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We follow a common thread to express linear transformations of vectors and bivectors from

different fields of physics in a unified way. The tensorial representations are coordinate independent

and assume a compact form using Clifford products. As specific examples, we present (a) the inertia

tensor as a vector-to-vector as well as a bivector-to-bivector linear transformation; (b) the

Newtonian tidal acceleration; and (c) the Riemann tensor corresponding to a Schwarzschild black

hole as a bivector-to-bivector tensorial transformation. The resulting expressions have a remarkable

similarity when expressed in terms of geometric products. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4734014]

I. INTRODUCTION

Geometric algebras (also called Clifford algebras) are
used to endow physical spaces with a useful algebraic struc-
ture. By analyzing the physical system within this context,
we can find alternative interpretations of the underlying
physics.1,2 These can simplify computational problems in
addition to giving us much more compact and clean notation.
In most cases, the final results can be expressed in a
coordinate-free way.

An algebra is constructed by endowing a linear space with
an additional binary operation called the product of the alge-
bra. Although this product is usually non-commutative, it is
distributive with respect to the linear space addition, and it is
assumed to be associative for our case. With these rules, the
idea of matrix multiplication immediately comes to mind. It
will actually be useful to keep this picture in mind, as long as
we conceive of the algebra’s sum and product in an abstract
way. An additional and essential condition for the algebra is
closure with respect to its product, i.e., the complete algebra
must contain all possible products of its elements. Again, in
our matrix multiplication reference, this would imply choos-
ing square matrices of fixed size: a product of two n� n mat-
rices is again an n� n matrix, in addition to the fact that a
linear combination of matrices is again a matrix.

Geometric algebras constitute a specific instance of asso-
ciative algebras. The constraint imposed on their structure
allows us to give concrete geometric interpretations to both
the elements and the operations within the algebra.1,3 In a
sense, this is the natural extension of the Cartesian concep-
tion of identifying geometry and algebra, and unifying them
into a single structure. The geometric building blocks are
points, vectors, oriented surfaces, and oriented volumes. The
algebraic part relates them in a constructive way and allows
us to unify both concepts and equations from different fields
of physics.

Our aim in this work is to apply these tools to four specific
examples: the inertia tensor interpreted as (i) a second rank
tensor and (ii) a fourth rank tensor; (iii) the second rank tidal
acceleration tensor; and (iv) the fourth rank Weyl tensor.
The main object is to find a common form of expressing all
these linear transformations in a coordinate-free way by
taking advantage of the Clifford product as well as its intrin-
sic geometric interpretation. Second rank tensors appear as
vector to vector mappings, while the specific fourth rank
tensors in our examples map bivectors to bivectors. A further

simplification in all these examples arises from the use of
symmetry: we consider the case of an axisymmetric rigid
body to calculate explicitly the inertia tensor, and we assume
spherical symmetry for both the non-relativistic tidal acceler-
ation and the curvature tensor for the Schwarzschild black
hole examples.

Section II introduces the main concepts of geometric alge-
bras, as well as the notation that we will need in this work.
In particular, we define the algebra associated to the Euclid-
ean three-dimensional space, known as the Pauli algebra.
Section III deals with the inertia tensor for a rigid body. The
example of a simple rod is presented and the inertia tensor is
written in terms of the geometric product as a vector-valued
linear transformation of vectors. This is followed by the case
of a general axisymmetric body with equivalent expressions.
Section IV derives the tidal acceleration for the Newtonian
case and the corresponding tensor is shown to have a similar
form. In Section V, we present a parallel development in
terms of mappings between bivectors for the case of the iner-
tia tensor first and for the Weyl conformal tensor as a gener-
alization of the tidal acceleration. Section VI includes some
conclusions regarding the unifying power of geometric alge-
bras in physics.

