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We discuss using a tabletop ion interferometer to search for deviations from Coulomb’s inverse-square
law. Such deviations would result from nonclassical effects such as a nonzero photon rest mass. We
discuss the theory behind the proposed measurement, explain which fundamental, experimentally
controllable parameters are the relevant figures of merit, and calculate the expected performance of
such a device in terms of these parameters. The sensitivity to deviations in the exponent of the inverse-
square law is predicted to be a few times 1022, an improvement by 5 orders of magnitude over current
experiments. It could measure a nonzero photon rest mass smaller than 9 X 1073 grams, nearly 100 times

smaller than current laboratory experiments.
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The experimental search for deviations from current
theories will eventually lead to the next, more fundamental
theory of physics. Such studies challenge the standard
model and give insight into the form of the underlying,
more elemental theory. Coulomb’s inverse-square law is
the foundational law in electrostatics. Gauss’s law and
Maxwell’s equations are built upon this law and the prin-
ciple of superposition. Precision tests of this law are essen-
tial to push forward our understanding of -electro-
magnetism and its relation to the other forces.

Detection of any deviation from Coulomb’s law would
have far-reaching implications. Maxwell’s equations and
much of the standard model would have to be modified.
The notion that absolute electrostatic potential is arbitrary
would have to be abandoned, along with many other tenets
of classical electromagnetism. Inverse-square-law viola-
tion would suggest a finite range for the electromagnetic
force, implying a nonzero photon rest mass [1-3].
Consequences of massive photons include a frequency-
dependent velocity of light in vacuum and electromagnetic
waves with a longitudinal component of polarization [4].
Several grand-unification theories include massive photons
[5,6], and further tests of the inverse-square law can help
confirm or disprove them.

Several studies have searched for consequences of mas-
sive photons rather than testing the inverse-square law
directly [2]. These studies involve many assumptions about
the nature of interstellar space and the sources of the
measured light waves. It is therefore necessary to verify
these results with laboratory experiments where variables
can be better controlled [7]. And while the possibility of a
massive photon supplies additional motivation and pro-
vides a common parameter to compare experiments, it is
possible that Coulomb’s law is violated for reasons unre-
lated to photon rest mass. Only an experiment that specifi-
cally measures the inverse-square law would be sensitive to
these effects.

Although Coulomb’s law has been tested many times
over the past two and a half centuries [3,10-14], this

0031-9007/07/99(20)/200401(4)

200401-1

PACS numbers: 03.75.—b, 06.20.Jr, 12.20.Fv, 14.70.Bh

subject has seen little progress in the past three decades.
The smallest laboratory-based limit on the photon rest
mass was reported 24 years ago [14]. In this experiment
an alternating voltage was applied between two conducting
shells, and the induced voltage between the outer of the
two and a third shell was measured with solid-state elec-
tronics. This measurement improved upon the best pre-
vious measurement, 12 years old at the time [13], by only a
factor of 2.5. In this Letter we show that it should be
possible to revitalize this key field of study and improve
sensitivity by orders of magnitude using a new approach—
charged particle matter-wave interferometry.

In the proposed experiment, a possible Coulomb’s-law
violating electric field inside of a conducting shell is
measured with an ion interferometer. As shown in Fig. 1,
ions travel through a conducting cylinder nested inside of a
second cylinder. The outer conductor is grounded, and a
time-varying voltage is applied to the inner conductor. A
slow beam of atoms passes through small holes in the
conductors. The atoms are ionized with a laser beam,
shown as an arrow in the figure, and pass through three
gratings to form a Mach-Zehnder interferometer. If an
electric field is present in the inner conductor, the two
interferometer arms will pass through different potentials,
resulting in a relative phase shift. Using optical gratings
would allow state-selective readout and avoid drawbacks
of physical gratings [15], including charge buildup and

FIG. 1 (color online). A cutaway cartoon of the proposed
experiment. The diagram is not to scale, and some dimensions
have been greatly exaggerated for visibility.
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image charges in the gratings. Using Raman transitions
[16] would allow precise control of grating phases.

