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Crackle is a phenomenon sometimes found in supersonic jet noise and can comprise an annoying and dominant
part of the overall perceived noise. In the past, crackle has been commonly quantified by the skewness of the time
waveform. In this investigation, a simulated waveform with a virtually identical probability density function and
power spectrum as an actual F/A-18E afterburner recording has been created by nonlinearly transforming a
statistically Gaussian waveform. Although the afterburner waveform crackles noticeably, playback of the non-
Gaussian simulated waveform yields no perception of crackle at all, despite its relatively high skewness. Closer
examination of the two waveforms reveals that although they have virtually identical statistics, there are considerable
differences in their time rates of change in the intense compressive portions of the waveforms. The afterburner
waveform is much more shocklike with its more rapid variations in pressure than the non-Gaussian simulated
waveform. This results in a significant difference in the probability distributions of the time derivatives of the actual
and simulated data and suggests that the perception of crackle in jet noise waveforms may be better quantified with
statistics of the time derivative of the waveform, rather than by the skewness of the time waveform itself.

Nomenclature
E = quadratic cost function to be minimized
g(x) = nonlinear transformation function .
K = kurtosis, K = ((x — M)*)/o*
M = mean of the time series, M = (x)
~$ = skewness, § = {(x — M)’}/c®

V= varance, V= ((x — M)?)
x(f) = Gaussian time series
y(® = non-Gaussian time series generated by y = g(x)
Yy = standard deviation of the time series
() = expectation operator

I. Introduction

HE phenomenon known as “crackle” that sometimes occurs in

supersonic jet noise has been described as a particularly
annoying and dominant component of the overall noise [1,2].
However, relatively few studies of the characteristics of crackle have
been carried out. In 1975, Ffowces Williams et al. [1] published what
remains the seminal paper on the subject. They describe crackle as
“sudden spasmodic bursts of a rasping fricative sound not dissimilar
to that made by the irregular tearing of paper.... It is a startling
staccato of cracks and bangs and its onomatope, ‘crackle,’ conveys a
subjectively accurate impression.” One of the main conclusions of
Ffowcs Williams et al., a conclusion that has guided investigations
since then, was that the skewness of the time series is an important
parameter in determining when a jet is or is not crackling. The
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skewness, which is a normalized form of the third central moment of
the probability density function (PDF) of the time waveform, is a
measure of the asymmetry of the PDF. (Note that a Gaussian PDF has
skewness of zero.) Based on examination of various jet noise
recordings, Ffowcs Williams et al. used the skewness to establish a
threshold for the existence of crackle in a waveform. They reported
that waveforms for which S > 0.4 “distinctly” crackle and
waveforms for which § < 0.3 do not. The behavior of crackle for
0.3 < § < 0.4 was not defined, but likely can be taken to mean the
region in which the perception of crackle is present but not “distinct”
or the region in which crackle is only present in some recordings.
More recently, Krothapalli et al. {2] and Petitjean and McLaughlin
[3] have looked into the origin and the nature of crackle and have

. made measurements of the skewness of model-scale jets. McInerny
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[4] has performed extensive statistical analyses of the noise
signatures from rocket launches and shown that the waveforms are
substantially skewed. Measurements of skewness have also been
reported for full-scale military jet aircraft noise at close range. A
recent study [5] of the propagation of noise from a tied-down military
jet aircraft has shown that the F/A-18E time series at 18 m (60 ft) and
at afterburner (AB) has a skewness value of S = 0.60 at the peak
emission angle. The measured waveform with the same aircraft at
military (Mil) power has a skewness of S = 0.38 at 18 m, again at the
peak emission angle. Because the skewness for the AB recording
clearly exceeds the S > 0.4 threshold suggested by Ffowcs Williams
etal. [1], and the skewness for the Mil recording is essentially equal
to it, the perception of crackle should be noticeable in both time
series. Playback of both the AB and Mil recordings confirms this.
hypothesis.

However, an impulsivelike quality similar to crackle has been
noted by the authors in certain time waveforms from propagation
measurements where S is well below the Ffowcs Williams et al.
threshold (e.g., S < 0.15). According to the S > 0.4 criterion, these
waveforms should be crackle free. It has further been noted that this
cracklelike quality of the noise at large distances appears to be linked
to cases where nonlinearity plays a significant role in the propagation
[6]. These observations have prompted this study of the cause of the
perception of an impulsive or cracklelike quality in certain jet noise
waveforms. It is stressed at the outset that the focus of this
investigation is not on the physical mechanisms responsible for the
generation of a skewed waveform near the source. Rather, this study
addresses the question of whether significant skewness by itself is
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sufficient to cause a listener to perceive crackle in a waveform. The
answer -to this question has direct implications regarding the
suitability of skewness as a quantifier of crackle.

