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Properties of axisymmetric Bernstein modes in an infinite-length non-neutral
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We have observed axisymmetric Bernstein modes in an infinite-length particle-in-cell code

simulation of a non-neutral plasma. The plasmas considered were in global thermal equilibrium and

there were at least 50 Larmor radii within the plasma radius. The density of the plasma in the

simulation is parameterized by b, the ratio of the central density to the density at the Brillouin limit.

These modes have m¼ 0 and kz ¼ 0, where the eigenfunctions vary as eiðmhþkzzÞ. The modes exist

both near the Coriolis-shifted (by the plasma rotation) upper-hybrid frequency, xuh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � x2
p

q
,

and near integer multiples (2, 3, etc.) of the Coriolis-shifted cyclotron frequency (called the vortex

frequency, xv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � 2x2
p

q
). The two modes near xuh and 2xv are the main subject of this paper.

The modes observed are clustered about these two frequencies and are separated in frequency at low

plasma density roughly by dx � 10ðrL=rpÞ2x2
p=xc. The radial velocity field of the modes has a

J1ðkrÞ dependence in the region of the plasma where the density is nearly constant. For any given

density, there are three classes of modes that exist: (1) The fundamental mode is slightly above the

upper-hybrid frequency, (2) the upper branch is above the higher of xuh and 2xv, and (3) the lower

branch is below the lower of xuh and 2xv, with similar values of k for both the upper and the lower

frequency branches. The modes are fully kinetic and the resulting pressure tensor has significant

anisotropy, including off-diagonal terms. A Vlasov analysis of these modes considering only particle

resonances up to 2xv produces a radial mode differential equation whose solution agrees well with

the simulations, except at high density (b greater than about 0.9) where higher-order resonances

become important. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821978]

I. INTRODUCTION

Bernstein waves are electrostatic oscillations perpendic-

ular to the magnetic field near harmonics of the cyclotron

frequency.1 These modes are not correctly described by fluid

models of the plasma, but must be described by a fully ki-

netic theory. The non-zero electric field and equilibrium

rotation of the plasma cause these modes to behave differ-

ently in a non-neutral plasma than they do in a neutral

plasma. The formal kinetic dispersion relation for these

waves in an infinite cylindrical non-neutral plasma with uni-

form density was derived by Davidson,2 but many details

have gone unstudied. Prasad, Morales, and Fried3 studied

these effects in a slab geometry and found that the equilib-

rium electric field of the plasma shifts the frequency of the

single particle gyrofrequency down from the cyclotron fre-

quency. One of the effects of the equilibrium rotation is that

the cyclotron frequency is Coriolis shifted in the lab frame of

reference. This shifted frequency is called the vortex fre-

quency with magnitude, jxvj ¼ jxcj � 2jx0j, where x0 is the

equilibrium rotation frequency of the plasma.4,5 Note that

throughout this paper xc ¼ qB=m and that this and all other

frequencies are signed quantities, e.g., xc < 0 for electrons.

In cylindrical geometry, there are families of Bernstein

modes that behave as eiðmhþkzzÞ. The modes for m � 1 for fi-

nite temperature have been described and measured by

Gould and LaPointe.6 There was an alternative cold-fluid

theory proposed for these same modes by Book.7 Dubin8

described the theory of cold, non-neutral spheroidal plasmas,

including high-frequency modes, but that theory does not

address the infinitely long plasmas considered here.

Recently, Dubin9 has also examined the theory of both

surface cyclotron waves and Bernstein waves in infinitely

long plasmas with non-uniform density, but he restricts his

attention to x2
p � x2

c and so does not study these modes

close to the Brillouin limit as is done in this paper. The x20

mode discussed by Bollinger et al.5 is the spheroidal analog

of the fundamental mode discussed in this paper. The breath-

ing mode discussed by Barlow et al.10 appears to be this

same mode in a finite-length, low-density system and was

used by them and others in the mass spectrometry commu-

nity to take moderate resolution mass spectra of the confined

particles.

This paper is restricted to the m¼ 0 (axisymmetric) case

with kz ¼ 0. Such modes would be challenging to see experi-

mentally, because they induce no changes in the wall

surface-charge density. By Gauss’ law, the perturbed electric

field at the wall must be zero. But for finite length plasmas,

with the plasma length long compared to the plasma radius,

so that an infinitely long theory could give nearly the correct

mode frequencies, the property of electrostatic modes that

the electrostatic potential at the plasma ends is approxi-

mately zero11 gives the modes a cosðkzzÞ dependence that

would produce observable charge on the conducting wall

near the center of the plasma. This effect was observed in a
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recent ðr; zÞ simulation of these modes.12 The work pre-

sented here, however, is restricted to infinitely long plasmas.

