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Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA

C. Shane Reese
Department of Statistics, Brigham Young University, Provo, Utah 84602, USA

Fei Zhou
Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Gus L. W. Hart
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA

(Received 16 July 2013; published 3 October 2013)

Long-standing challenges in cluster expansion (CE) construction include choosing how to truncate the
expansion and which crystal structures to use for training. Compressive sensing (CS), which is emerging as
a powerful tool for model construction in physics, provides a mathematically rigorous framework for addressing
these challenges. A recently-developed Bayesian implementation of CS (BCS) provides a parameterless
framework, a vast speed-up over current CE construction techniques, and error estimates on model coefficients.
Here, we demonstrate the use of BCS to build cluster expansion models for several binary alloy systems. The speed
of the method and the accuracy of the resulting fits are shown to be far superior than state-of-the-art evolutionary
methods for all alloy systems shown. When combined with high-throughput first-principles frameworks, the
implications of BCS are that hundreds of lattice models can be automatically constructed, paving the way to
high-throughput thermodynamic modeling of alloys.
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I. INTRODUCTION

Technological advances are driven by the discovery and
development of high-performing materials. Discovering these
materials is perhaps the single largest bottleneck to technolog-
ical developments. Due in large part to advances in computing
power, computational methods play an increasingly important
role in the discovery process. Results from calculations and
simulations guide experimental work and provide insight into
avenues for future materials research.

The well known density-functional theory (DFT) is an
example of a recent methodological stride in computational
materials research. Developed in the 1960s, this theory paved
the way to accurate and efficient calculations of materials’
properties.1,2 Steady advances in computing power have made
these calculations more affordable computationally, and there-
fore more viable as a way to probe nature for high-performing
materials. This is manifested by recent high-throughput studies
that identify new materials and uncover new properties through
brute-force calculation of all likely candidates. Results from
these studies have been fruitful and illustrative.3–12

Although useful for some purposes, high-throughput DFT
studies are far from exhaustive in their scope of search and
provide no information about the material for T > 0. To extend
computation’s reach, a common approach is to build a much
faster model, such as a cluster expansion, and use it to explore
T > 0 properties via thermodynamic simulations.

Here we employ a “reweighted Bayesian” implementation
of compressive sensing (BCS) to construct cluster expansion

models. The CS paradigm addresses, in a mathematically
rigorous fashion, two major and long-standing challenges in
the cluster expansion community, namely the basis selection
problem and the training data selection problem. Although
a non-Bayesian implementation of CS13 provides a solution
to these problems using only one adjustable parameter, the
reweighted BCS approach removes the adjustable parameter,
provides a considerable speed-up, and yields sparser models.
Most impressive is the fact that reweighted-BCS-constructed
cluster expansion models exhibit a convergence of the solution
to a very physical model that predicts more accurately than
prevalent methods for the three alloy systems studied in this
work.

II. THE CLUSTER EXPANSION

Cluster expansion provides a fast, accurate way to compute
the total energy of all atomic configurations on a parent
lattice.14–16 The cluster expansion is constructed by first
assigning each atomic type a “pseudospin” variable. Any
atomic configuration on the parent lattice can then be specified
using a vector of pseudospin variables. The physical quantity
of interest is then expressed as a linear combination of basis
functions, an idea very analogous to a Taylor or Fourier
expansion:

E(σ ) = E0 +
∑
f

�̄f (σ )Jf , (1)
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where the argument to the function, �σ , is a vector of pseudospin
variables indicating the atomic occupation on the parent lattice
sites. The �̄f are the basis functions, often referred to as
cluster functions, with each function corresponding to a cluster
of lattice sites. For binary systems, these basis functions are
evaluated by averaging over products of pseudospin variables.
(For higher component systems, the basis is more complex.14)
The expansion coefficients Jf are called effective cluster
interactions (ECI’s) and finding their values is the central task
when constructing a cluster expansion.

The cluster expansion is essentially a linear algebra problem

�̄ �J = �E (2)

with �E containing the first-principles training data, and �J
the sought-after coefficients, and �̄ is a matrix containing
the values of the basis functions evaluated at each training
structure. Early in the development of cluster expansion, the
ECIs were found by manually truncating the list of admissible
cluster coefficients �J and directly inverting Eq. (2). This
so-called structure inversion method (SIM)17 is conceptually
appealing, but in practice the resulting model has poor
predictive capability. As the CE method developed, the best
practice that emerged was to generate more fitting data than
fitting variables (more elements in the vector �E than in the
ECI’s vector �J ). This results in an overdetermined problem
that can be solved, in the least-squares sense, by singular value
decomposition or related methods.