II. PAULI ALGEBRA

A. Geometric product of vectors

We first want to build up the geometric algebra starting
from a physical vector space V regarded as an underlying
part of the larger linear space of the algebra G. We also need
to admit a metric defined by the usual dot product of two
vectors a; b 2 V

a � b ¼ ab cos h; (1)

where a and b are the magnitudes of the vectors and h is the
angle between them. This operation forces us to include the
real numbers R as a linear subspace of G, providing the Clif-
ford algebra with a graded structure where the scalars have
grade 0 and the physical vector space V has grade 1. We
next find the elements of grade 2, called bivectors, by form-
ing the “wedge” (or exterior, or Grassmann4 product ^) of
two vectors, thus encoding the plane defined by them. Given
that two collinear vectors do not form a plane, a ^ a ¼ 0:
Taking advantage of the distributivity rule,
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ðaþ bÞ ^ ðaþ bÞ ¼ a ^ bþ b ^ a ¼ 0; (2)

we obtain the antisymmetry property of the wedge product

a ^ b ¼ �b ^ a: (3)

Furthermore, the area of the parallelogram formed by the
two vectors is abjsin hj, so the bivector represents an oriented
surface (see Fig. 1).

Clifford’s stroke of genius5 converted Schwartz’s inequal-
ity (for both the dot and wedge products) to an equality by
defining the geometric product of two vectors a and b in V
as

ab ¼ a � bþ a ^ b (4)

and then building up the geometric algebra by demanding
closure. This geometric product combines zero-grade scalars
with second-grade bivectors with a resulting magnitude6

kabk ¼ ab: (5)

Thus, geometric algebras constrain the symmetric part of the
product of two vectors to correspond to their dot product, as is
evident in Eq. (4). The antisymmetric part of this product is
associative, making the geometric product itself associative.1,2

In order to close the algebra, we need to keep incorporat-
ing new multivectors of higher grade. The wedge product of
two vectors gives a bivector; bivectors can now be wedged
with another vector to produce a trivector, and so on. These
additional structures represent oriented volumes (and hyper-
volumes), as illustrated in Fig. 1 and will eventually close
the algebra in a finite number of steps due to the antisymme-
try property, Eq. (3). With this geometric interpretation, the
wedge product turns out to be associative.1,2,4 Because of
their geometric liaison, multivectors are also very useful for
interpreting the behaviors of many familiar physical quanti-
ties as we will show below.

B. Geometric algebra in 3-d

Our main example is the Clifford algebra G3 generated by
the three-dimensional Euclidean space V ¼ R3. This Pauli
algebra7 is eight dimensional and consists of linear combina-
tions of multivectors of grades 0 to 3, i.e., scalars, 3-d
vectors, 3-d bivectors, and 1-d trivectors (also called pseudo-
scalars). The basis element of the real line R is the number
1. For R3, we choose an orthonormal basis of unit vectors,
e1; e2; e3. The advantage of using orthonormality is that we
can rely on the more versatile Clifford product in order to

construct the subsequent multivector bases. For instance, the
bivector basis element e1 ^ e2 turns out to be the same as the
product e1e2 in this case. The eight basis elements of the
Pauli algebra are classified by grades in Table I.

Notice that the three resulting unit bivectors square to �1
instead of 1. This follows from their antisymmetry; for
example,

e1e2 ¼ e1 ^ e2 ¼ �e2 ^ e1 ¼ �e2e1; (6)

and hence ðe1e2Þ2 ¼ e1e2e1e2 ¼ �ðe1e1Þðe2e2Þ ¼ �1. The
same is true for the pseudo-scalar (unit trivector)

ðe1e2e3Þ2 ¼ e1e2e3e1e2e3 ¼ �1: (7)

It can also be appreciated from Fig. 1 that the unit trivec-
tor e1e2e3 represents the (right handed) oriented unit cube.
At the same time, we can use Eq. (7), together with the fact
that the unit trivector commutes with all the basis elements,
to identify it with the imaginary unit i (in an algebraic sense).
This is the actual meaning of the third column in Table I.

In summary, we can take i as the basis element of the triv-
ectors, and fiekg as the basis of the bivectors, for the Pauli
algebra. In other words, every vector a 2 R3 has a corre-
sponding dual bivector A ¼ ia, and vice versa, a ¼ –iA.
This duality associates a vector a normal to the surface
defined by the bivector A in a natural way (see Appendix).

For the present example G3, the duality property is
expressed as

a ^ b ¼ ia� b; (8)

in terms of the unit pseudo-scalar i. Two main features dis-
tinguish Grassmann’s wedge product from Gibbs’s cross
product:

(a) the ^ is well defined for any number of dimensions (as
well as for pseudo-Euclidean spaces) and

(b) the ^ is associative while the � fulfills Jacobi’s
identity.

For the particular case of the Pauli algebra, we can thus
rewrite the defining Eq. (4) as

ab ¼ a � bþ ia� b; (9)

in terms of the usual dot and cross products between two
three-dimensional vectors.