To examine the effect of skewness on the perception of crackle,
methods of creating non-Gaussian waveforms have been studied.
The process selected to generate skewed waveforms for the purposes
of investigating crackle is first described. This description is
followed by a summary of results regarding skewed waveforms that
have been created to simulate actual jet noise waveforms that crackle.
Finally, findings from additional . analysis of the waveforms’
attributes are presented and discussed.

II. Non-Gaussian Waveform Simulation Theory

To systematically study how skewness affects the perception of
crackle, it is necessary to have a means of generating non-Gaussian
(e.g., skewed) waveforms. It is desired that these non-Gaussian
waveforms possess more than simply the same skewness as actual jet
noise data because a single moment of the PDF does not uniquely
specify a probability distribution. The waveforms should have, in
particular, the same mean, variance, skewness, and kurtosis as the
measured jet noise data, in addition to having the same spectrum.
Specification of these four moments of the PDF, which are defined in
the nomenclature, makes possible the generation of a simulated
waveform with a virtually identical PDF as the measured waveform.
The underlying theory of non-Gaussian waveform generation and its
implementation are now discussed. The theoretical discussion is
largely after the manner of Bendat [7].

A zero-memory nonlinear system may be defined as a system that
acts on the present input in a nonlinear fashion. Correspondingly, a
non-Gaussian waveform, y(#), may be generated by passing a
statistically Gaussian signal, x(¢), through a zero-memory nonlinear
transformation function (NTF), denoted as y = g(x). It is noted that
although x varies as a function of time, g(x) is time invariant. As an
example, a quadratic zero-memory NTF, similar to that used to
model a hardening-softening nonlinear spring [7], may be written as

y=gk) =a+ bx+cx? M

Transformation of x(r) using g(x) will generally result in a non-
Gaussian signal, y(f), whose statistics vary according to the
particular values of the coefficients a, b, and ¢. The output waveform,
y(2), will have a PDF that is given by

PDF(x)

2
\dg/dx| @

PDF (y) =

For the special case where ¢ = 0, y(r) has Gaussian statistics because
the transformation function is no longer nonlinear and a linear
transformation (i.e., an additive and/or multiplicative scaling of the
time series) of a Gaussian signal yields a Gaussian signal.

One significant step in the simulation process is that of selecting a
suitable NTF to achieve the desired probability distribution and
moments. Equation (1) was chosen to be the NTF for these jet noise
waveform simulations because it was noted from a nonlinear systems
text by Bendat [7] that the PDF for a high-amplitude jet noise
waveform in [1] is very similar to that of a hardening-softening
nonlinear spring. To illustrate, the NTF for a hardening-softening
spring may be written as

y=g(x)=x+cx’ 3)

and an example PDF for ¢ = (0.138 is displayed in Fig. 1. There is
notable similarity in the overall shapes between the probability
distribution in Fig. 1 and the PDF for the F/A-18E waveform at AB,
which is displayed along with an ideal Gaussian curve in Fig. 2. Note
further that the AB PDF is comparable to the high-power jet noise
PDFs in Figs. 3 and 5 of [1]. These results suggest that Eq. (3) or a
similar equation may be an acceptable choice for an NTF to model an
asymmetrical jet noise PDF. However, the difficulty with simply
using Eq. (3) as the NTF for these simulations is the abrupt truncation
of the PDF at negative values of y(z). This truncation is necessary to
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Fig. 1 Probability density functions for a hardening-softening
nonlinear spring and a Gaussian distribution. For this example, the
coefficient in Eq. (3) is c = 0.138 and |x} < 3.0.
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Fig. 2 Probability density function (PDF), shown in terms of number of
standard deviations (o) for the F/A-18E Super Hornet made with the
tied-down aircraft at afterburner and at a distance of 18 m. See [3] for
additional measurement details. This afterburner PDF, which is
compared against an ideal Gaussian distribution, is very similar to that
shown by Ffowcs Williams et al. for the Rolls Royce Olympus 593 engine
at high power [1]. Note also the similarity between the jet noise PDF and
the hardening—softening spring PDF shown in Fig. 1.