Before discussing the fitting approaches in more detail, we
point out that whatever the details of the fitting procedure are,
any method must deal with two difficulties: (1) The expansion
given in Eq. (1) must be truncated to a finite (and typically
small) number of terms, and (2) a choice must be made about
which structures (among a practically infinite set) should be
used as training data (to generate the vector �E). The expansion
must be severely truncated so that it has fewer terms than the
number of training structures (maintaining an overdetermined
problem), and the training structures should be chosen to
minimize the predictive errors. Mathematically speaking, the
choice of the training structures is not independent of the
truncation.

Both difficulties are challenging. The first is difficult
because the number of relatively short-ranged clusters is
enormous (see Fig. 1) so a robust distance- or hierarchy-based
truncation method is not practical. It is difficult to avoid
truncating relevant terms inadvertently. There are several
contemporary approaches to the truncation problem.18–27 The
second challenge, choosing the structures to be used as training
data, is related to the first. The optimal choice of training
structures depends on the truncation. Some approaches attempt
to choose training structures so as to minimize the variance
in predictive errors.28–30 Others, based on the early work of
Garbulsky and Ceder,31 attempt to bias the training set to
reproduce the correct ordering of low-energy states.20

With the exception of recent CE techniques based on
Bayesian inference,27,32,33 the model-building processes of
contemporary techniques are essentially the same: An initial
set of training data is generated and a fit is calculated. The
predictive accuracy of the model is assessed. More training
data is added and a more refined model is generated. This
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FIG. 1. (Color online) Partial histogram of geometrically unique
clusters on an fcc lattice. The x axis is the cluster radius, which
is defined to be the average distance (in units of lattice constants)
from the cluster center of mass to the cluster vertices. The number
of unique clusters increases exponentially as the number of cluster
vertices and cluster radius increase. This illustrates the magnitude of
the challenge associated with truncating the cluster expansion. Note
that the histograms have been cut off once the number of clusters
becomes very large. This is not meant to imply that there are no
clusters beyond this point. Rather the graphic is meant to provide
a qualitative view of how quickly the number of unique clusters
increases.

process is continued, with more and more terms being included
in the expansion, until a model with the desired predictive
accuracy is achieved.

III. COMPRESSIVE SENSING

Here we show that compressive sensing (CS), a technique
originally developed for applications in signal processing, can
be used to select important ECIs and compute their values in
one shot. To identify important ECIs, CS considers essentially
all possible basis functions. Since the number of unique,
potentially relevant clusters is typically very large, considering
all possible clusters suggests solving a highly underdetermined
version of Eq. (2) [there are many more columns (clusters)
than rows (structures) in the matrix �̄]. The compressive
sensing cluster expansion (CSCE) method proposed in Ref. 13
solves this heavily underdetermined problem by searching for
the solution with the smallest �1 norm which reproduces the
calculated data with a given accuracy,

JCS = arg min
J

{‖ �J‖1 : ‖�̄ �J − �E‖2 < ε}, (3)

where ‖ �J‖1 indicates the �1 norm of vector �J , a specific case
of the more general �p norm

‖�u‖p =
(∑

|ui |p
)1/p

. (4)

The key idea in compressive sensing is the assumption that
the solution vector is sparse, or has few nonzero components.
The �1 norm constraint, which has been used for years as a
sparsity measure, is then used to direct the solution search
towards the most sparse solution. Since CE models are known
to be sparse, CS provides a fast, robust, and efficient way
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FIG. 2. (Color online) Illustration of constant �p norm surfaces
in R2. The circle is a constant �2 norm surface and the diamond is
a constant �1 norm surface. The straight line indicates the possible
solutions to the underdetermined problem 10y + 7x = 20. A sparse
solution to this problem is the solution where one of the variables is
zero and the other is not; in other words it is at the intersection of the
straight line and the axes. Minimizing the �2 norm of this system will
result in a dense solution, whereas minimizing the �1 norm will yield
a sparse solution.

to detect physically relevant clusters and to compute their
corresponding coefficients.34

Figure 2 illustrates CS for the simple two-dimensional
underdetermined problem 10y + 7x = 20. The straight line
in the figure represents all possible solutions corresponding to
this system. The circle (diamond) is a constant �2 (�1) norm
surface. A sparse solution to this system is one where one of
the unknowns is nonzero and the other is zero; in other words
it is where the straight line intersects one of the axes. The
intersection of the solution curve and the constant �2 norm
curve will always occur off axis, yielding a dense solution.
The intersection of the solution curve and the constant �1

norm curve will occur on one of the axes, and therefore yield
a sparse solution. Constant �p surfaces where 0 < p � 1 can
enhance the sparsity, but then finding the global minimum is
an NP-hard, nonconvex optimization problem.