This paper proceeds as follows. Section II discusses the

simulations used to detect and measure the modes. Section

III is a discussion of the kinetic theory of the modes and how

to predict their frequencies and radial wavenumbers. Section

IV contains the results of the simulations and the comparison

of those results to an approximate theory. In most cases they

agree reasonably well, but without a detailed analysis of the

complex orbits in the plasma edge, high accuracy is not pos-

sible. In Sec. V, we discuss the results and draw conclusions.

II. SIMULATION

These modes were first observed in a 2-dimensional

cylindrical ðr; hÞ Particle-in-Cell (PIC) simulation of an

infinite-length non-neutral plasma. That code was being

used to study possible Fourier-Transform Ion-Cyclotron-

Resonance Mass Spectrometry (FTICR-MS) signals in a

non-neutral ion plasma.13 As the modes that were observed

were clearly axisymmetric and because the 2D code was

slow, a one-dimensional (1D) simulation was written which

was much more efficient to run. The results of the 1D code

were compared with the results of the 2D code and they

agreed within the inherent noise of the simulations. All of

the results given below are from the 1D code.

A. 1D particle-in-cell code

Because these modes have only r-variation in cylindri-

cal geometry, they can be studied by means of a one-

dimensional code. In many ways, this code is a standard

PIC code, but it has two main modifications. These are (1)

that it uses x ¼ r2 as the radial variable and (2) that it solves

for Er by using Gauss’ law, since the plasma is axisymmet-

ric. The reason for using x ¼ r2 as the independent variable

has to do with the motion of a particle whose orbit brings it

close to r¼ 0. As shown by the dashed line in Fig. 1, a par-

ticle whose position is measured in r shows very rapid

changes in r when it passes near the origin. Resolving such

motion requires very short time steps. If the independent

variable is x ¼ r2, however, motion like that shown by the

solid line in Fig. 1 is obtained; it is smooth and does not

require short time steps to resolve. Another benefit of using

x instead of r is that there are roughly equal numbers of par-

ticles in each cell in x, whereas there are many fewer par-

ticles/cell at small r when r is the independent variable.

This decreases the shot noise in the simulation near the

origin.

Since the code uses the variable x, the particle mover in

the code must be modified to work in this variable. The

Lagrangian for this system in r and h is

L ¼ m

2
ð _r2 þ r2 _h

2Þ þ 1

2
mxcr2 _h � q/; (1)

where xc ¼ qB=m and / are the electrostatic potential. The

canonical angular momentum is

Ph ¼ mrvh þ
1

2
mxcr2; (2)

where vh ¼ r _h. Ph is a conserved quantity for each particle,

because h is an ignorable coordinate in the Lagrangian.

The variable r is eliminated by substituting r ¼
ffiffiffi
x
p

and

_r ¼ _x=ð2
ffiffiffi
x
p
Þ into the Lagrangian. After the equation of

motion for x is calculated, Eq. (2) can be used to eliminate vh

in favor of Ph, giving

€x ¼ 1

2

_x2

x
� 1

2
xx2

c þ
2P2

h

m2x
þ 2

q

m

ffiffiffi
x
p

EðxÞ ¼ 1

2

_x2

x
þ FðxÞ: (3)

F(x) as defined by this equation depends only on x and not

on _x. The leapfrog algorithm is used to advance the position

and velocity, using _x ¼ v and _v ¼ 1
2
v2=xþ FðxÞ. Because of

the v2 on the right-hand-side of the velocity equation, it must

be finite-differenced implicitly. The x advance can be

explicit. The time-advance equations are

vnþ1=2 ¼ �vn�1=2 þ
4xn

s

� 2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

n � 4xnvn�1=2s� 2FðxnÞxns2

q
(4)

and

xnþ1 ¼ xn þ svnþ1=2; (5)

where the subscripts on x and v indicate the time levels of

each quantity and where s is the size of the time step. Using

Eq. (2), vh for each particle at time step nþ 1 can be calcu-

lated by using the conserved Ph for that particle

vhnþ1
¼ Ph

m
ffiffiffiffiffiffiffiffiffi
xnþ1
p � 1

2

ffiffiffiffiffiffiffiffiffi
xnþ1

p
xc: (6)

