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Abstract: The nonlinear propagation of a pure sinusoid is considered
using time domain statistics. The probability density function, standard
deviation, skewness, kurtosis, and crest factor are computed for both
the amplitude and amplitude time derivatives as a function of distance.
The amplitude statistics vary only in the postshock realm, while the am-
plitude derivative statistics vary rapidly in the preshock realm. The sta-
tistical analysis also suggests that the sawtooth onset distance can be
considered to be earlier than previously realized.
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1. Introduction

Nonlinear effects in acoustic propagation are caused by both convection and local tem-
perature changes in the rarefaction and condensation portions of the wave, which
increase or decrease the effective sound speed. This, in turn, causes a sinusoidal wave
to become steepened and, in the absence of sufficient absorption, eventually form into
a sawtooth wave with weak shocks. Fubini' derived an analytical solution for the
finite-amplitude sinusoid in terms of an infinite summation of harmonics valid in the
preshock realm. Blackstock® expanded this derivation to go from the preshock region,
through the transition region and into the sawtooth realm, where the Fay solution’
holds.

Although less common than time or frequency domain analyses, the statistics
of finite-amplitude waves have been used to characterize their nonlinear behavior.
Webster and Blackstock® performed a theoretical analysis of nonlinear distortion on
amplitude density revealing that the amplitude density does not significantly change in
the preshock realm. The amplitude density is the probability of occurrence of given
amplitudes within the waveform and is defined by Webster and Blackstock in terms of
velocity as

P(u) = lim = (1)

where 7 is the sample length and N is the number of intervals A¢ in which the signal is
between the velocities # and u + Au.
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Sakagami et al.” also used changes in the probability distribution in a study of
nonlinear propagation in a duct and observed a shift in the distribution of Gaussian
noise toward a more uniform distribution. McInerny® employed higher-order time do-
main statistics including skewness, kurtosis and crest factor to examine nonlinearity in
measured rocket noise. Later McInerny and Olcmen’ used a simple finite-difference
estimate to approximate the pressure time-rate-of-change in a rocket noise waveform
and showed that it was more sensitivity to nonlinearity than the pressure waveform
statistics. Additionally Gee er al.® showed that the perception of jet noise crackle is
related to amplitude time derivative statistics.

To complement the previously developed theories' ™ for the propagating finite-
amplitude sinusoid, its statistical evolution is presented in this Letter. The results are
provided as a function of ¢, which is the ratio of the distance and the shock formation
distance for an initial sinusoid. Specifically, the normalized pressure amplitude density,
standard deviation, skewness, kurtosis, and crest factor are shown to have little
variation up to approximately ¢ = 1.3, after which there is significant deviation for all
measures except skewness. The statistical evolution of the time derivative of the
waveform is also shown in the preshock region, revealing rapid variations for o < 1.
These results also show that from a statistical standpoint, the onset of the sawtooth
distance, which is traditionally set at ¢ =3,% can be considered to onset prior to ¢ = 3.

2. Statistics of amplitude

The transition of a sinusoid to a sawtooth wave is described as a Fourier series by the
well-known Blackstock bridging function.” The two limiting cases of the bridging func-
tion have more compact analytical solutions, but rarely are discussed in terms of the
amplitude distribution. Figure 1 shows a unit sine wave and sawtooth wave with unit
period along with their respective amplitude density functions. A sinusoid has a bi-
modal distribution with peaks where the waveform slope changes sign and a trough at
the region of nearly constant slope. The sawtooth wave has a uniform distribution.

The Blackstock bridging function was used to create a sinusoid propagating
from ¢=0 to 7 to investigate how the amplitude density evolves from sine wave to
sawtooth. For the special case of a pure sinusoid plane wave, ¢ =1 signifies that the
waveform has steepened sufficiently so that a discontinuity has formed. The Fourier
series harmonic amplitudes are defined according to

T
B, = iPsh + LJ cos[n(® — o sin @)]dD, (2)
nm nno Jg,

where Py, is the pressure shock amplitude, 7 is an integer describing the harmonic number,
and @ is the phase. The shock amplitude is found by solving the transcendental equation
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Fig. 1. (a) A single period of a unit sine (—) and sawtooth (---) wave and (b) their amplitude density functions.
The sinusoid has a bimodal distribution while the sawtooth wave has a uniform distribution.
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which asymptotically approaches n/(1 + o) for ¢ > 1.° To ensure adequate resolution at
the shock front, 686 points per cycle were used in the simulations with the summation
truncated at 20,580 harmonics.