A. Training set selection

The mathematical framework of compressive sensing,
put forth by Candès, Romberg, and Tao,35 guarantees the
recovery of sparse ECIs from a small number of first-principles
total energies, given certain properties of the matrix �̄ in
Eq. (2). The solution to Eq. (3) was shown to be exact with
overwhelming probability if the number of function samples,
m, satisfies

m � C μ2(�,�) S ln n (5)

where C is some positive constant, n is the number of basis
functions being considered, and S is the sparseness of the
solution vector (An S-sparse solution vector has S nonzero
coefficients). Equation (5) provides a lower bound on the
number of training data points needed to recover the relevant

ECIs from a large pool of candidates. The function μ(�,�) is
a measure of the coherence between the sensing basis and the
representation basis and is given by

μ(�,�) = √
n max

1�i,j�n
|〈φk,ψj 〉|, (6)

where φi is the representation basis that expresses the signal
in a linear model [in our case, the cluster functions �̄f that
represent the energy through Eq. (1)] and ψi is the sensing basis
used to “sense” or train the linear model. The coherence value
μ(�,�) is bracketed by [1,

√
n ]. Ensuring that this function

evaluates to its lowest possible value reduces the number of
function samples needed to recover the signal and provides a
well defined recipe for choosing training data.

One approach to minimizing coherence is to choose natu-
rally incoherent pairs of bases and then sample the function
randomly in the domain of the sensing basis. For example, delta
functions and Fourier functions are a maximally incoherent
pair, and using the delta functions for the sensing basis and the
Fourier functions for the representation basis and sampling the
function randomly will result in the function μ(�,�) being
minimal.

In physics applications, the nature of the problem of
interest dictates the use of a specific basis. For example,
in cluster expansion, the representation basis are the cluster
functions and the sensing basis is the specific values of the
cluster functions corresponding to the ordered structures in
the training set. Where there is no freedom to choose the basis,
the best approach is to construct the sensing matrix, in our
case �̄, such that its rows are approximately independent and
identically distributed (i.i.d.). This will guarantee that sparse
sets of ECIs will not be in the null space of �̄, ensuring efficient
recovery of the true physical solution. For a more complete
description of incoherence as it relates to compressive sensing,
see Ref. 35.

The simple requirement that the coherence should be
minimal provides a mathematically rigorous solution to the
question of which structures should be used in the training
set. Choosing training structures whose correlation vectors
are i.i.d. is the best choice when using compressive sensing.
This recipe can be applied once at the beginning of the model
building process instead of using iterative procedures to build
up the training set over time. This feature of CS-based CE
models provides an automatic and hands-off framework to the
model building process.

B. Training set selection for cluster expansion

For the cluster expansion model, constructing the sensing
matrix �̄ such that its rows are i.i.d. is more challenging than
in the case of a Fourier expansion. This is because the cluster
function values form a discrete, nonuniformly distributed set.
Figure 3 gives the distribution of values for the first, second,
and third nearest neighbor cluster functions for all fcc-derived
superstructures with 12 atoms/cell or less. Clearly the allowed
values are not uniformly distributed, and there are values which
never occur. Furthermore, the values of the cluster functions
are correlated to one another, further complicating the task of
choosing training data.

One method for choosing training structures which pro-
duces an approximately random sensing matrix was given
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NELSON, OZOLIŅŠ, REESE, ZHOU, AND HART PHYSICAL REVIEW B 88, 155105 (2013)

�1.0 �0.5 0.0 0.5 1.0 �1.0 �0.5 0.0 0.5 1.0 �1.0 �0.5 0.0 0.5 1.0

FIG. 3. (Color online) Histograms of the value of the first (left), second (center), and third (right) nearest neighbor pair cluster functions
over all fcc-derived superstructures up to 12 atoms/cell. Most noteworthy is the fact that the cluster function values are not uniformly distributed.
Also, note that there are regions of values which never occur over this set of structures. These points make it challenging to construct a sensing
matrix composed of random, uniformly distributed entries.

in Ref. 13. In that method, vectors of uniformly distributed
numbers were first normalized (i.e., random vectors on
a hypersphere) and the structure whose vector of cluster
functions was closest to this vector was added to the training
set.36

Another method for accomplishing this involves orthonor-
malizing the random vectors before matching them to real
crystal structures. The exact recipe for doing this proceeds as
follows:

Structure selection procedure
(1) Generate a random vector π on the unit hypersphere.
(2) Orthogonalize π to all rows of the current sensing

matrix �̄.
(3) Normalize π .
(4) Find the nearest crystal structure to the orthonormal-

ized π .
(5) Add the structure to the training set.
(6) Update the matrix �̄. Go back to step 1.

To investigate which method for picking training data
results in the most incoherent, or uncorrelated set of data,
several approaches were compared: (i) picking structures
randomly, (ii) picking the lowest atom/cell structures in an
enumerated list, (iii) the approach defined in this work, and
(iv) the approach of Ref. 13.

