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Abstract: The impacts of uncertainty in mirror movements in mechanically scanned interference
pattern structured illumination imaging (IPSII) are discussed. It is shown that uncertainty in
IPSII mirror movements causes errors in both the phase and amplitude of the Fourier transform
of the resulting imaging. Finally, we demonstrate that iterative phase retrieval algorithms can
improve the quality of IPSII images by correcting the phase errors caused by mirror movement
uncertainties.
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1. Introduction

In interference pattern structured illumination imaging (IPSII), high resolution images of extended
objects can be obtained by measuring transmitted or reflected light from structured illumination
with a single pixel detector (often a photomultiplier tube or a diode). This is accomplished by
projecting interfering coherent waves with different patterns onto an object. By measuring the
total amount of light transmitted through or reflected from the object for each pattern, an image
of the object can be calculated [1]. The use of interference to generate the patterns enables
high resolution imaging without the need of high numerical aperture imaging elements. While
IPSII interference patterns can be generated and scanned in numerous ways [2–7], here we use
mechanical angle scan IPSII (MAS-IPSII) in which the angles between interfering beams are
controlled and scanned using motorized mirror mounts [1,8–10].

While similar to other structured illumination imaging methods [11,12], there are several
advantages of IPSII imaging. For example, as with other lensless imaging techniques [13,14],
the resolution and depth of field are not subject to the limits of conventional imaging [1,15–17].
In addition, because IPSII does not require high numerical aperture optics to produce high
resolution images, and because it requires only single pixel detectors, it could be used with waves
for which high quality multi-pixel detectors and imaging optics are hard to obtain or difficult to
work with; for example, with the extreme UV and x-ray regimes.

Our experimental methods are detailed in [1,8] and are summarized here. As shown in
Fig. 1, the interference patterns are created using a Mach-Zehnder Interferometer. Mechanically
rotated mirrors change the angle between the interfering beams in two dimensions to create
sinusoidal interference patterns with different spatial frequencies. A photodetector behind the
object measures the total power of the light transmitted through the object for each pattern.

Using a mirror mounted on a piezoelectric stack in one arm of the interferometer we sweep the
phase of the interference pattern, causing a sinusoidal oscillation detectable with the photodetector.
From the amplitude and phase of this oscillation, the Fourier coefficient corresponding to the
spatial frequency of the interference pattern can be determined. By making measurements with
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Fig. 1. A modified Mach-Zehnder interferometer is created using a pair of beamsplitteres
(labelled "S" in the figure) and eight mirrors. The object to be imaged (labelled "O") is
placed in one of the interferometer outputs and a reference pinhole ("H") is placed in the
other. Photodetectors ("D") measure the light transmitted through the object and the pinhole.
Four of the mirrors ("M") are on motorized mounts, allowing us to change the angle of each
beam while keeping their position on the object constant. One of the mirrors is mounted on
a piezoelectric stack ("P"), allowing us to scan the phase of the interferometer. One mirror
and one beamsplitter are mounted on translation stages ("T"), allowing us to balance the
path lengths of the interferometer.

many different interference patterns, we can obtain a Fourier-space representation of the object.
Taking an inverse Fourier transform then produces an image of the object.

Because the overall phase of the interferometer is prone to drift, a second photodetector is
placed behind a reference pinhole in the other interferometer output. The pinhole is smaller than
the width of a single interference fringe in the highest spatial frequency patterns. As the phase
of the interferometer is swept, the oscillating signal from this photodetector tells us the phase
of the interference pattern at the corresponding location on the object, such that the phase of
each Fourier coefficient be found from the relative phase of the oscillating object signal and the
oscillating reference signal.