maintain a one-to-one relationship between y and PDF(y) as aresult
of the parabolic nature of the single degree-of-freedom NTF of the
hardening—softening spring. Equation (1) is the result of generalizing
the parabolic NTF in Eq. (3) to include additional coefficients
(degrees of freedom), which has the effect of removing the abrupt
truncation in Fig. 1 and creating a more realistic negative tail to the
PDF, as will be shown later. ’

In addition to the quadratic NTF, a range of alternative NTFs has
also been studied, including a cubic polynomial of the form

y=a+ bx + cx* + dx* )

and a generalized sigmoidal function, which is expressed as .

b

1 4 e~ce=d) ©)

y=a+

The functions found in Egs. (4) and (5) may initially appear to be
more plausible candidates than the quadratic NTF in Eq. (1) because
they both can yield quadraticlike NTFs, but have four variable
coefficients, rather than only three. This additional coefficient could



GEEET AL. 595

potentially be important because specification of M, V, S, and X to
find the three coefficients in Eq. (1) represents an overdetermined
system with four constraints and only three unknowns. However, it
was found when Egs. (1), (4), and (5) were, respectively,
implemented in the algorithm outlined below that the cubic and
sigmoidal NTFs generally did not yield improved results and the
outputs were extremely sensitive to initial parameter choices in the
iterative scheme used to determine NTF coefficients. This is
probably because dg/dx for Eqs. (4) and (5) is itself a nonlinear
function, whereas dg/dx is linear for Eq. (1). The remainder of this
section is dedicated to descriptions of the creation of x(¢) and of the
iterative coefficient selection process.

Equation (1) appears to closely approximate the statistical
behavior of the measured AB jet noise for appropriate choices of
coefficients a, b, and c. Before use of an iterative scheme to select
these coefficients, a statistically Gaussian white noise waveform is
first created and filtered so as to possess a nearly identical power
spectrum as the actual AB data. Although waveform filtering is
‘perhaps more traditionally carried out in the time domain via
convolution of the waveform with an appropriate impulse response
function (see [8] for an example), for this work, filtering was carried
out in the frequency domain by: 1) Fourier transforming the
waveform, 2) multiplying the white Fourier spectrum by the square
root of the power spectrum of the AB data, 3) performing an inverse
Fourier transform, and 4) scaling the filtered Gaussian waveform to
ensure that it possessed the same variance (and overall sound
pressure level) as the AB time series. Modification of a Gaussian
waveform’s spectral shape does not appreciably change its statistics,
provided that the new spectral shape is sufficiently broadband (as is
jet mixing noise). The resultant filtered waveform, x(z), is then
transformed according to Eq. (1) when the desired coefficients are
found.

The coefficients are derived via iterative minimization of a
quadratic error or cost function based on the desired moments of the
probability density function of the simulated data, PDF(y), which is
calculated according to Eq. (2). For example, given a zero-mean
process (M =0) and specified desired values for the variance,
skewness, and kurtosis, the error function E may be written as

E; =M+ (Vi— V)2 + (8 = 8)* + (K, — K)? ©

where the subscript i represents the values of the moments of PDF(y)
for the ith iteration. After PDF(y) is calculated for each iteration, the
area under its curve, A, is calculated by numerically evaluating the
integral

A= / * PDE(y) dy 0

The moments M;, V;, S;, and K; required to evaluate the cost function
are then calculated by numerical evaluation of

M, = % f * YPDE(y) dy .®)
Vo= |0~ MPDFG) 8y )
s, =" % f Y- M,)’PDF(y) dy (10)
and
K=V [7 0= MyPDRG) Oy an

The MATLAB® function “fminsearch,” which performs uncon-
strained nonlinear optimization on a multivariable scalar function
[9], is used to find the values of a, b, and ¢ of the NTF that minimizes
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Fig. 3 Quadratic nonlinear transformation function used to transform
a Gaussian waveform to a non-Gaussian waveform with positive
skewness. The dashed lines demonstrate how the nonlinear trans-
formation occurs. In this case, x = 2.5 results in y = 3.0.

E. The results of the simulation process are now shown and
discussed.

III. Simulation Results and Playback
A. Results

The preceding theory has been used to create simulated versions of
the F/A-18E AB and Mil waveforms. To demonstrate the salient
point of this research, only one example will be described in detail.
Because the AB skewness is significantly greater than that of the Mil
waveform, and therefore farther from the Ffowcs Williams et al.
threshold, the AB results have been selected for presentation.