Randomly picked structures were chosen by simply choos-
ing a random integer from 1 to M , where M is the number
of candidate training structures. The set of lowest atom/cell
structures was included to compare to commonly used methods
for selecting training data. The quality of each sensing matrix
was measured by computing the cross-correlation matrix.
For N basis functions, we compute an N × N matrix with
elements ηi · ηj/(||ηi ||2||ηj ||2), where ηi is the ith column of
the sensing matrix.

The cross-correlation matrix is a simple but imperfect
measure of the ability to discriminate between different pairs
of ECIs. Theoretically, a more stringent criterion is the
so-called restricted isometry property,35,37 which guarantees
that all S-sparse vectors lie outside of the null space of the
sensing matrix. However, the latter is difficult to evaluate
in practice, and hence we use the much more convenient
cross-correlation. We also note that mutual coherence, defined
as the maximum absolute value of the off-diagonal elements
of the cross-correlation matrix, is used in compressive sensing
to characterize the ability to reconstruct the true signal.38

For each method 500 training structures were chosen and
the associated cross-correlation matrix was constructed. The
distribution of the off-diagonal term for each method is shown

in Fig. 4. The distribution for a purely random sensing matrix,
essentially optimal for compressive sensing, is also shown
in the figure for a reference. Clearly, choosing structure
numbers at random leads to the poorest cross-correlation
values. Considerable improvement is achieved from using the
method of Ref. 13. Even further improvement is achieved with
the method put forth in this paper, and this method will be
employed for the current high-throughput work.

IV. MATHEMATICAL IMPLEMENTATIONS

Various mathematical techniques exist for solving an
underdetermined linear system subject to a constraint. One
such method recasts the constrained minimization problem of
Eq. (3) as the unconstrained minimization problem

min
J

{
μ‖ �J‖1 + 1

2
‖� �J − �E‖2

2

}
. (7)

This equation is referred to as the basis pursuit de-noising
problem, and it can be solved efficiently using algorithms
based on the so-called Bregman iteration.39,40 The sparseness
of the solution can be tuned by varying the parameter μ.
Smaller (larger) values of μ mean that the �1-norm term will
be weighted less (greater) than the �2-norm term and will
therefore result in less (more) sparse solutions.

0.1 0.0 0.1 0.2 0.3 0.4 0.5−
FIG. 4. (Color online) Distribution of off-diagonal elements

of the cross-correlation matrix for several different methods for
choosing training data. Choosing structures with the smallest unit
cells (magenta), choosing structures at random (orange), choosing
structures using the method described in Ref. 13 (green), and the
method discussed in this paper (red) are displayed. The distribution
of the cross-correlation off diagonal terms for a purely random matrix
is given as a reference (blue).
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A. A Bayesian implementation

Bayesian inference has been used as a model-building
tool27,32,33 previously, but its models are typically dense
(nonphysical) and the framework for building the models can
be time intensive for the user. Standard implementations of
compressive sensing are powerful tools for model building,
but require tuning the sparsity parameter μ.13 Combining
compressive sensing and Bayesian statistics has several sig-
nificant advantages over traditional Bayesian approaches and
the previous CS implementation as well as other prevail-
ing methods:18,20,29 extreme computational efficiency, sparse
models with high predictive accuracy, error estimates for
predictions, and the elimination of tunable parameters so that
models can be developed automatically, entirely “hands off.”

Here we employ a recently developed Bayesian implemen-
tation of CS,41,42 which leads to a relatively simple numerical
algorithm and is based on several key ideas from the CS and
Bayesian literature. To illustrate how the numerical algorithm
is derived from the starting concepts, we begin first with
two short examples to introduce the ideas of conjugacy and
sparsity, which play a central role in determining the final form
of the “posterior distribution” that the numerical algorithm
retrieves.

1. Bayesian inference

The foundation of Bayesian inference stems from a simple
statement of conditional probability. Consider the joint proba-
bility that both events a and b will happen,

P (a ∩ b) = P (b|a)P (a), (8)

but obviously

P (b ∩ a) = P (a|b)P (b). (9)

Equating these two expressions leads to Bayes’ theorem

P (a|b) = P (b|a)P (a)

P (b)
. (10)

In words, this theorem states that the probability of a given
that b is true is proportional to the probability of b given that
a is true. This rule can be easily applied to answer questions
involving simple yes/no events. For example, if a corresponds
to actually having breast cancer and b corresponds to receiving
a positive test result for breast cancer, then the result of Bayes’
rule would give the probability that a person who receives
a positive test result actually has cancer. In this case, each
term in Bayes’ rule is a single number, the probability of the
corresponding event.