To calculate the sensitivity that could be achieved, we
start with a modified version of Laplace’s equation derived
from the Proca action for massive photons:

V2$ — uld = 0. (1)

In this equation ¢ is the scalar electrostatic potential, and
ty = m,c/h, where m, is the photon rest mass, % is
Planck’s constant divided by 277, and c¢ is the canonical
speed of light in vacuum.

In the limit as u, — 0, Eq. (1) becomes Laplace’s
equation. For a spherically symmetric system, Laplace’s
equation has the familiar solutions ¢(r) = A/r and
¢(r) = B, where A and B are constants. The A/r solution
is the classical point-charge potential. The constant B
solution allows us to arbitrarily define a point to be at
zero potential without changing the fields described by
the potential. If w, # 0, the solutions for a spherically
symmetric system are a Yukawa potential ¢(r) = (A/r) X
exp(— u,r) and an exponentially growing solution ¢(r) =
(B/r)exp(m,r). The Yukawa-potential solution lets us
interpret 1/u., as an effective range of the Coulomb force.
Without a constant solution, absolute potential has physical
significance and we are no longer free to arbitrarily choose
where ¢ equals zero.

Because of the elongated geometry of the proposed
experiment, we will approximate the finite inner conductor
with an infinitely long tube. Numerical and analytical
studies have verified that this is a good approximation for
reasonably long tubes (see Fig. 2 and [17]). For a system
with no angular or longitudinal dependence, solutions to
Eq. (1) are the zeroth-order modified Bessel functions.
Applying the conditions that ¢(r) must equal the applied
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FIG. 2. Calculations of potentials in a 2.6 m long, 27 cm radius
tube held at 200 kV. The calculation assumes m, =
1 X 1079 grams. Potentials are plotted vs the radial distance
from the tube axis. The black lines are the deviation from the
classical potential at axial distances of zero (lower line) and 1 m
(upper line) from the middle of the tube, plotted on top of a thick
gray line representing the deviation for an infinite tube. The
dotted lines show the calculated classical fringing-field poten-
tials at the same locations multiplied by 10% to make them
visible on this scale.

voltage when r = R (the radius of the tube), we determine
that to lowest order in u., the potential inside the inner tube
is given by

2
b(r) = (V + vg)[1 + B2 - Rz)} ®)

Here V is the voltage applied to the inner tube relative to
the outer tube, and Ve is the unknown voltage of the outer,
grounded tube.

Rather than absolute potential, the interferometer will
measure the potential difference between the two arms.
Each of the arms in Fig. 1 consists of one horizontal and
one diagonal segment. The diagonal segments can be
neglected because they both pass through identical poten-
tials inducing equal phase shifts. The horizontal segments,
however, travel through different potentials. Assuming that
the two horizontal segments are a distance ry and ry + s
from the center of the tube, the potential difference be-
tween them is

2
Ad = dlro + ) — blry) = %(V + V)52 + 2rgs).

3

If 7 is the time that it takes the ions to travel the length of
the horizontal segments, and e is the ion charge, the
interferometer phase @ is given by

2
O = LIV V)R 20T+ 0 @)

where @ is the phase when V + V, = 0. This term in-
cludes all phase shifts that are not dependent on the abso-
lute potential, such as those due to patch charges,
imbalanced interferometer arms, etc. Although Vg and
@, are unknown, one could change the potential V by an
amount AV and look for a correlated change in the inter-
ferometer phase. Because the ~700 uF capacitance of the
Earth is very large compared to the ~1.6 nF capacitance of
the proposed conductors, V, will remain roughly constant
as V is changed, and the difference in phase due to the
potential change will be
eAVu2t

~ (s 2rg). 5)
Solving Eq. (5) for u, we can determine the rest mass of
the photon from the measured interferometer phase shift:

h 4hAD 1/2
[eAV(s2 + 2r0s)7}

Ad

my~

- (6)
C

To estimate the smallest detectable m,, it is useful to
rewrite Eq. (6) in terms of experimentally accessible pa-
rameters. One important parameter is the velocity of the
ions v. A smaller velocity results in larger diffraction
angles but more deflection by stray electric fields. Fields
will be extremely small inside the tube at the locations of
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the gratings (see Fig. 2), but they could be much larger in
the region where the ions are generated. If we write the
velocity as v = (2eV,/m)"/? where m is the mass of the
ions and V/ is the voltage that would just bring the ions to a
stop, we can set V; to be several times the level of the
expected stray fields to be sure that the trajectory of the
ions is not greatly perturbed by them.