Multimedia 1 shows an animation of a single period of a finite-amplitude sine
wave as it distorts, forms into a weak shock, and then undergoes rapid amplitude
decay. The amplitude is normalized by the initial sinusoidal amplitude and the initial
waveform remains on the plot in dotted lines for comparison. The lower portion of
Mm. 1 shows the corresponding estimate of the amplitude probability density function
(PDF) computed using the kernel smoothing method!® with a bandwidth of 0.025. The
kernel smoothing estimate causes the front and back rise of the PDF to be finite but is
necessary since the function is piecewise continuous. The smoothing bandwidth was
determined by trial and error to lessen the effect of Gibbs phenomenon on the PDF
for ¢ > 1 but still maintain the major characteristics.

Mm. 1. (Upper) A finite-amplitude sinusoid propagates from ¢ =0 — 7 with the initial wave-
form in dotted (-). (Lower) An estimate of the amplitude probability density function
(PDF) for the wave. The PDF remains relatively unchanged until ¢ = 1.3 after which it tran-
sitions to a uniform distribution. The width of the PDF narrows as a result of decay of the

shock amplitude while the peak increases due to the decreasing negative slope between the
shock fronts. This is a file of type “gif”” (400 kb).

As Mm. 1 shows, the PDF remains unchanged until ¢ =1, which has been
shown previously by Webster and Blackstock,® but also remains relatively unchanged
until ¢=1.3. Between approximately ¢=1.3 and 3.0, the PDF transitions quickly
from being bimodal to being approximately uniform (with small disturbances due to
the truncation and smoothing). Beyond ¢=3.0, the PDF shape remains uniform,
which is characteristic of a perfect sawtooth wave, but the width of the PDF decreases
and the peak of PDF increases (such that its integral remains unity). These two effects
are due to the decay of the weak shocks and the decreasing negative slope between the
shock fronts respectively.

Statistics of the amplitude density were then computed for the distorting sinu-
soid as a function of ¢. The definitions for the standard deviation, skewness, kurtosis
and crest factor are shown in Table 1 with the limiting values for a sinusoid and saw-
tooth. The skewness and kurtosis capture the symmetry and peakedness of the distribu-
tion, respectively. Figure 2 displays each statistical value for the finite-amplitude sinu-
soid as a function of normalized distance. Since the PDF estimate does not change
until after ¢ =1, the discussion will focus on the ¢ >1 region. The standard deviation
drops off slowly due to its dependence on the decreasing peak value. The roll-off most
closely follows the decay of the first harmonic, shown in Fig. 2 as a dashed line. This

Table 1. Definitions of standard deviation, skewness, kurtosis, and crest factor with their respective limiting
cases (sinusoid and sawtooth). E[- - -] denotes the expectation operator over n samples; x;, the sampled value;
and pk, the peak value.

Definition (sample) Sinusoid Sawtooth
Standard deviation (1) 1 & @ Xpk TS Xpk
(xi — E[x))°
n—1
Skewness 1 (xi — E[x))* 0 0
n—14 w
Kurtosis n 4 3 2
1 (x; — E[x]) 5 3
n—14% ut
Crest factor Xpk V2 V3
u
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Fig. 2. (Color online) Statistical measures of a finite-amplitude sinusoid as a function of ¢. All quantities are
constant until the shock formation distance is reached. After shock formation, the standard deviation rolls off
similar to the first harmonic amplitude (dashed line) while kurtosis and crest factor asymptote up to constant
values (dashed lines) and the skewness remains nearly zero.

reveals that the RMS amplitude becomes dominated by the first harmonic amplitude
as ¢ increases. The skewness remains effectively zero over the duration. The kurtosis
increases and asymptotically approaches 9/5 (shown as a dashed line), the kurtosis
value for a perfect sawtooth wave (see Table 1). The crest factor also increases and
asymptotes to a value of v/3.

The sawtooth region has traditionally been set at ¢=3.0 since the error
between the exact solution for the shock amplitude and the large ¢ limit is only 3.4%.5
However, it may be more useful to describe the sawtooth onset distance statistically by
examining the percentage difference from the statistical values of a sawtooth wave. By
computing the difference in statistical metrics between Eq. (3) and a sawtooth wave,
the sawtooth onset region could actually be considered to occur prior to ¢ =3 when
maintaining a 3.0% error tolerance. Figure 3 shows the percent error in standard devi-
ation (which is equivalent to the error in rms amplitude), kurtosis and crest factor. A
box indicates the value of ¢ where the error becomes less than 3.0%. Because this
region occurs approximately at ¢ =2.6, 2.4, and 2.5 for standard deviation, kurtosis,
and crest factor, respectively, the sawtooth region from a statistical perspective could
be considered to onset at approximately o =2.5. The average error at ¢ =3 is approxi-
mately 1.75%.