MAS-IPSII images taken by Jackson [8] showed significant ghosting near the edges of the field
of view. Figure 2 contains an image of the measured 1951 USAF resolution test chart (Thorlabs
R1DS1N) where ghosting is clearly seen on the left side of the image. Jackson hypothesized
that this distortion may be caused by k-space, or wavenumber, errors [8]. These errors in the
wavenumber of the Fourier transform are likely caused by uncertainties in the movements of the
rotating mirrors in the experimental IPSII setup. In this work, we seek to confirm Jackson’s [8]
hypothesis that wavenumber error causes ghosting and other noise in MAS-IPSII images and
seek to correct or repair these ghosting effects numerically. To do so, we simulate wavenumber
position errors using a modified discrete Fourier transform and show that iterative phase retrieval
algorithms can be applied to IPSII images to partially correct the ghosting caused by wavenumber
errors.
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Fig. 2. (a) Optical microscope image of the portion of the 1951 USAF resolution test
chart imaged in our experimental MAS-IPSII tests. (b) Experimental MAS-IPSII Fourier
transform amplitude measurement of the test chart. (c) The resulting image after transforming
the data from plot (b) into the image domain. Note the ghosting effects near the edges of the
image.

2. Analysis of wavenumber error

In this section we analyze the impact of wavenumber error on IPSII images. First, we discuss how
random mirror positioning errors in the IPSII interferometer lead to interference patterns with
the wrong fringe spacing and thus incorrect Fourier amplitudes and phases. Next, we present a
method of numerically simulating these wavenumber errors and their effect on both the phase
and amplitude of IPSII images in Fourier space.

As discussed above, IPSII generates an image by projecting an interference pattern onto the
object of interest while scanning the spatial frequency of the interference pattern [1–8]. The
various spatial frequencies are obtained by adjusting the mirrors labeled "M" in Fig. 1. These
mirrors are rotated using stepper motors, high thread count screws, and custom mounts that
allow for precision movements [18]. However, mechanical errors caused by effects such as gear
backlash and skipped steps create uncertainty in the movements of the interferometer mirrors.
This uncertainty in the mirror movements leads to uncertainty in the spatial frequencies of the
resulting interference pattern which in turn causes errors in the wavenumber sampling interval of
the image data.

To more effectively study the impact of wavenumber error on IPSII images, we present a
method of modeling this error. We first treat the error in the mirror movements as an uncertainty
in the sampling of the true Fourier transform of the target object. The experimental process
of IPSII is mathematically equivalent to finding the centered discrete Fourier transform of the
imaged object, Fp,q, on a size N by M array:

Fp,q =

N−1∑︂
n=0

M−1∑︂
m=0

Fn,m exp

[︄
−i2π(

(p − N−1
2 )(n − N−1

2 )

N
+
(q − M−1

2 )(m − M−1
2 )

M
)

]︄
(1)

Here, F is the original object in image space, n and m are the pixel indices of the image, and p
and q are the indices in wavenumber space.

The discrete Fourier transform normally requires evenly spaced data points; however, the
uncertainty in mirror movements in MAS-IPSII leads to a sampling of the Fourier transform at
irregular intervals. We represent this effect by modifying the discrete Fourier transform (Eq. (1))
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to include random variations in wavenumber:

Fp,q =

N−1∑︂
n=0

M−1∑︂
m=0

Fn,m exp
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−i2π(
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2 )

N
+
(q − M−1

2 + ϵq,n,m)(m − M−1
2 )

M
)

]︄
(2)

The ϵp,n,m and ϵq,n,m represent variations in the wavenumber caused by the random noise in
mirror mount movements. We chose to use a Gaussian function to approximate the distribution
for the variations ϵp,n,m and ϵq,n,m. Throughout the simulations, we characterize the strength of
the wavenumber error by the unitless real-valued parameter σ, where σ is the standard deviation
defining the width of the Gaussian distribution of wavenumber variations ϵp,n,m and ϵq,n,m. We

Fig. 3. Numerical simulation of an image distorted by simulated wavenumber errors with
ϵ = 0.4. (a) shows the original and ‘IPSII retrieved’ image after adding distortions, (b)
shows a portion of the amplitude of the Fourier transform of the image, and (c) shows the
phase over the same interval.
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define σ and the ϵ parameters as ratios of the wavenumber error to the wavenumber step size of
the data.