C. Problem for students

Using the duality results for the Pauli algebra stated in the
Appendix show that for any three vectors a; b; c 2 R3,

a ^ b ^ c ¼ ia � ðb� cÞ; (10)

and give the geometric interpretation of this result.

Fig. 1. The wedge product of two vectors a, b is an oriented area, while the

wedge of a, b, c is an oriented volume.

Table I. The graded algebraic structure.

Grade Basis “Complex form” Space

0 1 1 R

1 e1; e2; e3 e1; e2; e3 R3

2 e1e2; e2e3; e3e1 ie1; ie2; ie3 iR3

3 e1e2e3 i iR
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III. THE INERTIA TENSOR

A. Angular velocity and angular momentum pseudo-
vectors

The classical mechanics formula for the angular momen-
tum vector in terms of the mass m, the position vector r, and
the velocity v is L ¼ m r� v, with corresponding dual
bivector L ¼ iL. For any particle rotating with angular ve-
locity x, the tangential velocity is v ¼ x� r. Consider a
rigid body rotating about some axis (see Fig. 2). Each parti-
cle will have the same angular velocity x. Using Eq. (8), the
total angular momentum of the rigid body8 can be written in
terms of the Clifford product in Eq. (9) by summing over all
the particles k ¼ 1… N

L ¼
XN

k

mkrk � ðx� rkÞ ¼ �i
XN

k

mkrk ^ ðx� rkÞ

¼ �i
XN

k

mkrkðx� rkÞ ¼
XN

k

mkrkðrk ^ xÞ: ð11Þ

In the continuum limit, this becomes

L ¼
ð

rðr ^ xÞ dm (12)

in terms of the mass distribution of the rigid body.
The inertia tensor plays the role of the mass (tensor) for

rotational motion:9 the angular momentum vector L is
obtained as the (scalar) product of the inertia tensor I with
the angular velocity vector x. In the language of Misner,
Thorne, and Wheeler,10 I is a “one-slot” machine sending
vectors to vectors, so its matrix representation has two indi-
ces. In other words, it is a linear mapping I : R3 ! R3, and
hence L ¼ IðxÞ:8

Both the angular velocity x and the angular momentum L
transform as pseudo-vectors (or axial vectors) with respect to
spatial reflections and inversions. Thus, a better description
of them is given in terms of their duals, the bivectors
X ¼ ix, and L ¼ iL, representing the corresponding planes
(see Appendix). This relationship will be exploited in Sec.
V A.

B. Moment of inertia: Example

Equation (12) defines the inertia tensor as a linear func-
tion, i.e., given any vector A, the image vector B is given by

B ¼ IðAÞ ¼
ð

r ðr ^ AÞ dm; (13)

and the matrix elements Ikl with respect to the given ortho-
normal basis fekg can be extracted as the projections

Ikl ¼ ek � IðelÞ: (14)

This 3� 3 matrix fIklg is symmetric and includes the
moments and products of inertia with respect to the original
basis.

Let us now look at a concrete simple example. Using Eq.
(12), it is straightforward to find the inertia tensor for a rotat-
ing rod and write it in a coordinate-free way. Consider a thin
rod of length a extending from �a/2 to a/2 and rotating
about an arbitrary axis passing through its center (see Fig. 3).
Choosing s as the integration variable, dm¼m ds/a, and r ¼
sn̂ in terms of the unit vector n̂ along the rod, we have

IðxÞ ¼
ða=2

�a=2

sn̂ ðsn̂ ^ xÞm ds

a
¼ ma2

12
n̂ðn̂ ^ xÞ: (15)

This result can be rewritten in terms of geometric products
only, using n̂ ^ x ¼ ðn̂x� xn̂Þ=2 from Eq. (4). This more
symmetric form,

IðAÞ ¼ ma2

24
ðA� n̂An̂Þ (16)

is actually the leit motif of the present work. Indeed the sec-
ond term, A0 ¼ �n̂An̂, has a simple geometric interpreta-
tion:2,8 A0 corresponds to the vector A reflected with respect
to the plane in̂.