After the nonlinear transformation process described in Sec. Il was
carried out to create a waveform that simulated the recorded AB
waveform, minor differences between M and V for y(¢) and the AB
waveform were removed by subtracting off the mean and scaling the
waveform to match the overall sound pressure level of the measured
F/A-18E waveform [5] (150 dB re 20 pPa). The NTF used to
generate the simulated non-Gaussian waveform is shown in Fig. 3,
where x and y are normalized to ¢ = 1. The parabolic shape in Fig. 3
is obtained by substituting a = —0.0959, b =0.9911, and ¢ =
0.0960 into Eq. (1). The dashed lines are shown as an example of how
the transformation from a Gaussian to a non-Gaussian waveform
occurs. In-the example, an input x = 2.5 yields the output y = 3.0.
The values of S and X for x(?), y(), and the AB data are displayed in
Table 1. As aresult of the nonlinear transformation process, the non-
Gaussian simulation waveform has skewness and kurtosis values
that are very close to the actual AB data.

In Fig. 4, the initial Gaussian, simulated non-Gaussian, and actual
AB waveforms are displayed on an expanded scale. Passage of the
Gaussian waveform through the NTF yields a simulated waveform
that has an overall appearance that is very similar to the AB data in
terms of observable skewness. The Gaussian waveform is symmetric
about zero, whereas the non-Gaussian simulation possesses an
asymmetry that is similar to the AB waveform. The power spectral
densities for these waveforms are displayed in Fig. 5. The power

Table 1 Skewness (S) and kurtosis (K) values for the Gaussian, non-
Gaussian simulation, and AB waveforms. The Gaussian waveform is
very close to that of ideal Gaussian behavior, for whichS =0and K =3

Waveform N K

Gaussian 0.02 3.01
Simulation 0.57 3.39
AB Data 0.60 3.40
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Fig. 4 Gaussian, simulated non-Gaussian, and AB waveforms. All
three waveforms are zero-mean signals and have the same variance. The
Gaussian waveform has zero skewness, whereas the simulated and AB
waveforms have significant positive skewness. '

spectral density for the Gaussian noise waveform is essentially equal
to that of the measured AB data because of the initial filtering of the
white noise signal. The spectral density of the non-Gaussian
simulated waveform s slightly distorted at low frequencies as aresult
of the nonlinear transformation, but generally matches the overall
spectrum quite well. In other words, the NTF does not significantly
modify the spectral shape in creating y(r) from x(#), but it does
significantly impact the waveform statistics. This finding is in
accordance with the initial observation by Ffowcs Williams et al. that

crackle (or waveform skewness) is indiscemible in power spectral

calculations [1].

As Table 1 indicates, the skewness and kurtosis of the simulated
waveform are very close to the actual values of the AB waveform.
Furthermore, as discussed, the waveforms have been scaled to have
an identical mean and variance. However, this level of similarity does
not necessarily guarantee that the PDFs of the two waveforms will be
the same because no constraints have been placed on any moments
greater than order four. To show that the overall statistical behavior
of the two waveforms is largely determined by these four moments,
the PDFs of the simulated and AB waveforms are shown in Fig. 6
along with the Gaussian PDF of x(f). To completely compare the
simulated and AB PDFs, Figs. 6a and 6b, respectively, have linear
and logarithmic ordinates. The linear scale emphasizes behavior near
the center of the distribution whereas the logarithmic scale is helpful
in comparing the tails of the distributions. Examination of Fig. 6a
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Fig. 5 Power spectral densities of the Gaussian, non-Gaussian

simulated, and AB waveforms. Except at very low frequencies, the

Gaussian and simulated spectral densities overlay that of the AB data.
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Fig. 6 Probability density functions of the Gaussian, non-Gaussian
simulated, and AB waveforms, The PDFs are represented on a linear
scale in a) and on a logarithmic scale b).

reveals that the simulated PDF matches that of the AB waveform
very closely over the high-probability regions of the distribution. As
shown in Fig. 6b, there are differences between the two PDFs in both
the positive and negative tail regions, but only where the probability
of occurrence is very low. Specifically, the simulated PDF only
begins to diverge from the AB PDF at the positive and negative tails
when the probability is nearly 2 orders of magnitude below the
maximum probability.