To simulate the effects of mirror movement uncertainty, we first transform an image using
Eq. (2) thus adding the corresponding errors ϵp,n,m and ϵq,n,m. Next, we transform the resulting
distorted Fourier transform back to image space by first applying a phase ramp to shift the DFT
data a half index in Fourier space and then applying an inverse Fast Fourier Transform (FFT).
More details on the code used to implement this process are found here [9] and in Code 1, Ref.
[19].

An IPSII measurement is analogous to computing the discrete Fourier transform (DFT) of the
imaged target. The wavenumber errors caused by uncertainties in the mirror movements are then
equivalent to performing a DFT with random, uneven spacing between the discrete wavenumbers.
Thus, the wavenumber errors cause MAS-IPSII to sample the true DFT amplitude and phase of
the image at uneven intervals. By comparing the distorted Fourier transform with the error-free
version, these amplitude and phase errors become apparent. Figure 3 shows a one-dimensional
numerical simulation of the effects of errors on three square pulses and the corresponding Fourier
transform with and without simulated wavenumber errors. The effect in image space causes what
appears to be random noise and distortions. In Fourier space, the phase and amplitude of the data
are distorted somewhat but still have the same general shape as the undistorted transform due to
the slowly varying nature of the phase and amplitude of the Fourier transform.

As shown by previous research, the phase of the Fourier transform contains most of the image
information [20]. The errors in the phase of IPSII data are likely responsible for most of the
distortions in the final image. Because of this, repairing the phase errors in the data would have a
significant impact on the resulting image even with persisting amplitude errors.

3. Application of phase retrieval to IPSII

In this section, we demonstrate the application of iterative phase retrieval algorithms to IPSII
images. We apply the Error Reduction (ER) [21,22], Hybrid Input-Output (HIO) [23] and shrink
wrapping [24] phase retrieval techniques to IPSII and discuss their effectiveness [25].

Much research has been done in the field of phase retrieval techniques in the context of
other imaging systems. For example, iterative phase retrieval techniques are commonly used in
Coherent Diffraction Imaging (CDI) [26,27] to obtain the phase of a Fourier transform from its
amplitude (often obtained from the square root of a measured diffraction pattern) and a priori
knowledge of the image (such as, for example, the overall size of the object) [22,23,25,28].
IPSII requires slight modification of phase retrieval algorithms because IPSII already provides
information on both the phase and amplitude of an image in Fourier space. However, as discussed
in the previous section, these phases and amplitudes are distorted due to wavenumber error. Thus,
with IPSII we apply phase retrieval techniques to refine the experimental measurements of the
phase data rather than reconstruct the phase entirely from only the amplitudes. Another important
consideration with IPSII is that phase retrieval algorithms will improve the phase data but leave
the amplitudes unchanged. This means that the amplitude errors caused by wavenumber position
errors will persist even after applying phase retrieval to IPSII images, possibly degrading the
image quality.

The most basic phase retrieval method that we apply to IPSII is known as compact support or
Error Reduction (ER) and was demonstrated initially by Gerchberg and Saxton, and more broadly
later by Fienup [21–23]. As seen in Fig. 4, ER consists of iterating between image and Fourier
space while applying two constraints each iteration: a finite size support constraint to the image
and replacing the retrieved amplitude or modulus of the Fourier space data with the measured
one. We show the workflow used for IPSII phase refinement in Fig. 4. Here F0(x, y) represents
the original measured IPSII image, Fn(x, y) is the nth iteration of the image, and Fn+1 is the
(n + 1)th iteration of the Fourier transform that is used to create Fn+1. To begin the algorithm,

https://doi.org/10.6084/m9.figshare.16881772
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we manually determine a support region to use as a constraint on Fn(x, y). This region should
not contain any portion of the imaged object and instead be empty space. We then force the
amplitude of Fn(x, y) to zero within this support region to generate Fcon. Taking the FFT of this
new constrained image creates Fn. This new Fourier transform, Fn, has phase values that better
approximate the true error-free Fourier transform, but also has modified amplitude values as well.
Next, we take only the phase data of Fn and combine it with the experimental amplitude values
as measured by IPSII to generate Fn,con. By taking the inverse FFT of Fn,con, we obtain a new
image, labeled Fn+1, which has improved phase estimates. The original constraint can then be
applied to this next generation image and the process repeated until it converges.