C. Axially symmetric case

Let us next consider the more general case of an axially
symmetric body rotating about an arbitrary axis x. Given
that the inertia tensor is symmetric, it can be diagonalized
with corresponding orthogonal eigenvectors. The eigenval-
ues fI1; I2; I3g are real numbers and represent the principal
moments of inertia.9 Define ff1; f2; f3g as the respective unit
vectors along the principal axes of the rigid body, and
assume that f3 is the symmetry axis, so that the two moments
of inertia associated with the plane if3 are equal, i.e., I1 ¼ I2.

In the body-fixed basis (see Fig. 4), the inertia tensor can
be written in terms of the components of x as

Fig. 2. All points in a rigid body rotate about the rotation axis (here, indi-

cated by an �) at the same angular velocity, x. Fig. 3. A thin rod of length a rotating about its center at angular velocity x.
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IðxÞ ¼ I1x1f1 þ I2x2f2 þ I3x3f3

¼ I1ðx1f1 þ x2f2Þ þ I3x3f3

¼ I1xþ ðI3 � I1Þx3f3: (17)

The last term contains the component of x along the sym-
metry axis and can be rewritten in terms of the geometric
product

x3 ¼ x � f3 ¼
1

2
ðf3xþ xf3Þ: (18)

Substituting back into Eq. (17), we obtain the desired
form of the inertia tensor for the case of an axisymmetric
body,8

IðAÞ ¼ 1

2
ðI1 þ I3ÞAþ

1

2
ðI3 � I1Þf3Af3; (19)

expressed as a linear transformation from vectors to vectors.
Written in this form, the inertia tensor for any axisymmetric
rigid body appears as a simple generalization of the much
simpler case of a rotating rod.

D. Problem for students

Find the inertia tensor for the case of an ellipsoidal body
of dimensions a, b, c with uniform mass distribution.

IV. TIDAL FORCES: NEWTONIAN CASE

Our next example comes from a different field of physics:
the theory of gravitation. As a prelude to the relativistic case,
in this section, we deal with the Newtonian approximation
aiming to express the tidal acceleration symmetric tensor in
terms of geometric products, following the steps of Sec. III.

Einstein’s equivalence principle attests that the motion of
a single particle does not reveal any details about the space-
time curvature.11 It is the relative motion of two (or more)
particles that signals the presence of gravitational attraction.
For instance, if two nearby particles are falling toward an
attracting gravitational source, the particle closer to the cen-
ter of attraction will accelerate more. A Newtonian descrip-
tion gives rise to a tidal acceleration tensor involving the
spatial vector. Consider two seemingly parallel paths at infin-
ity approaching the spherical, massive body. As these paths
near the body, they will begin to converge. Let the measure

of this convergence be given by the three-dimensional sepa-
ration vector v. Assuming a small separation and expanding
in a Taylor series, we can show that the components vj obey
a second-order differential equation of the form11

d2vj

dt2
¼ �

X3

k¼1

ajkvk: (20)

Equation (20) is known as the Newtonian deviation equa-
tion and ajk are the nine components of the (symmetric) tidal
acceleration tensor A. This second-rank tensor represents a
measure of acceleration for path convergence.

For a point source at the origin, the Newtonian gravita-
tional potential is U ¼ �M=r, where M is the mass of the
attracting body and r is the radial distance from the origin of
symmetry (written in geometrized units, G¼ 1). In this case,
the tidal acceleration tensor is

ajk ¼
@2U
@xj@xk

¼ M

r3
ðdjk � 3njnkÞ (21)

in Cartesian coordinates, where djk is Kronecker’s delta, and
nj ¼ xj=r are the components of the unit vector in the radial
direction r̂.

Let us next rewrite this tensor A as a vector-to-vector
mapping. Given an arbitrary 3-d vector B with components
Bk, we can contract it with Eq. (21) to obtain the coordinate-
independent form

AðBÞ ¼ M

r3
½B� 3r̂ðB � r̂Þ�: (22)

This expression exhibits the dipole form familiar from
electrostatics.12 Using B � r̂ ¼ ðBr̂ þ r̂BÞ=2 as in Sec. III,
we obtain a similar formulation as the one for the inertia
tensor in Eq. (16)

AðBÞ ¼ � M

2r3
ðBþ 3r̂Br̂Þ: (23)

So far, in Secs. III and IV, we have expressed the second-
rank inertia and Newtonian acceleration tensors in terms of
the geometric product, showing a simple symmetric form. In
what follows we will deal with the nontrivial case of
bivector-valued mappings of bivectors and will find very
similar algebraic expressions to the ones above, but with a
different geometric interpretation.

