent agreement
between this result and the predictions based on Eq. (19) is
readily apparent.

In Fig. 3 we also plot our experimental results. The ex-
perimental determination of the electron and ion temperatures
is described in Sec. III. There is excellent agreement between
the experimental data and the two simulations described above.
The rightmost experimental data point is measured in a plasma
evolving from a Rydberg gas excited ≈10 cm−1 below the
ionization potential. The second rightmost point corresponds
to a plasma excited right at threshold. The expansion model
we used to find the electron and ion temperatures for these two
plasmas tends to overestimate the electron temperature at the
very early times [34]. Thus we would expect the actual electron
temperature to be lower, corresponding to larger values of κ ,
as suggested by the arrows in the plot.

The data in Fig. 3 demonstrate the validity of the assump-
tions used in deriving Eq. (19). The data show that electron
screening substantially reduces the ion temperature, resulting
in increased values of �ii . Electron screening significantly
mitigates the effects of DIH, which is the source of ion heating
at these early times. Our lowest temperature plasmas have
�ii = 4.

C. Screened potential energy vs screened ion temperature

In nonneutral plasmas, the parameter �ii completely defines
the ion-ion interactions. However, in neutral plasmas, an
ion-ion interaction necessarily includes contributions from the
electrons. When the shielding length becomes comparable to

the distance between ions, when κ → 1, the relevance of �ii

is questionable.
One might be tempted to look at Eq. (3) and assume that the

“effective” coupling constant is �̂ = �ii exp (−κ). However,
that would overestimate the influence of screening. For small
κ , corresponding to the limit of weak screening, the first-order
correction in that model would be linear in κ . This is clearly
not the case, as MD simulations show. For example, the ion
temperature and density at the liquid-solid phase transition
clearly has no linear term [see Fig. 1 in Ref. [37]].

The idea of calculating �ii is somewhat problematic in
neutral plasmas. The � parameter is supposed to represent the
ion-ion nearest neighbor potential energy divided by the ion
temperature. The problem arises because the ions and electrons
are also correlated, and �ei becomes important [see Eq. (10)].
There is a potential energy associated with �ei that is shared by
both the electrons and the ions. Similarly, because the electrons
follow the ions, there is also a �ee term that becomes important
and that will mimic the �ii behavior. When trying to calculate
the screened ion coupling parameter �̂, it is not immediately
clear which potential energy is appropriate to include in the
calculation. They are all important and they all are connected
to the ion density and temperature.

This distinction is important to make. The thermodynamic
properties of non-neutral plasmas depend on �ii . These
properties can be translated into the realm of neutral plasmas
with the idea that weak electron screening modifies them
only slightly. However in ultracold neutral plasmas where
κ = 1 is achievable, the �ii scaling of these properties is not
immediately clear. This is particularly the case when the �ii is
determined by κ , such as we show in Fig. 2.

In light of the fact that all of the electron and ion coupling
parameters are important and interconnected, we can simply
define �̂ to be the total potential energy of the system divided
by the kinetic energy of the ions. Taking U as the total potential
energy and K to be the kinetic energy of the ions, we write

�̂ = UF

KF

= UF

UI − UF + KI

, (20)

where the conservation of energy is, trivially, UI + KI =
UF + KF and we have assumed that the electron temperature
does not change from the initial to final state. Because the ions
start out with mK temperatures, we can set KI = 0. Summing
up the contributions of the electrons and ions to the total initial
potential energy gives UI = 0. This can be seen in two ways.
One is that the initial state is completely uncorrelated and
neutral and therefore the total potential energy must be zero.
The other is to argue that the electron-ion potential energy
terms are negative and exactly cancel the electron-electron
and ion-ion potential energy terms. Either way, we end up at
the conclusion that the magnitude of the screened coupling
parameter is

�̂ = 1. (21)

Even though electron screening reduces the ion temperature
(see Fig. 2), it reduces the potential energy by exactly the same
amount so that the ratio of potential energy to kinetic energy
is always 1.

This result, Eq. (21), is true for all neutral systems in
which there is no external source of heat for the electrons and
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when there is no correlation in the initial state. The agreement
between the experimental data and MD simulations in Fig. 2
suggest that three-body recombination and electron-Rydberg
scattering have not significantly increased the electron tem-
perature at these early times, because those heating terms are
not included in the MD simulation. If the electrons are heated,
then the potential energy UF in Eq. (20) goes down and �̂ will
increase.

We note that the final state of the plasma cannot be com-
pletely determined by energy conservation alone because of the
two-temperature nature of the UNP. For a given initial energy,
there are many possible values of the final temperatures Te and
Ti that correspond to a correct final energy, at least in principle.
Of course, if a true equilibrium state could be reached, the
plasma would have Ti = Te and the final state would be
deterministic. This suggests that more work on the quasither-
modynamics of two-temperature plasmas is warranted [40,41].

VI. CONCLUSION

In this paper we present experimental measurements of
laser-induced fluorescence from the ions in an ultracold neutral
plasma. Fluorescence measurements are made when the probe
laser frequency is scanned over the emission line shape. From
these fluorescence data we extract the rms velocity distribution
as a function of time by fitting the data to a Voigt profile.
An expansion model is used to find the electron and ion
temperatures. This is done over a range of initial electron
temperatures, which allows us to study the effect of electron

shielding on ion equilibration at early times. Information about
the ion and electron temperatures is used to calculate the
strong coupling parameter �ii and the electron shielding κ . We
compare our experimental results with molecular dynamics
simulations and theoretical calculations for the ion strong
coupling in ultracold plasmas as a function of the electron
shielding. We find that our experimental data show good
agreement with MD results. We generate plasmas with very
cold ions because electron screening mitigates the effects of
DIH. However we also find that electron shielding softens the
ion interaction strength, which has the net effect of keeping
the ratio of potential energy to kinetic energy constant for all
values of κ .

Our results indicate that it may be possible to use electron
screening to generate a strongly coupled plasma with �ii > 4.
This could be done by ionizing a low-density atom cloud with
very low initial electron temperature. The low density will
reduce the time scale for electron heating due to three-body
recombination. The plasma electrons could be heated so
that the ions are adiabatically shifted into their equilibrium
positions in an unscreened plasma as κ is reduced to zero. A
large initial size for the plasma would also reduce the time
scale for the plasma to expand.
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