Fig. 4. Iterative method used by the Error Reduction algorithm to correct the phase of
IPSII image data. A constraint is first applied to the experimental data and then the Fourier
transform is taken. The phase of this new transform combines with the experimentally
measured amplitudes to create a new Fourier transform. Finally, the inverse transform is
taken returning a new version of the image that can be iteratively plugged back into the
algorithm.

The ER algorithm quickly converges to a minimum in solution space; however, this minimum
is likely not the desired global minimum [25]. To dislodge the phase retrieval algorithm from a
local minimum, other methods aside from ER must be used. One of the most commonly used
alternatives to ER is Hybrid Input-Output (HIO) [22]. HIO works similarly to the ER algorithm
by iterating between image space and Fourier space while applying a modified compact image
support constraint and the Fourier modulus constraint. The difference in the HIO compact
support constraint method is that instead of fixing the support region at zero amplitude in image
space, HIO reduces the intensity in this region more gradually. The HIO constraint as applied in
this work is

In+1(x, y) =

{︄
In − βIn−1 (x, y) ∈ γ

In (x, y) ∉ γ
, (3)
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where I is the image intensity at location (x, y). The symbol γ represents the support region
surrounding the object in image space that would be set to zero intensity in the ER algorithm and
β is a constant representing the strength of the constraint. For the simulations presented here, β
was set to a value of 0.8.

HIO applies the constraint less aggressively than ER and is able to better explore the solution
space and avoid local minima. However, HIO sometimes converges to a local minimum that
does not trap ER and vice versa. For this reason, we have chosen to implement both algorithms
to correct IPSII images, switching between the two periodically to minimize the likelihood of
convergence to a local minimum [25].

Beyond HIO and ER, we have also implemented shrink wrapping to increase the convergence
rate of the algorithm [24]. The shrink wrapping algorithm periodically increases the constraint
region to include additional regions of the image that have near zero intensity. The process begins
by first convolving the intensity of the image with a two-dimensional Gaussian function. The
constraint region is then expanded to include any portion of the convolved image that falls below
a set amplitude threshold. The width of the Gaussian used in subsequent shrink wrappings is
reduced gradually as the image converges to a solution. We found that a reduction following a
1/8 power law gives good results. Additionally, the amplitude threshold of the shrink wrapping
is gradually increased starting from a value of 10% up to value of 50% using the same 1/8 power
law. The power law controls the rate at which the shrink wrapping threshold changes, with a
1/8 power law meaning that the shrink wrapping threshold is approximately equal to 10% until
rapidly increasing to near 50%. Maintaining a low threshold until the final iterations prevents the
shrink wrapping from erasing important image data before the ER and HIO algorithms are able
to converge to a stable image. The optimal values of these parameters change slightly depending
on the nature of the object being imaged and how much of the image background can be fixed to
zero intensity.

The complete phase retrieval algorithm applied to MAS-IPSII images consists of a cycle of
thirty iterations of HIO, thirty iterations of ER followed by a shrink wrap similar to recipes
suggested elsewhere [29]. This complete cycle is repeated five times. Because the algorithm
still sometimes fails to converge to the correct solution, random phase noise with a uniform
distribution and up to ±0.5 radians is added to the data to dislodge it from local minima after
every 5 iterations of ER or HIO. The code used to implement the phase retrieval algorithm is
included in Code 2, Ref. [30].