V. BIFORMS IN PHYSICS

A. Mapping bivectors to bivectors

When we considered the inertia tensor in Sec. III, we used
vectors to define the rotation axes. In order to generalize
rotations to higher dimensions, we need to define them with
respect to a plane defined by a bivector. For the 3-d Pauli
algebra, we can still use Table I and replace the pseudo-
vector x with the corresponding bivector

X ¼ ix; (24)

which defines the plane perpendicular to the x axis. This can
indeed be interpreted as an imaginary vector in a pure alge-
braic sense.

Fig. 4. An axisymmetric rigid body rotated about the arbitrary axis x. Due

to the symmetry of the system, I1 ¼ I2.
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On the other hand, we also know that the angular momen-
tum L behaves as a vector with respect to rotations but not
with respect to inversions or reflections. We saw in Sec. III
that angular momentum can also be correctly described as a
bivector. We thus define the bivector

L ¼ r ^ p ¼ ir� p ¼ iL: (25)

For the case of a rigid body, we have to integrate over the
mass distribution (or sum over all the particles in the discrete
case) as in Eq. (12)

L ¼ i

ð
rðr ^ xÞ dm ¼ i

ð
1

2
ðr2x� rxrÞ dm

¼
ð

1

2
ðr2X� rXrÞ dm: (26)

Using Eq. (A3) from the Appendix, the first line in the
equation above can be rewritten in terms of the angular ve-
locity bivector X ¼ ix as

L ¼
ð

rðr �XÞ dm;¼ �
ð

rðX � rÞ dm (27)

involving the contraction of the vector r with the bivector X,
which turns out to be antisymmetric (see Appendix).

The inertia tensor now becomes a biform,13 i.e., a
bivector-valued linear transformation of bivectors. Thus, the
inertia tensor I is reinterpreted as mapping the plane defined
by a bivector B to a new plane C

C ¼ IðBÞ ¼
ð

rðr � BÞ dm ¼
ð

1

2
ðr2B � rBrÞ dm: (28)

This in turn leads directly to the analogue of Eq. (19),

L ¼ IX ¼ I1 þ I3

2
Xþ I3 � I1

2
f3Xf3; (29)

as a mapping from bivectors to bivectors for the axisymmet-
ric case. We would like to emphasize that although this last
equation looks almost identical to Eq. (19), they are concep-
tually different. While the latter refers to a second rank ten-
sor mapping vectors to vectors, Eq. (29) is a biform, i.e., a
bivector-valued transformation of a bivector.

B. The Riemann curvature tensor

The following three subsections make up a series of stepping
stones aiming to express the Weyl conformal tensor as a
biform using geometric products.2 In Sec. V B we give a gen-
eral introduction to curvature, the Riemann curvature tensor,
and its relation with the Weyl tensor.10 In Sec. V C we concen-
trate on the latter’s specific properties, while Sec. V D relates
both curvature tensors to general relativity for the case of the
Schwarzschild solution.

We usually think of a surface as being curved from the
way it warps or bends in our 3-d space. Let us suppose that
we are constrained to a curved 2-d surface, such as the sur-
face of a sphere, without access to the third dimension. In
this case, we would like to be able to determine whether or
not our surface is curved in an intrinsic fashion. A way to
quantify this is to calculate the curvature tensor (or Riemann
tensor). It allows us to extend the notion of curvature to

(a) more than two dimensions;
(b) each point in the curved space;
(c) different directions; and
(d) Lorentzian metrics.

The Riemann tensor R accounts for the rotation of a vec-
tor as it travels along a closed path while always pointing in
the same direction. The more the transported vector differs
from the original one, the larger the curvature. On a planar
surface, it is easy to set the pointing direction of any vector
and keep it fixed as we travel along a circle or a square. The
resulting vector points in the same direction as the original,
there is no net rotation, and hence the curvature vanishes in-
dependently of the chosen direction and the chosen
coordinates.