When the problem of interest is not a simple yes/no ques-
tion, the terms in Bayes’ rule become probability distribution
functions,43

p(μ,σ |�x) ∝ p(�x|μ,σ )p(μ)p(σ ). (11)

Here, Bayes’ rule provides inference on the quantities μ and σ

given the information contained in the data, �x. The probability
distributions p(μ) and p(σ ) are called “prior” distributions and
they provide a priori estimates on the value of the parameters
μ and σ . The distribution p(�x|μ,σ ) is called the likelihood
and is the distribution that the data is presumed to have come
from.
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FIG. 5. (Color online) Illustration of Bayes’ rule for heights
of college students. One can assume that the distribution is well
approximated by normal (Gaussian) distribution, but the mean and
width of the distribution are initially unknown—three possible
distributions are shown. Bayes’ rule provides distributions on the
mean and the width, indicating what values are likely for these
parameters.

As a simple application, consider the heights of college
students. The distribution of heights is well approximated by
a normal distribution (i.e., the likelihood is normal) but the
mean and the variance of the distribution are unknown (see
Fig. 5). Bayes’ rule can be used to estimate the value of these
parameters, and the first step is to employ a normal distribution
for the likelihood

p(�y|μ,σ 2) = N (�y|μ,σ 2). (12)

Since there are two parameters in the likelihood, there must
also be two prior distributions, one for each parameter. These
distributions, p(μ) and p(σ 2), are a priori information about
the values of μ and σ and are chosen using physical intuition
about the situation. The posterior distribution, p(μ,σ 2|�y),
which is formed from the product of the likelihood and prior
distributions, appropriately weights prior information and the
information provided in the data to provide distributions for
the parameters μ and σ 2.

2. Conjugacy

The term conjugacy in Bayesian statistics refers to a specific
relationship between the likelihood and the prior. When a prior
which is conjugate to the likelihood is chosen, the posterior
distribution, which is the product of the likelihood and the
prior, belongs to the same family as the prior distribution.
Suppose a random sample y1, . . . ,yn is collected from a
Gaussian distribution. Then, computing the product of a
Gaussian likelihood

N (�y|μ,σ 2) = (2πσ 2)−n/2e
− 1

2σ2

∑n
i=1(yi−μ)2

, (13)

an inverse gamma prior distribution on σ 2

γ (σ 2|α,β) = βα

�(α)
(σ 2)−α−1e

− β

σ2 (14)

is formed, and the resulting posterior distribution on σ 2 is also
an inverse gamma distribution with the new parameters

αn = α + n

2
, βn = β +

∑n
i=1(yi − μ)2

2
. (15)
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Choosing a conjugate prior results in two important advantages
over other choices. (1) Computational complexity is reduced,
and (2) because the form of the posterior is recognizable,
the mean and variance of the posterior are easily identified.
By choosing a conjugate prior, the mean and variance of the
posterior are known analytically, and, if desired, the posterior
distribution can easily be sampled. If a nonconjugate prior
is chosen, retrieving the posterior distribution requires costly
sampling algorithms such as Markov chain Monte Carlo and
Metropolis Hastings.44–47

3. Sparsity

A sparse model is both intuitively appealing and com-
putationally efficient when the model is used in subsequent
simulations. The compressive sensing paradigm seeks a sparse
solution to an underdetermined system by minimizing the
�1-norm of the solution vector. Most compressive sensing
implementations do just that: minimize the �1-norm of the
solution vector through a convex optimization algorithm with
a tunable parameter to adjust the balance between sparsity and
the magnitude of the fitting errors. Tunable parameters can be
eliminated with BCS but enforcing sparsity is more subtle and
relies on a specific choice for the prior distribution on the model
coefficients. Combining the strengths of both compressive
sensing and Bayesian inference yields a computationally
efficient, parameterless algorithm for recovering the most
sparse solution. Other Bayesian methods for model recovery
are effective,27,32,33 but the number of parameters in such a
model can be large.

B. A combined Bayesian compressive sensing algorithm

1. A simple example

To illustrate how compressive sensing can be implemented
using Bayesian statistics, let us illustrate the technique on
the simple underdetermined system of 10y + 7x = 20, which
was briefly mentioned in Sec. III. A logical choice for the
likelihood for this problem is a normal centered at 10y + 7x

with variance σ 2

p(data|μ,σ 2) = N (20|10y + 7x,σ 2). (16)

This essentially says that if one knew the values of x and y,
then one could draw from a normal distribution centered at
10y + 7x and having variance σ 2 and the resulting numbers
would approximate the data collected (in our case it is a single
data point: 20).