We recognize that one of the most effective phase retrieval techniques is Guided Hybrid
Input-Output [31], but it is not well suited to IPSII. Guided HIO involves carrying out HIO
over successive generations which each include several reconstructions that start with a different
random phase and selecting next generation of phases from the best result of the previous
generation. However, when using phase retrieval with IPSII data, we begin with estimates of the
initial phases instead of seeding the initial phases randomly as would normally be done with
Guided HIO. Because we do not randomly seed the initial phases between individual attempts at
HIO with the IPSII data, there is insufficient variation between individual trials to apply Guided
HIO. For this reason, we have not used a guided approach for our IPSII phase retrieval code.

The effects of phase retrieval on an IPSII image are shown in Fig. 5. Subplot (a) shows the
experimentally measured image with the constraint boundary marked in red, (b) zooms in on the
relevant part of the data, (c) shows the data from (b) after phase retrieval using ER, HIO, and
periodically adding random phase, and (d) shows the results of phase retrieval also including
shrink wrapping at each repeated cycle as described above. The best results are obtained when
shrink wrapping is used as seen in Fig. 5(d). Note that the ghosting seen in Fig. 5(a) has
disappeared almost entirely in Fig. 5(d). The clearer separation between the bars in the lower left
of the repaired image shows that the resolution has improved in that portion of the image. There
are still some remaining artifacts of ghosting effects in Fig. 5(d), but they are limited to regions

https://doi.org/10.6084/m9.figshare.16881787
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Fig. 5. Results of phase retrieval on an experimental MAS-IPSII image. (a) and (b) show
an experimentally measured MAS-IPSII image of the 1951 USAF resolution test chart with
the boundary of the support region shown in red in (a) and the region of interest shown in
(b). (c) shows the same image after phase retrieval using ER, HIO, and random phase as
described in the text while (d) shows the phase retrieval results after also including shrink
wrapping.

with intense ghost images located near their respective truth images, such as with the vertical
bars in group 4, element 1. Additionally, the phase retrieval process caused small distortions of
the fine structures in the center of the target. However, the distortion introduced by the phase
retrieval algorithm is at the single pixel level and thus does not significantly impact the image
quality. Further optimization and tuning of the shrink wrap parameters may be able to reduce the
distortion of these small details entirely in the phase-repaired images.

To quantify the effectiveness of phase retrieval algorithms in this application, we compare the
average error present in IPSII images before and after phase retrieval. The error is calculated
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Fig. 6. Simulated MAS-IPSII Image with Phase Retrieval: (a) Bitmap reconstruction of
groups 4 and 5 of the USAF 1951 Test Chart with support region boundary marked in red.
(b) Region of interest of image (a) after simulating MAS-IPSII wavenumber distortions. (c)
Image after phase retrieval. (d) Absolute error calculated for each pixel in the region of
interest

using the mean absolute error (MAE):

MAE =
∑︁
(I − I0)

N
, (4)

where I is the pixel intensity of the distorted image and I0 is the pixel intensity of the undistorted
original image. The sum is performed only over the region containing objects of interest,
purposefully excluding the initial constraint region, and N is the number of pixels within this
region of interest. The MAE gives an average error value that can be used to broadly define
the quality of the image. This error calculation requires knowledge of the undistorted image,
and thus, it is not easily applicable to experimental IPSII data where the undistorted image is
unknown. This error calculation method can be more easily applied to simulated IPSII images
distorted using Eq. (2) as seen in Fig. 6.

To calculate the MAE of a MAS-IPSII image before and after phase retrieval, we first
constructed the bitmap representation of the USAF 1951 test chart seen in Fig. 6(a). To determine



Research Article Vol. 30, No. 1 / 3 Jan 2022 / Optics Express 79

an appropriate value for σ in our simulations, we referenced the results of Dallen Petersen,
who found that the home-built MAS-IPSII mirror mounts used in the experiment have an
average absolute error of 7.67 arc seconds with an approximate half Gaussian distribution [18].
Converting this average error value to the standard deviation for a full Gaussian and multiplying
by a factor of

√
4 for the four rotating mirrors used in the setup, we obtained a value σ = 0.476.