For the more general case of a higher dimensional curved
space, we need to follow an infinitesimal path in order to
obtain the local curvature at each point.14 The chosen small
closed path defines a two-dimensional surface. We could, for
instance, choose two coordinates u and v and form a four-
sided (oriented) loop of sides Du and Dv. Let us next choose
a vector X and parallel-transport it along the closed loop to
the rotated final vector X0. The bivectors û ^ X and
v̂ ^ X

0
define two different planes. The Riemann tensor maps

one bivector onto the second bivector. In other words, the
curvature tensor R, in any number of dimensions d � 2, is a
linear biform mapping bivectors to bivectors

R : bivectors! bivectors: (30)

Hence, R is a fourth-rank tensor.
In the theory of general relativity, the Riemann tensor R

can be considered as a “tidal acceleration” tensor10 general-
izing the corresponding Newtonian tensor appearing in Eq.
(20) to the 4-d curved space-time.

A more restricted measure of the curvature is given by the
Weyl conformal tensorW. It measures the tidal acceleration
taken along a geodesic and detects only the distortion of the
shape of the body but carries no information on its change of
volume. Indeed it is the only part of the curvature that exists
in free space. In two and three dimensions, the Weyl tensor
vanishes identically. In four or more dimensions, W corre-
sponds to the traceless part of the Riemann tensor R. The
difference between these two tensors is expressed in terms of
the second-rank Ricci tensor mapping 4-d vectors to 4-d
vectors.10

In order to study the Riemann tensor and its trace in four
dimensions, we would have to consider the corresponding
16-dimensional algebra instead of the more limited 8-
dimensional Pauli algebra. However, given the special prop-
erties of W, it is possible and convenient to express it in
terms of a combination of vectors and bivectors of the Pauli
algebra. The more complete derivation starting from a space-
time split of bivectors15 and considering biforms within the
16-dimensional Dirac algebra is given in detail elsewhere.2

In this paper, we exploit the fact that the Pauli algebra is iso-
morphic to the even subalgebra of the Dirac algebra.15

C. The Weyl tensor

In Sec. III, we found the principal moments as the eigen-
values of the inertia tensor I . Given that this transformation
is real and symmetric, there is no question about its three
eigenvalues being real. Knowing these eigenvalues allowed
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us to write I in a simple form, especially in the axisymmet-
ric case. This is true even when we consider I as a biform,
as in Eq. (29).

Our aim now is to generalize this procedure to the case of
a curvature biform in a four-dimensional curved space. In
this case, the local (tangent) space turns out to be Minkowski
space, M4 ¼ R1;3. As is well known, the (1þ 3)-d flat
space-time of special relativity is Lorentzian, meaning that
the “distance” Ds between two events (i.e., two points in this
space) acquires a hyperbolic character

ðDsÞ2 ¼ c2ðDtÞ2 � ðDrÞ2; (31)

where r refers to vectors in the usual 3-d space.
We now have six basis bivectors that can be separated into

two different types:

(a) three spatial bivectors corresponding to the three or-
thogonal spatial planes whose square is �1 and

(b) three spatio-temporal planes where one of the defining
axes is time and whose square is þ1.

Strictly speaking, these six bivectors form part of the larger
Dirac algebra G1;3.15 However, if we choose the time axis to
coincide with the direction of the observer, we can iden-
tify15,16 the set in (b) with the 3-d basis vectors in Table I,
while (a) coincides with the 3-d bivectors fie1; ie2; ie3g. From
this point of view, Dirac bivectors correspond to Pauli
“complex” vectors. Within this particular reference frame, it
turns out to be sufficient to restrict ourselves to the G3 algebra
in order to study Lorentz transformations and the Weyl con-
formal tensor. As mentioned above, the Ricci tensor and the
complete Riemann tensor require, in addition, the inclusion of
mappings between 4-d vectors absent in the Pauli algebra.

Incidentally, given the hyperbolic nature of Minkowski
space, we can also construct “null elements” whose squares
vanish (i.e., they are nilpotent), such as e16ie3. These turn
out to play an important role in describing the paths followed
by light and have been extensively used in the Newman-
Penrose description of general relativity.17

In this paper, we shall follow a different path: instead of
considering six basis elements for the bivectors in the tan-
gent M4 space, we restrict ourselves to a real 3-d vector
local basis fe1; e2; e3g and allow for “complex” coefficients.
Within this frame, the biform corresponding to the Weyl
conformal tensor W can now be interpreted as a linear map-
ping between complex 3-d vectors. In a way, this is a gener-
alization of Sec. V A above where the inertia tensor appeared
as a linear transformation between “imaginary” 3-d vectors.
Although W is still symmetric as a linear transformation, it
turns out to be complex symmetric so there is no longer a
guarantee that the corresponding eigenvalues are real.