Two other important parameters are the maximum ex-
cursion of the ions from the center of the tube, a = ry + s,
and the distance between gratings, L. A larger tube radius
accommodates a larger separation s and offset r(. A larger
grating separation L means that the ions will interact with
the field longer (7 = L/v) and results in a greater separa-
tion of the two arms of the interferometer (s = Lh/muvd,
where / is Planck’s constant and d is the grating period).
With these parameters in mind, we can rewrite Eq. (6) as

1/2
} , )

where the parameter Q = s/2a = wLh/(2emV a*d?)'/?
shows very weak dependence on ion mass and charge—
although higher charge and lower mass results in more
precision for a given ion velocity, this is offset by the
greater velocity needed to overcome deflections by stray
fields. For arbitrary experimental parameters, 0 < Q =
1/2. For the parameters selected below, Q is small for all
possible ion masses, ranging from 1 X 1072 for '"H* to 1 X
1073 for 133Cs™, and the precision of the experiment will
not change much with the mass or charge of the ion.

There are practical limits on L and a for a tabletop
apparatus. We chose L to be 1 m, and limited a to be a
conservative 25 cm. For our numerical calculations (Fig. 2)
we assumed a total length for the inner tube plus end caps
of 3 m, and a tube radius of 27 cm. This gives sufficient
space to limit fringing fields, to be sure that the infinite-
tube calculation is a good approximation in the region of
the interferometer, and to keep the ions in the interferome-
ter away from the tube surface. Only a, and not the outer
radius of the tube, affect the precision predicted in Eq. (7).
So a tube with a larger radius could be used to further limit
ion-surface interactions without changing the predicted
precision.

We assumed a grating period of 200 nm, about half the
wavelength of a readily available uv diode laser. We se-
lected a value of 400 kV for AV because =200 kV is
within the range of what is possible with off-the-shelf
power supplies and vacuum feedthroughs. Based on work
done with atom interferometers [18], it should be possible
to detect phase shifts as small as 10~ radians. We set the
final parameter, V, to 0.5 mV assuming that voltages due to
stray fields can be controlled well below this level.

Given the assumed parameters, the separation s would
range from 6.4 mm (for '"H") to 0.56 mm (for '33Cs*), and
the ion beam would enter the apparatus at a radius r
ranging from 24.4 cm ('"H') to 24.9 cm ('33Cs™). For

h [ 2004V,
m

v~ ¢L| #AVa(l — Q)

electrons these parameters yield an s larger than the radius
of the tube, making electrons a poor choice for these
experimental parameters. For a horizontal apparatus in
gravity, assuming that the ions undergo a parabolic trajec-
tory with the peak at the location of the center grating, the
ions will fall a vertical distance ranging from 51 um (‘H")
to 6.8 mm ('*3Cs™), giving them a vertical velocity of only
1.0 X 107* (*H") to 1.4 X 1072 (133Cs™) times their lon-
gitudinal velocity. The phase shift due to gravity will be
constant as the applied voltage is changed, and it will not
affect the measurement.

The velocity of the ions, determined by V; and the mass
of the ion, ranges from 311 m/s (‘H") to 27 m/s (!33Cs™).
Ions at these velocities could be generated by ionizing a
slow neutral-atom beam; a velocity of 27 m/s is a reason-
able velocity for a beam of atoms from a laser-cooled
source [19]. Higher velocities are easily obtained by accel-
erating the ions with a small potential. As such, any atom
that can be laser cooled could be used, all resulting in
similar sensitivity. However, lighter ions have the advan-
tage of faster transit, which would make it possible to
modulate the voltage applied to the tube at a higher fre-
quency, reducing the effective bandwidth of systematic
drifts.