The operation of the code proceeds as follows. The code

is initialized with approximately 1 � 106 particles, weighted

appropriately for the desired density. Each particle is given a

position in x consistent with the equilibrium density distribu-

tion. Each is also given a thermal vr and vh, as well as an

FIG. 1. The motion of an object which comes close to the origin displayed

both in r and in x ¼ r2. The dashed line shows the motion in r, the solid line

in x. A simulation must use very small time steps to resolve the motion at

small r, whereas it can use larger time steps to resolve the motion if it is

measured in x.
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additional vh from the equilibrium plasma rotation. The vh

for each particle is converted into the appropriate Ph, which

is stored and which is conserved in the motion of that parti-

cle. Each particle is then given a perturbed v1rðxÞ as the ini-

tial condition of the mode being launched. The total vr is

converted to vx and stored. At each time step, the density of

the plasma is calculated by casting the particles onto a grid

in x. The electric field is calculated by using Gauss’ law on

the enclosed charge at each x on the grid. The particles are

then moved one time step by the mover as outlined above

using interpolated values of E(x) from the grid, and the pro-

cess is repeated. Periodically the code calculates the radial

electric field, E(r), the radial and h fluid velocities, vrðrÞ and

vhðrÞ, the fluid density, n(r), and the three independent val-

ues of the pressure tensor, PrrðrÞ; PhhðrÞ and PrhðrÞ, and

writes them out into a file for later analysis. Results from the

simulation will be discussed in Sec. IV.

III. KINETIC THEORY OF THE MODES

A. Equilibrium

The non-neutral plasma equilibrium considered is the

standard global thermal equilibrium in an infinitely long ge-

ometry14 with distribution function (in two dimensions, vr

and vh, with v2 ¼ v2
r þ v2

h)

f0 ¼
n0

ð2pÞv2
th

exp � v2

2v2
th

� qð/ðrÞ � /ð0ÞÞ
kBT

þ x0Ph

kBT

" #
; (7)

where the plasma consists of particles with charge q,

mass m, speed v, and temperature T, where n0 is the central

plasma density, kB is Boltzmann’s constant, and where

vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
. The frequency x0 is the rigid rotation fre-

quency. The plasma is confined by an axial magnetic field B
so that the cyclotron frequency is given by xc ¼ qB=m. The

canonical angular momentum is given by Eq. (2), which

allows the distribution function to be written in the form

f0 ¼
n0

ð2pÞv2
th

exp � v2
r þ ðvh � x0rÞ2

2v2
th

"

þ r2

2v2
th

ðx2
0 þ x0xcÞ �

qð/ðrÞ � /ð0ÞÞ
kBT

�
: (8)

Integrating this distribution function over all velocities to

obtain the density, n(r), and solving the resulting Poisson

equation for /ðrÞ admit solutions with nearly constant den-

sity inside a region of plasma radius rp bounded by a narrow

transition (if the Debye length is small compared to the

plasma radius) with a width of a few Debye lengths over

which the density drops to zero. Such an equilibrium is only

possible if the second and third terms in the exponential in

Eq. (8) add very nearly to zero inside the plasma. Solving

Poisson’s equation for a constant interior density n0 results

in an electrostatic potential proportional to r2. This gives the

following condition on the rotation frequency x0, which

ensures that these two terms add to zero inside the plasma:

x2
0 þ x0xc þ

1

2
x2

p ¼ 0; (9)

where the plasma frequency xp is defined to be its value at

the center of the plasma, xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0q2=�0m

p
and where �0 is

the permittivity of free space. This condition on the rigid rotor

frequency x0 results in 2 solutions. The lower frequency root

is of interest in the work presented here and is given by

x0 ¼ �
xc

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � 2x2
p

q
¼ �xc

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
Þ; (10)

where b ¼ 2x2
p=x

2
c is a measure of how close the equilib-

rium is to the Brillouin limit at b ¼ 1. The narrow transition

region at the edge of the plasma is produced when the

plasma runs out of particles and the electrostatic potential /
drops below its central r2-behavior, causing the exponential

in Eq. (8) to quickly drop to zero. (Note from Eq. (9) that the

second term in the argument of the exponential function is

negative; the third is positive.)