Regarding the application of these ideas to general relativ-
ity, we can confine ourselves to the source-free case of Ein-
stein’s equation where the Riemann tensor R coincides with
the Weyl tensorW. The reason is that the difference between
the two tensors involves the Ricci tensor, which vanishes in
this case.10

The Weyl tensor W has the following useful proper-
ties2,10,18 as a linear transformation:

(a) W is complex symmetric;
(b) W is traceless;
(c) W is self-dual, i.e., WðiBÞ ¼ iWðBÞ for any complex

vector B.

In other words, W can be represented as a 3� 3 complex
symmetric, traceless matrix W with respect to the given 3-d
basis

Wkl ¼ Wlk;

TrðWÞ ¼ 0;

WðBÞ ¼
X

kl

WklekBel: (32)

In analogy to the principal moments of inertia, we can
solve the eigenvalue problem,

WðVÞ ¼ kV: (33)

There are three complex eigenvalues fk1; k2; k3g associ-
ated to each point of the curved space, with three corre-
sponding eigenvectors fV1;V2;V3g. Given that W is
traceless, the sum of the three eigenvalues vanishes so only
two of them are independent. Comparing with the inertia
tensor in Sec. V A above, we notice that the complex
eigenvectors include in general an additional real part, absent
in the R3 case. This is indeed due to the presence of
additional space-time planes in M4.

The particular case in which the three eigenvectors span
the entire 3-d space14,17–19 is especially important from the
point of view of Einstein’s general theory of relativity. In
other words, there are no null eigenplanes in this case and
we can choose three orthonormal (principal) vectors, V i ¼ f i

with f2
i ¼ 1 for i¼ 1, 2, 3. First, let us assume that the three

eigenvalues are all different. Using the identity

X
i

f iBf i ¼ �B; (34)

valid for any complex vector B, and taking into account the
traceless nature of W, we can eliminate k3 and expand it13

using only two eigenvalues

WðBÞ ¼ f1Bf1 þ
1

3
B

� �
G1 þ f2Bf2 þ

1

3
B

� �
G2; (35)

where G1 ¼ 2k1 þ k2 and G2 ¼ 2k2 þ k1 are functions of
the space-time event depending on the curvature properties
of the 1þ 3-dimensional curved space.

D. The Riemann tensor for the Schwarzschild solution

In Einstein’s theory of general relativity, the space-time de-
pendent metric tensor10,11 is usually taken as the physical
object, characterizing the gravitational system by defining a
measure of the space-time deformation. By the same token,
the curvature tensor R is the crucial geometric component
and it plays the role of a gravitational field strength, given that
a nonvanishing curvature tensor implies the presence of gravi-
tation.20 The curvature tensor corresponds to the tidal acceler-
ation tensor whose Newtonian limit is given by Eq. (20).

For the source-free case, R and W coincide. Thus, Eq.
(35) above is a canonical form of the Riemann tensor for a
whole class of solutions of Einstein vacuum equations.19 In
particular, if there is a geometric symmetry involved, we can
follow the same procedure as in Sec. III for the inertia tensor.
This will allow us to eliminate one more term in Eq. (35)
and rewrite it as
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WðBÞ ¼ Gðt; rÞ f1Bf1 þ
1

3
B

� �
; (36)

where the explicit form of G is determined by the specific
physical problem.

The simplest nontrivial case is that of a static, spherically
symmetric space-time. The Schwarzschild solution10,11 to
Einstein’s vacuum equations follows from the following
(somewhat redundant) premises:

(a) no time dependence of G;
(b) spherical symmetry, G¼G(r);
(c) behaves locally as M4; and
(d) coincides asymptotically with the Newtonian case.

Following the ideas developed in Sec. III, we can now
choose the unit principal vector f1 as corresponding to spher-
ical symmetry, i.e., f1 ¼ r̂ according to (b) above. The Rie-
mann tensor for the Schwarzschild solution can be expressed
as a biform in our now-familiar form2

RðBÞ ¼ WðBÞ ¼ � 3M

2r3
r̂Br̂ þ 1

3
B

� �
; (37)

where M is the black hole mass. It differs from Eq. (23) only
in the fact that W maps tangent planes to tangent planes in
the curved space of general relativity instead of the simpler
Cartesian 3-d space.