With the likelihood defined, we must now define prior
distributions on the parameters found in the likelihood, namely
x and y.48 The choice of prior distributions on the parameters
x and y is key to implementing the compressive sensing
paradigm. One common way to implement the CS paradigm
is to use a Laplace distribution for the priors on x and
y. The Laplace distribution enhances sparsity by placing
a large probability mass at the origin, thus favoring 0 for
parameter values. However the Laplace distribution is not
conjugate to the Normal likelihood and would result in greater
computational complexity. To work around this challenge, a
normal distribution is used for the priors on x and y,

x ∼ N (0,γ1), y ∼ N (0,γ2) (17)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
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y

FIG. 6. (Color online) Contour plot of distribution given in
Eq. (19) with λ = 10 and σ = 3.5 and γ1 and γ2 integrated out.
The distribution exhibits two peaks: one at (0,1.96) and the other
at (2.79,0), both sparse solutions to the underdetermined problem
10y + 7x = 20.

and gamma distributions (hyperpriors) are placed on the
parameters γ1 and γ2:49

γ1 ∼ �

(
1,

λ

2

)
, γ2 ∼ �

(
1,

λ

2

)
. (18)

The full bivariate posterior distribution is then assembled as

p(x,y|data,σ 2) = N (20|10x + 7y,σ 2)N (x|0,γ1)

×N (y|0,γ2)�

(
γ1

∣∣∣∣1,
λ

2

)
�

(
γ2

∣∣∣∣1,
λ

2

)
.

(19)

Notice that when λ → 0 the hyperprior is very broad, thus
providing very little information about the value of γi , and
when λ → ∞ the hyperprior becomes a highly restrictive delta
function centered at the origin. If the hyperprior is a delta
function, γi = 0 and the prior distribution on coefficient i is
also a delta function. This essentially cuts out basis function
i from the model. Thus it is easy to see how sparsity can be
enforced through this framework.

When the γ ’s are integrated out and reasonable values for
λ and σ 2 are chosen, the resulting distribution over x and
y is shown in Fig. 6.50 This two-dimensional distribution
exhibits a peak at the location (0,1.96), a sparse solution to
the underdetermined problem 10y + 7x = 20. Another peak is
also found at the other sparse solution, (2.79,0), but it is lower
in magnitude as it corresponds to a solution with a greater �1

norm.

2. Algorithmic details

Real problems are of much higher dimensionality than what
was illustrated in the previous section. However, the form of
Bayes’ rule remains essentially unchanged,

p( �J ,σ 2, �γ ,λ| �E)

= N ( �E|�̄ �J ,σ 2)
N∏
i

N (Ji |0,γi)

×
[

N∏
i

�

(
γi

∣∣∣∣1,
λ

2

)]
�(σ 2|aβ,bβ )�

(
λ

∣∣∣∣ν2 ,
ν

2

)
. (20)
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Here, �E is a vector of function samples. For cluster expansion
models, this would be a vector of first-principles data. The
vector �J contains the sought-after model coefficients. Notice
that instead of fixing the values of σ 2 and λ we now introduce
prior distributions on these parameters. This introduces several
new parameters aβ , bβ , and ν, the values of which must be
chosen at the outset.

To increase computational speed, the projection of the
full posterior distribution in Eq. (20) onto a lower dimen-
sional subspace where we condition on optimal values for
nuisance parameters σ 2,γ , and λ yields a convenient form
for the conditional joint posterior distribution over the model
coefficients �J ,

p( �J |σ 2, �γ ,λ, �E) = N ( �J |μ,�). (21)

Here we define the mean vector as

μ = �σ−2�T �E (22)

and the covariance matrix as

� = [σ−2�T � + �]−1, (23)

where

� = diag

(
1

γi

)
. (24)

Once accurate values for � and μ are known, the resulting
distribution provides the sought-after estimate of the ECIs, �J .
However, notice that � and μ are dependent of the parameters
γ , λ, and σ−2. Optimal values for the parameters σ 2,γ , and λ

can be obtained by first projecting the full posterior of Eq. (20)
onto the subspace defined by the variables σ 2,γ , and λ, thus
forming the conditional joint posterior distribution

p(σ 2, �γ ,λ| �J , �E). (25)

This distribution is then maximized with respect to the
variables σ 2, γ , and λ. What emerges are analytic expressions
for σ 2, γ , and λ, with each expression being dependent on
the other two variables. Finding the optimal values for these
variables is done using an iterative procedure where the most
current version of the set of parameters is used to update the
remaining, out-of-date, parameters.

The iterative solution employed here includes the updates
of � [Eq. (23)] and μ [Eq. (22)] at each iteration. The update
of � would normally require a costly inverse (especially
costly for problems involving large cluster pools). To avoid the
computationally expensive inverse found in Eq. (23), Babacan
et al. update a single γi per iteration. Instead of computing an
inverse at each iteration, the entries in the matrix corresponding
to the current-iteration basis function are simply updated. This
leads to a very efficient update of the matrix � and the mean
vector μ. The speed of this implementation hinges critically
on this idea. It is insightful to note that if γi = 0 then Ji = 0
and the corresponding model coefficient is 0. Since we expect
sparse solutions, many of the γi’s are expected to be zero, and
the covariance matrix and mean vector can be represented with
far fewer dimensions than N .