3. Statistics of amplitude time derivative

As shown by Mclnerny,® time waveform amplitude derivatives (i.e., slopes) are very
sensitive to waveform distortion and are therefore useful in indicating nonlinearity.
This is a result of the distortion being distinctly characterized by a dramatic slope
increase in localized regions of the waveform. The distortion both preshock and post-
shock formation will be manifest in the amplitude derivative statistics, thus making it
more sensitive to nonlinearity than amplitude statistics. However, the amplitude
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Fig. 3. (Color online) Percent error in standard deviation (rms amplitude), kurtosis, and crest factor between
Eq. (3) and a sawtooth wave as a function of normalized distance. Boxes indicate the onset of less than 3%
error.
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Fig. 4. (Color online) Statistical measures of the time rate of change of a finite-amplitude sinusoid as a function
of . All quantities increase with distance, the largest increase being near o = 1.

derivative will also be sensitive to Fourier series truncation effects, particularly when
discontinuities are present. Since subsequent density estimates can be corrupted by this
effect, the following time derivative analysis is restricted to the ¢ < 1 region.

The amplitude derivative was computed for the finite-amplitude sinusoid in
Fig. 1 using a second-order finite difference scheme. Multimedia 2 shows an animation
of the amplitude slope from ¢ =0 — 1 with its corresponding PDF estimate. The ampli-
tude derivative begins as a cosine wave but quickly diverges due to the slope increase
caused by waveform steepening. A large peak forms at the waveform maximum where
the steepening is most pronounced. The amplitude derivative at all points other than
the maximum uniformly approach the value of —0.5.

Mm. 2. (Upper) The amplitude derivative for a finite-amplitude sinusoid propagating from

=0 - 1. The amplitude derivative distorts drastically due to the increase in slope at the am-
plitude maximum. A peak forms where the waveform discontinuity will develop. (Lower)

The PDF estimate for the amplitude derivative. The PDF approaches a large distribution of

same value (since the time change is constant for most of the waveform) with infrequent
extreme outliers, corresponding to the regions of maximum steepening. This is a file of type
“gif” (400 Kb).

The amplitude derivative PDF estimate at ¢ =0 is the same as the original
waveform PDF since sine and cosine waves have the same density over an equal pe-
riod. After ¢ >0, the PDF estimate changes dramatically with a large peak forming
near zero due to the majority of the slope being constant valued. The derivative peaks
represent such a small percentage of the waveform slope that they have little impact
on the PDF.

Figure 4 displays the standard deviation, skewness, kurtosis and crest factor of
the amplitude derivative up to ¢=1. All four quantities increase significantly up to
=1 with the kurtosis value exceeding 100. The increase is most significant near ¢ = 1.
It is clearly evident that each quantity is very sensitive to nonlinear distortion for a si-
nusoid in the preshock realm. This is a result of the higher-order metrics amplifying
the outliers. Skewness shows the earliest detection of nonlinearity while kurtosis shows
the most significant detection since the percent change from ¢=0.8 to o=1 is over
700%.

4. Concluding discussion

It has been shown that statistics can be used to compliment previously developed
theory on the nonlinear propagation of a sinusoid to provide additional insight into
the nature of the propagation. Amplitude and amplitude derivative statistics were
shown to be sensitive to nonlinear propagation in the postshock realm and the
preshock realm, respectively. It was shown that the pressure amplitude PDF remains
relatively unchanged up to o=1.3, confirming and extending previous work.! Addi-
tionally, a statistical method for determining the onset of the sawtooth realm shows an
earlier onset than previously realized. The traditional means for determining the saw-
tooth onset was found by comparing the asymptotic value of the shock amplitude to
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the exact value.” Since direct comparison between the Blackstock bridging function
and a sawtooth wave will include Fourier series truncation effects, a statistical
approach is perhaps a more consistent methodology to account for differences in wave-
form shapes and amplitude. The sawtooth onset distance of approximately ¢ =2.5 was
shown to be within an error tolerance of 3% for the statistical metrics standard devia-
tion, kurtosis and crest factor.

This Letter also reinforces the potential of using the derivative statistics for
detecting and characterizing nonlinearity. Similar investigations could be carried out
on sinusoidal or arbitrary noise waveforms propagating through lossy media to
describe the preshock, postshock, and old-age regions statistically. Physical and numer-
ical experiments could show sensitivity of statistical measures to bandwidth limitations,
measurement system response, and measurement errors.
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