With these parameters we predict a sensitivity to photon
rest mass of 9 X 1079 grams, nearly 2 orders of magni-
tude smaller than the limit in [14]. In addition to photon-
rest-mass limits, following the tradition of Cavendish [11]
it is also common to assume that the point-charge potential
falls off as r~U*9 and to quantify inverse-square-law
violations with the small parameter §. Because the Proca
treatment is not necessarily correct, this additional figure of
merit is valuable. Unfortunately, the r~(! 7% potential does
not come from an underlying theory. If such a theory
existed, 7~ would enter naturally as a solution to a
modified version of Laplace’s equation. At least one more
solution, one which is finite at » = 0, must exist. Knowing
just one of the solutions is not sufficient to determine
charge distributions.

It appears that previous experiments calculated limits on
6 by integrating the point-charge potential over the classi-
cal charge distribution. But the unmodeled deviation of the
true charge distribution from the classical distribution
could greatly affect the magnitude of 6. Furthermore, if
the unknown equation is nonlinear, the potential cannot be
related to an integral of point charges. It is also disturbing
that in this formalism the units of the permittivity €,
depend on 6. Ignoring these concerns, we integrated the
point-charge potential over the classical charge distribution
and predict a limit on & of a few times 1072? in the
proposed apparatus, an improvement of 5 orders of mag-
nitude over the value reported in [14].

In addition to higher sensitivity, the proposed device
overcomes a potential pitfall present in the most recent
experiments. In these studies [13,14] a voltage between
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two conducting shells was measured electronically. Any
nonzero electric field would tend to draw a charge through
the electronics to cancel the field. If 0.001 times the charge
of an electron passed through the probe electronics, it
would cancel the field due to a photon mass larger than
the reported precision. But in our scheme the only influ-
ence the ions have on the system under test is the well-
understood induction of an image charge in the conductor.

The largest errors in the proposed measurement are
expected to be due to inertial-force shifts [18] and ion-
ion interactions. The ion-ion interactions can be reduced by
limiting the number of ions inside the conductor at any
given time—in the limit of a single ion at a time, this effect
disappears while still affording a count rate of tens to
hundreds of ions per second. This drift can also be reduced
by using nonclassical, antibunched ion beams.

We performed numerical calculations and piecewise
analytical solutions to verify that fringing fields from holes
in the conductor could be made negligibly small [17]. The
calculations show that fringing fields will be tens of orders
of magnitude below the detection limit (see Fig. 2), and
should not be an issue. In these calculations the inner
conductor was capped with 20 cm long end caps to reduce
fringing fields. Because the calculations assumed axial
symmetry, the holes in the end cap were replaced with
ring-shaped apertures. As such, the calculations greatly
overestimate the size of the fringing fields.

Drifts in patch charges [20] and similar effects should
not be correlated with changes in the applied voltage,
especially considering the extremely small level of the
fringing fields. The susceptibility to stray electric fields
should be no greater than in other recent laboratory tests of
Coulomb’s law, and in [14] it was implied that these effects
were not a limitation. Magnetic shielding will be neces-
sary, and magnetic fields created by the charging and
discharging of the conductors will have to be taken into
account. The effect of eddy currents could be reduced
exponentially by increasing the time between voltage re-
versals. And although static fields will not affect the phase
difference, large static fields will reduce fringe contrast.
Nevertheless, these difficulties are surmountable in a rea-
sonable experiment.

In conclusion, we have discussed the prospect of using
ion interferometry to search for violations of Coulomb’s
law. Calculations using reasonable parameters suggest that
a tabletop device should be able to detect a photon rest
mass at the level of 9 X 107" grams and measure devia-
tions in the exponent of Coulomb’s inverse-square law at
the level of a few times 10722, both representing an im-
provement of several orders of magnitude over current

laboratory measurements. In addition, the apparatus would
be immune to effects related to the modification of the field
by the instrument used to measure it.
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