Using this σ value, we simulated the effects of MAS-IPSII wavenumber error using Eq. (2). The
resulting image is shown in Fig. 6(b). Figure 6(c) shows this same simulated data after phase
retrieval (5 cycles of 30 iterations of ER, 30 iterations of HIO followed by a shrink wrap, with no
random phase added). For this simulated MAS-IPSII data, the image before phase retrieval has
an MAE of 0.128 and an MAE of 0.119 after phase retrieval. The decreased MAE value shows
a small but measurable increase in the overall image quality. But more importantly, Fig. 6(c)
shows significantly less ghosting after phase retrieval than Fig. 6(b). As seen in Fig. 6(d), most
of the error that persists in the image after phase retrieval is due to variations in the intensity of
the image, and not due to ghosting or other artifacts.

The few artifacts that persist in MAS-IPSII images even after phase retrieval are likely due
to the amplitude errors in k-space that originate from the wavenumber error. We attempted
to repair the amplitudes of IPSII images using an ER algorithm similar to what is shown in
Fig. 4 but replacing the phases of Fn in step 3 with the measured phases instead of replacing the
amplitudes to generate Fn+1. However, these initial attempts at amplitude retrieval did not lead
to any improvement in the image quality.

4. Conclusion

We have shown that errors in the wavenumber of the Fourier transform distort both the phase
and amplitude of MAS-IPSII images in the Fourier domain. This means that small errors in
the mirror movements in the MAS-IPSII interferometer will cause both phase and amplitude
errors in the resulting Fourier transform data. The errors in the Fourier transform manifest in the
resulting images as ghosting and distortions seen primarily near the edges of the field of view.
Through the application of iterative phase retrieval algorithms, we have shown that it is possible
to repair the phase of MAS-IPSII images to obtain higher quality images.

Some work can be done to improve the capabilities of our IPSII phase retrieval algorithm. In
particular, optimizing the input parameters such as HIO strength and number of shrink wraps for
the phase retrieval algorithms is currently difficult and time consuming. Future work could be
done to implement a genetic algorithm that would find the optimal input parameters to streamline
the phase retrieval process.

The phase retrieval method we propose demonstrates that iterative algorithms are effective at
reducing the amount of ghosting seen in IPSII images. With additional refinement of the IPSII
phase retrieval, the quality of IPSII images could be further improved and the impact of mirror
movement uncertainty on IPSII could be minimized.
Funding. Utah Valley University; Brigham Young University.

Acknowledgments. We are grateful for the assistance of Carter Day and Dallen Petersen.

Disclosures. The authors declare no conflicts of interests.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. J. Jackson and D. Durfee, “Mechanically scanned interference pattern structured illumination imaging,” Opt. Express

27(10), 14969 (2019).
2. M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Adv. Opt. Photonics 7(2), 241–275

(2015).
3. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live

cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).

https://doi.org/10.1364/OE.27.014969
https://doi.org/10.1364/AOP.7.000241
https://doi.org/10.1038/nmeth.1324


Research Article Vol. 30, No. 1 / 3 Jan 2022 / Optics Express 80

4. O. Gliko, W. E. Brownell, and P. Saggau, “Fast two-dimensional standing-wave total-internal-reflection fluores-
cencemicroscopy using acousto-optic deflectors,” Opt. Lett. 34(6), 836–838 (2009).

5. V. I. Mandrosov, “Panoramic microscope with interfering illuminating beams,” Proc. SPIE 3568, 167–177 (1999).
6. M. S. Mermelstein, “Synthetic aperture microscopy,” Ph.D. thesis, Massachusetts Institute of Technology (1999).
7. D. Feldkhun and K. H. Wagner, “Doppler encoded excitation pattern tomographic optical microscopy,” Appl. Opt.

49(34), H47–H63 (2010).
8. J. S. Jackson, “Mechanically scanned interference pattern structured illumination imaging,” Ph.D. thesis, Brigham

Young University (2019).
9. B. Whetten, “Wavenumber error in interference pattern lensless imaging,” Senior thesis, Brigham Young University

(2020).
10. C. F. Day, “Effects of illumination shadows in interference pattern structured illumination imaging,” Senior thesis,

Brigham Young University (2020).
11. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun.