VI. DISCUSSION

The geometric interpretation of bivectors as oriented
surfaces in Grassmann algebras becomes especially rele-
vant in Minkowski 4-d space-time and associated curved
spaces, where we have to distinguish between purely spatial
and time-space mixed surfaces. By including a metric and
the corresponding dot product in Clifford algebras, we can
extend this geometric advantage to an algebraic one as
well. Bivectors in R3 can be treated as imaginary 3-d vec-
tors eliciting a duality relation between both sets. Adding
time as a coordinate in Minkowski space M4 produces
three more planes with a hyperbolic geometry. The corre-
sponding unit bivectors square to 1 (instead of �1) and
hence can be identified with the R3 basis vectors, at least as
long as we choose the observer’s reference frame. This
space-time split15 allows us to refer all possible M4 bivec-
tors to the Pauli algebra as defined in Table I. Algebrai-
cally, we treat the linear combinations of the six
independent Dirac bivector basis elements as complex 3-d
vectors within G3. Thus, antisymmetric tensors (such as the
electromagnetic field) can be rewritten as complex 3-d
vectors.15,16

The final expressions in Secs. III and IV are written in
terms of Clifford products. Given that they correspond to lin-
ear mappings of vectors, they can be expressed in terms of
dot products as well, i.e., projecting the vector along the cho-
sen fixed direction. Equations (17) and (22) have this form.
In the case of biforms, i.e., tensors mapping bivectors to
bivectors, this is not so simple given that the product of two
bivectors is a linear combination of scalars, bivectors, and
tetravectors corresponding to dot products, commutators,
and wedge products.2 So, in this respect, Eqs. (29) and (35)
are true canonical representations for the fourth-rank axi-
symmetric inertia tensor and Weyl tensor for the cases con-
sidered in this work.

APPENDIX: PSEUDO-VECTORS AND BIVECTORS

In the usual 3-d Euclidean geometry, the cross product of
two vectors turns out to be a pseudo-vector in the sense that
the resulting vector does not change sign with respect to a
spatial inversion, while a regular vector does. Typical
examples are the angular momentum, the torque, and the
magnetic field. The angular velocity (being proportional to
the angular momentum in the simplest case) is also a
pseudo-vector.

The concept of a pseudo-vector can be generalized to any
number of dimensions (and pseudo-Euclidean spaces) by
shifting our geometric perspective. Instead of looking at the
directional aspect of the pseudo-vector, we can convey
the same information by defining the bivector dual to the
pseudo-vector. This bivector defines the plane perpendicular
to the pseudo-vector. Unlike the concept of a pseudo-vector,
the bivector (and its corresponding plane) is well defined in
any number of dimensions. From the tensorial point of view,
the bivector corresponds to a second-rank antisymmetric
tensor.

For instance, in the case of the motion of a planet with
constant angular momentum L, its dual bivector L ¼ iL
defines the plane of planetary motion through the wedge
product, Eq. (25). The angular velocity bivector X in Eq.
(24) thus describes the dynamics of the rotational motion of
a plane independently of the dimension of the vector space.

The wedge product and the dot product in Eq. (4) have
entirely different geometric interpretations and their alge-
braic properties are also different. Hence, it is necessary to
consider the commutation relation of the pseudo-scalar i
with respect to each of them separately. In the specific case
of the Pauli algebra G3, i commutes with every element of
the algebra with respect to the geometric product.21 How-
ever, when we consider the dot and the wedge products on
their own, this is no longer true. Indeed the duality relation
of Eq. (8) can be generalized.2 Given two 3-d vectors a and
b, we can consider the contraction of the vector a with the
bivector bi

a � ðbiÞ ¼ ða ^ bÞi: (A1)

The result of this contraction (dot product) is a vector.
This also shows explicitly that we cannot “pull out” i when
dealing with the dot or the wedge product separately, in spite
of the fact that this is a valid operation with respect to the
full geometric product.

We also have that ðbiÞ � a ¼ ðb ^ aÞi ¼ �a � ðbiÞ, and in
general the dot product of a vector and a bivector is
antisymmetric,

a � B ¼ �B � a; (A2)

instead of being symmetric as in the usual case of two vec-
tors (a � b ¼ b � a).

For the wedge product, duality reads

a ^ ðbiÞ ¼ ða � bÞi; (A3)

confirming the fact that the wedge product of a vector with a
bivector is a pseudo-scalar in G3.
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