The algorithm proceeds by beginning with the zero model,
all γi’s are set to zero and therefore all model coefficients are
zero, and then iteratively adding, removing, or reestimating
model coefficients:

Bayesian compressive sensing
(1) Set all γi = 0.

(2) While not converged,
(a) Choose a basis function to consider, γi .
(b) Compute the value of γi which maximizes the posterior
distribution [Eq. (25)]. Call this value γ

(m)
i .

(i) If γ
(m)
i < 0, prune γi out of the model (set γi = 0).

(ii) If γ
(m)
i > 0 and γi = 0, add γi to the model.

(iii) if γ
(m)
i > 0 and γi > 0, reestimate the value of γi .

(c) Update all other parameters (�, μ, λ, σ 2).

At step one of the algorithm, a basis function γi is selected
for consideration. This selection is made by computing the
value of each γi and choosing the one that results in the greatest
increase in the posterior distribution [Eq. (25)]. The algorithm
is stopped when the increase in the posterior distribution from
one iteration to the next is less than some predefined threshold.

C. Enhancing the sparsity through reweighted
�1 norm minimization

The �1 norm is a practically useful and computationally
efficient, albeit less-than-perfect, measure of sparsity. A more
accurate measure of sparsity is given by the �0 norm, which
counts the number of nonzero elements in a vector. However,
the �0 norm is not a norm in a strict mathematical sense and
its use in optimization algorithms is difficult because it is not
convex and leads to algorithms that are NP complete.

One drawback with using the �1 norm as a measure of
sparsity is its dependence on the magnitude of the coefficients.
The �1 norm favors solutions with smaller-magnitude coeffi-
cients over solutions that are equally sparse (or even slightly
more sparse), but whose coefficients have larger magnitudes.
To address this imbalance, Candes et al. proposed a weighted
formulation of the �1 minimization which penalizes all nonzero
coefficients equally.51 Under this approach the constrained
minimization problem is solved iteratively with the �1 norm
of the model coefficients being weighted at each iteration
according to

w
(l+1)
i = 1

|Ji |(l) + ε
, (26)

where the index i indicates the basis function being weighted
and l is the iteration index. These weights put large and small
magnitude coefficients on equal footing by suppressing the
contribution of large magnitude coefficients to the �1 norm.
As explained in Ref. 51, this weighting can be easily enforced
by multiplying the sensing matrix by the inverse of the weight
matrix,

�̄(W (l))−1, (27)

where W is a diagonal matrix with the weights of Eq. (26) on
the diagonal. For cluster expansions, we found that reweighting
increases sparsity with a negligible increase in predictive error.

In the absence of the reweighting procedure, many fits,
each using a different training set, must be constructed
and the results analyzed statistically to identify dominant
coefficients.13 This increases sparsity and eliminates small, but
spurious interactions that result from a particular choice of the
training set. However, the reweighting procedure employed
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here results in a significant enhancement of sparsity and
eliminates the need to average over many solutions.

V. APPLICATION

Here we demonstrate reweighted �1 minimization through
Bayesian compressive sensing on cluster expansion models
for the binary systems Cu-Pt, Ag-Pt, and Ag-Pd. Pt group
metal alloys have applications in catalysis and jewelry,
which motivated their study here. Additionally, an alternate
implementation of CSCE was recently used to study Ag-Pt,13

and a direct comparison to this alloy was desired.
Using the UNCLE software, approximately 1000 clusters

were enumerated, with approximately the same number
from each order up to six-body clusters. For each alloy
system, the chemical energies of crystal structures were
calculated from the density-functional theory (DFT) using
the VASP software.52,53 We used projector-augmented-wave
(PAW) potentials54 and the generalized gradient approxima-
tion (GGA) to the exchange-correlation functional proposed by
Perdew, Burke, and Ernzerhof.55 To reduce random numerical
errors, equivalent k-point meshes were used for Brillioun
zone integration.56 Optimal choices of the unit cells, using

a Minkowski reduction algorithm, were adopted to accelerate
the convergence of the calculations.57 The effect of spin-orbit
coupling was not included in our calculations because its effect
was shown to be a simple tilt of the calculated energies, as
explained in Ref. 58. In total, approximately 800 training
structures plus 200 holdout structures with supercells of up
to 12 atoms were calculated for each system

To compare to currently used methods in the cluster
expansion community we use the UNCLE code, which uses
a genetic algorithm (GA), for the cluster selection/fitting
process. GA parameters were set to values that would enable
a reasonable computation time and produce typical quality
results: 3 populations, 100 generations with 30 children per
generation, and a modest mutation rate. While reweighted
BCS is able to consider very large cluster pools, the GA slows
considerably as the size of the cluster pool grows. To make
a fair comparison, we have used a pool of ∼1000 clusters
for both methods. BCS fits for approximately 100 different
choices of the training set were performed. Due to the high
computation cost of a GA fit, fits for only 5 different training
set choices were performed with the GA.