6(1), 6225 (2015).
12. D. J. Higley, D. G. Winters, G. L. Futia, and R. A. Bartels, “Theory of diffraction effects in spatial frequency-modulated

imaging,” J. Opt. Soc. Am. A 29(12), 2579–2590 (2012).
13. A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Rev. Biomed. Eng. 18(1), 77–102 (2016).
14. A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan,

“Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods
9(9), 889–895 (2012).

15. E. Abbe, “Beiträge zur theorie des Mikroskops und der mikroskopischen wahrnehmung,” Arch. f. Mikrosk. Anat.
9(1), 413–468 (1873).

16. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illuminationmicroscopy,”
J. Microsc. 198(2), 82–87 (2000).

17. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standingwave
illumination,” Proc. Natl. Acad. Sci. U.S.A. 97(13), 7232–7236 (2000).

18. D. Petersen, “Motorized mirror controller with 3D printed parts,” Senior thesis, Brigham Young University (2020).
19. B. Whetten, “Supplemental information - computer code: Introduce error to simulated patterns,” figshare (2021),

https://doi.org/10.6084/m9.figshare.16881772.
20. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69(5), 529–541 (1981).
21. R. W. Gerchberg and W. O. Saxton, “Practical algorithm for determination of phase from image and diffraction plane

pictures,” Optik 35, 237–246 (1972).
22. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3(1), 27–29 (1978).
23. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
24. S. Marchesini, H. He, N. Chapman, P. Hau-Riege, A. Noy, R. Howells, U. Weierstall, and H. Spence, “X-ray image

reconstruction from a diffraction pattern alone,” Phys. Rev. B 68(14), 140101 (2003).
25. S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instrum. 78(1),

011301 (2007).
26. J. Miao, R. L. Sandberg, and C. Song, “Coherent x-ray diffraction imaging,” IEEE J. Select. Topics Quantum Electron.

18(1), 399–410 (2012).
27. J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using

coherent X-ray light sources,” Science 348(6234), 530–535 (2015).
28. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow

imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
29. J. N. Clark, X. Huang, R. Harder, and I. K. Robinson, “High-resolution three-dimensional partially coherent diffraction

imaging,” Nat. Commun. 3(1), 993 (2012).
30. B. Whetten, “Supplemental information - computer code: Phasecorrection2dv9,” figshare (2021),

https://doi.org/10.6084/m9.figshare.16881787.
31. C. C. Chen, J. Miao, C. W. Wang, and T. K. Lee, “Application of optimization technique to noncrystalline x-ray

diffraction microscopy: Guided hybrid input-output method,” Phys. Rev. B 76(6), 064113 (2007).

https://doi.org/10.1364/OL.34.000836
https://doi.org/10.1117/12.336831
https://doi.org/10.1364/AO.49.000H47
https://doi.org/10.1038/ncomms7225
https://doi.org/10.1364/JOSAA.29.002579
https://doi.org/10.1146/annurev-bioeng-092515-010849
https://doi.org/10.1038/nmeth.2114
https://doi.org/10.1007/BF02956173
https://doi.org/10.1046/j.1365-2818.2000.00710.x
https://doi.org/10.1073/pnas.130181797
https://doi.org/10.6084/m9.figshare.16881772
https://doi.org/10.1109/PROC.1981.12022
https://doi.org/10.1364/OL.3.000027
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1103/PhysRevB.68.140101
https://doi.org/10.1063/1.2403783
https://doi.org/10.1109/JSTQE.2011.2157306
https://doi.org/10.1126/science.aaa1394
https://doi.org/10.1038/22498
https://doi.org/10.1038/ncomms1994
https://doi.org/10.6084/m9.figshare.16881787
https://doi.org/10.1103/PhysRevB.76.064113