B. Playback of Waveforms

The previous study by Ffowcs Wllhams et al. {1] indicates that
because § = 0.57 for the simulated waveform, y(¢), and S = 0.02 for
the Gaussian waveform, x(t), crackle should be present in y(r) but
not in x(t) Although direct playback of the waveforms is not
possible in this article, the waveforms were directly embedded as
hyperlinks into a previous AIAA conference paper [10] versxon of
this article. The waveforms may also be found at the Internet URLYor
may be obtained via email.

Listening to both the Gaussian and non-Gaussian simulated
waveforms demonstrates there is little, if any, perceived difference
between the simulated and Gaussian waveforms and nothing in the
simulated waveform that has a cracklelike quality. This result
contradicts the distinct crackle threshold suggested by Ffowcs
Williams et al. in that § = 0.57 but does not crackle. This simulation

¥The waveforms may be found at K. L. Gee’s faculty website: http://www.
physics.byu.edu/faculty/gee/crackle.aspx. Note that because this is not an
archived website, the link may occasionally change. However, the waveforms
may be obtained by emailing any of the authors.



GEEET AL. 597

also indicates there is more to the perceptual phenomenon of crackle
than simply significant positive skewness. The reasons for the
absence of crackle from the highly skewed simulated waveform are
now explored.

IV. Waveform Time Derivative Analysis

Because there are extreme perceptual differences between the
non-Gaussian simulated and the recorded AB waveforms, the
waveforms themselves merit a closer look. Displayed in Fig. 7 are
short segments of the Gaussian, simulated, and AB waveforms. A
comparison of the Gaussian and simulated waveforms shows in more
detail the nonlinear transformation process that yields the skewed
waveform. A comparison between the simulated and AB waveforms
reveals a significant difference between the simulated and actual
data. The AB waveform tends to “lean” one direction and contains
some very sharp pressure rises, whereas the simulated waveform
does not. It is noted that these characteristics of the AB waveform are
consistent with descriptions of crackling waveforms provided by
Ffowcs Williams et al. [1] and Krothapalli et al. [2]. The lack of
crackle in the simulated waveform appears to be related to the fact
that these features are not present in the simulated waveform.

The AB and non-Gaussian simulated waveforms have essentially
the same spectrum (see Fig. 5) and PDF (see Fig. 6) but are perceived
to be very different because of the sharp shocklike pressure rises that
are present in the AB waveform but not in the simulated waveform.
This difference may be better investigated via calculations and
statistical analysis of the time derivatives of the waveforms, a data
processing technique that is largely due to McInerny (e.g., see
[4,11,12})). Figure 8 displays the time derivatives of the waveform
segments shown previously in Fig. 7. The derivatives, which are
normalized to o = 1 for visualization purposes, have been estimated
via a simple first-order forward difference because more accurate
derivative estimation methods have smoothness constraints that are
violated here. This figure reveals a marked difference between the
non-Gaussian simulated waveform and the AB data. The sharp
pressure rises present in the AB waveform lead to large positive
spikes in the time derivative estimate that are not present in the
simulated waveform. ’

The differences in the time derivatives between the Gaussian, non-
Gaussian simulated, and AB waveforms are better quantified in terms
of their PDFs and associated moments. The PDFs of the time
derivatives are shown on both linear and logarithmic scales in
Figs. 9a and 9b. These figures reveal more clearly the dramatic
disparity between the time derivatives of the AB and simulated
waveforms. The simulated waveform differs only slightly from
Gaussian behavior, whereas the AB waveform is significantly non-
Gaussian and has a large positive tail that is formed by the steep rise
portions of the waveform and continues out to approximately 28a.

4000

-a000L
4000 - ~ -

20000 \MW\/W‘;VWNM

-4000

4000
2000
0
-2000
-4000

Gaussian

)
N
Q
(=]
(=]

Simulation

AB Data

6.44 6.45 6.46 6.47 6.48
t,s

Fig. 7 Segments of the Gaussian, non-Gaussian simulation, and AB
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Fig. 8 Normalized time derivative estimates for the acoustic pressure
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These differences are quantified with S and K calculations for the
Gaussian, non-Gaussian simulation, and AB waveforms in Table 2.
The derivative of the simulated waveform has zero skewness and
somewhat non-Gaussian kurtosis, whereas the AB data reveal
extreme non-Gaussian behavior that appears to be directly related to
the perception of crackle in actual high-amplitude jet noise.