The CS paradigm considers all clusters in the pool equally
with no explicit restriction on which, or how many, clusters

FIG. 7. (Color online) Comparison between reweighted Bayesian compressive sensing and genetic algorithm methods for constructing a
cluster expansion model for the binary systems Ag-Pt (left), Ag-Pd (center), and Cu-Pt (right). The dashed curves indicate BCS results and the
solid curves indicate GA results. The upper plots show the �0 norm of the solution vector as the training set increases. The middle plots show
the �1 norm of the solution vector, and the lower plots gives the RMSE over a holdout dataset. Approximately 100 BCS fits were performed at
each training set size, and the results of these fits are depicted using box-and-whiskers symbols. Due to its high computational cost, only 5 GA
fits were performed, and hence GA results are not depicted using box-and-whiskers symbols.
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should be used. To make a fair comparison with the genetic
algorithm, the maximum number of model coefficients that the
GA was allowed to use was set to be 500. In every fit depicted
here, the number of model coefficients found was less than 500.

Since the predictive errors are Gaussian distributed with a
mean of zero, the statistical uncertainty in the predictive error
due to the finite size of the prediction set (between 150 and 600
holdout data points) can be calculated using standard statistical
formulas for the χ2 distribution; they are found to be less than
5% of the calculated root-mean-square error (RMSE).

Figure 7 gives a comparison between GA fits and re-
weighted BCS fits for the binary systems Cu-Pt, Ag-Pt, and
Ag-Pd. Notice that for every system the root-mean -square
error over the holdout set is lower for BCS fits for all sizes
of the training set. While the RMSE of the GA fits is not
terrible, the �1-norms of the solution vector for GA fits are
considerably larger than those from BCS fits. Furthermore,
the �0 norm of the GA solutions increases steadily with the
size of the training set while the �0 norm of the BCS fits
remains flat. Clearly, the GA solutions are much more dense
than what BCS finds. A dense model is not consistent with
widely held intuition about the nature of physical interactions
in real solids. Furthermore, using a many-parameter model
for subsequent thermodynamic simulations will result in
unnecessary computational burden and prolonged simulation
times. In contrast, the �1-norm for BCS fits is relatively
small and levels off as more training data is added. This is
convincing evidence that the solution is converging, and the
physical model is being recovered. A graphical comparsion
of BCS with the CS implementation of Ref. 13 is not given
because the predictive capacity and �1 norm of the solutions
are very similar. The main differences are the removal of
a tunable parameter and the addition of the reweighting
procedure which dramatically reduces the �0 norm of the
solution

It is curious that the BCS and GA models achieve similar
predictive capacities but differ wildly in the nature of their
solutions. One possible explanation for this is that, since the
GA does not limit the �1 norm of the solution vector, its
solutions are dense and encompass an approximate null space.
Hence, approximate linear dependencies will exist between
ECIs of a dense solution, but are much less likely for sparse
solutions, like those found by compressive sensing. This could
explain how contributions from large ECI coefficients may
cancel each other and result in relatively small RMS errors,
but this issue certainly needs to be investigated further.

Another key feature of BCS is the efficiency of the
algorithm. For the three systems discussed here BCS fits were
constructed in a fraction of the time needed for the GA. BCS
required on the order of minutes to construct 100 fits, whereas
the GA needed ∼24 hours for a single fit.

VI. CONCLUSION

It has been shown that the CS paradigm is uniquely
well suited to building CE lattice models. Reweighted BCS
provides a fast, efficient, and parameterless framework for
constructing CE models. These models are constructed in
a fraction of the time required by current state-of-the art
techniques and with minimal time and effort required by the
user. BCS-constructed CE models converge to solutions which
agree with widely held intuition about the nature of physically
relevant interactions, and predict more accurately than other
modern CE construction methods.

From a broader perspective, the CS paradigm is poised to
have a big impact on computational physics problems of all
types. The CS paradigm is well suited to tackle any highly
underdetermined linear problem A�x = �b where �x is known to
be sparse. One possible application is the expansion of high-
throughput databases to include lattice models. This approach
relies heavily on being able to automatically perform first-
principles calculations, and has hitherto not involved using
the database information to build materials models. This is
mostly due to the high human time cost required to construct
such models. However, the hands-off nature of BCS-based
CE models will allow materials models to be added to the
high-throughput scope of work. In addition to vast amounts
of first-principles data, soon high-throughput databases will
include accurate lattice models for a diverse array of materials.
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