V. Discussion and Conclusions

This investigation of the perception of crackle gives rise to a
number of points of discussion and conclusions. First of all, despite
the fact that the simulation process yields a simulated waveform that
is virtually the statistical equivalent to the AB waveform, the results
of this simulation demonstrate that skewness is not sufficient by itself
to cause a listener to perceive crackle. The analysis of the time
derivatives of the waveforms indicates that shocklike features must
be present in the time waveform. Ffowcs Williams et al. [1] discussed
the fact that the intense compressive portions of the waveform
usually had short rise times and further concluded that the “physical
feature of a sound wave that gives rise to the readily identifiable
subjective impression of ‘crackle’ is shown to be the sharp shocklike
compressive waves that sometimes occur in the wave form.”

Although this physical interpretation does, in fact, appear to be
correct, positive waveform skewness does not account for how
quickly or how slowly pressure fluctuations occur, but rather only
that pressure values occur in a waveform with some asymmetric
probability. Ffowcs Williams et al. understood crackle and positive
waveform skewness to be synonymous [1]; however, this appears not
to be the case. This leads to the conclusion that if the sharp pressure
changes account for the subjective impression of crackle, use of the
time derivative of the waveform, rather than the waveform itself, to
quantify the phenomenon of crackle is merited. This result
corroborates the findings of McInemy [4], who concluded from her
rocket noise study that the skewness of the time derivative of the
waveform was a more sensitive indicator of the waveform’s shock
content than the skewness of the waveform itself. Although the
skewness of the time derivative may, in fact, be an appropriate
quantifier of crackle, additional research should be conducted to
further study its suitability.

Table 2 Skewness (S) and kurtosis (K) values for the time derivatives of
i the Gaussian, non-Gaussian simulation, and AB waveforms

Waveform S K

Gaussian 0.00 3.00
Simulation 0.00 3.40
AB Data 5.59 67.3
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Fig. 9 Probability density functions of the time derivatives of the
Gaussian, non-Gaussian simulated, and AB waveforms. The PDFs are
represented on a linear scale in a) and on a logarithmic scale b). Note that
discrete occurrences in the AB waveform’s PDF continue out to
28 standard deviations (o).

This conclusion regarding an appropriate metric for quantifying
crackle leads to another point of discussion, that of similarity
between perceived “nonlinearity” and perceived crackle. As
mentioned in the Introduction, a recent study by Gee and Sparrow [6]
shows that a waveform that is nonlinearly propagated numerically
can take on an impulsive quality that could be potentially perceived
as cracklelike. This occurs despite the fact that the waveform’s
skewness may be essentially zero [13]. Furthermore, the perceived
difference between linearly and nonlinearly propagated signals is
significant in that the linear waveform does not have this impulsive
quality, but this difference is not evident in the nearly identical
waveform PDFs. There is, however, an unmistakable difference in
the PDFs of the waveforms’ time derivatives, which indicates that the
impulsive quality to the nonlinearly propagated waveform appears to
be linked to waveform steepening and acoustic shock formation in
the course of propagation. A crackling acoustic waveform in the near
field of a jet also possesses shocklike structures that are evident in the
PDF of the waveform time derivative and appear to be critical to the
perception of crackle. Any further connection between the two
phenomena remains to be explored.

An additional study that merits mention is that by Downing et al.
[12], in which high-bandwidth measurements of military jet aircraft
flyovers were analyzed. The results revealed a clear relationshi
between overall sound pressure level (OASPL) and skewness of the
time derivative of the waveform. As OASPL increased, so did the
derivative’s skewness. On the other hand, only a weak relationship
was found between OASPL and skewness of the waveform itself. An
extension of the study by Downing et al. would be to perform
listening tests with the fiyover waveforms to determine if the relative

contribution of the cracklelike phenomenon to overall annoyance
also increases as a function of OASPL or if it remains relatively
constant.

One final point of discussion regards the ability to generate a
simulated jet noise waveform that does, in fact, create the perception
of crackle. This may be possible with the nonlinear transformation
process described in Sec. II for an appropriate choice of a nonlinear
transformation function that can yield an extremely non-Gaussian
PDF as is shown in Fig. 9. Refinement of such a simulation process
could greatly reduce the data storage requirements for total jet noise
source characterization because entire waveforms could be replaced
by power spectra and a few statistical measures that could then be
used to create statistically and perceptually equivalent waveforms.
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