B. m 5 0 modes including finite Larmor radius

A kinetic theory will now be developed for the frequen-

cies of m¼ 0 modes (eiðmh�xtÞ) including the effects of finite

Larmor radius rL ¼ vth=xc. The theory starts with the linear-

ized Vlasov equation

Df1
Dt
¼ � q

m
E1r

@f0

@vr
; (11)

where the advective derivative on the left is taken along the

unperturbed orbits in phase space. In the interior of the

plasma where the density is uniform, the equilibrium electric

field is given by

E0ðrÞ ¼
qn0r

2�0

: (12)

The particle orbit that at time t0 ¼ t is at radial location

r with radial velocity vr ¼ v cos / and azimuthal velocity

vh ¼ v sin / is given by

r2ðt0 � tÞ ¼ r2 þ 2rv

xv
ðsinðxvðt0 � tÞ � /Þ þ sin /Þ

þ 4v2

x2
v

sin2ðxvðt0 � tÞ=2Þ; (13)

where

xv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � 2x2
p

q
¼ xc

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
: (14)

As discussed in Sec. II, and as can be seen in Eq. (13),

x ¼ r2 is a convenient variable with smooth time dependence

and no sharp spikes; it will be used throughout this calcula-

tion. The kinetic theory will need the radial velocity, which

can conveniently be written as

vrðsÞ ¼
1

2
ffiffiffiffiffiffiffiffi
xðsÞ

p d

dt
xðsÞ

¼ 1

2
ffiffiffiffiffiffiffiffi
xðsÞ

p 2
ffiffiffiffiffiffiffiffiffi
xð0Þ

p
v cosðxvs� /Þ þ 2v2

xv
sin xvs

� �
;

(15)
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where the quantity s is given by s ¼ t0 � t. Integrating along

the unperturbed orbits in s from �1 to 0 (t0 runs from �1
to t) and assuming that both f1 and E1r are proportional to

e�ixt0 yield

f1 ¼
ð0

�1

q

m

E1rðsÞvrðsÞ
v2

th

f0e�ixsds: (16)

It is convenient to choose to describe the first-order ra-

dial electric field in terms of the quantity

G ¼ E1rðxÞ=
ffiffiffi
x
p
; (17)

which yields for f1 the formula

f1 ¼
ð0

�1

q

m

GðxðsÞÞ
2v2

th

dxðsÞ
ds

f0e�ixsds; (18)

taken along the unperturbed particle orbit of Eq. (13).

To perform this integral, GðxðsÞÞ can be expanded in

powers of the Larmor radius by writing

xðsÞ ¼ xþ dxðsÞ and

GðsÞ ¼ GðxÞ þ G0ðxÞdxðsÞ þ 1

2
G00ðxÞðdxðsÞÞ2 þ � � � ; (19)

where dxðsÞ consists of the second and third terms on the

right-hand side of Eq. (13) and where the symbol 0 denotes

differentiation with respect to x. (Note that this expression

breaks down as b approaches 1 because the plasma becomes

unmagnetized and the particle orbits become too large for

this expansion to be valid.) Using this form, it is now possi-

ble to analytically perform the time integration in Eq. (18)

term by term (remembering that f0 is a function of the equi-

librium constants of the motion and so comes out of the inte-

gral). The perturbed radial electric field E1r is connected to

the perturbed distribution function f1 through Gauss’s law

and the continuity equation

r � E ¼ q

�0

n1 and

� ixn1 þr � ðn0vÞ ¼ 0 ) E1r ¼
�iq

�0x

ð
vrf1d3v

(20)

or

G ¼ �iq

�0xr

ð
vrf1d3v: (21)

Putting all of this together and keeping terms through Oðr2
LÞ

yield a differential equation for G(x) valid inside the plasma

where the unperturbed orbits do not sample the plasma edge

axG00 þ 2aG0 þ cG ¼ 0; (22)

where

a ¼
12r2

Lx
2
px

2
c

ðx2 � x2
vÞðx2 � 4x2

vÞ
and c ¼ 1�

x2
p

ðx2 � x2
vÞ
:

(23)

After discarding a solution which is singular at x¼ 0 this

equation has solution

GðxÞ / J1ðk
ffiffiffi
x
p
Þ

k
ffiffiffi
x
p with

k ¼ 2

ffiffiffi
c

a

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x2

c þ x2
pÞðx2 � 4x2

vÞ
3x2

cx
2
pr2

L

s
: (24)

Note that since rL is so much smaller than rp, the plasma ra-

dius, this dispersion relation predicts that any modes with

values of krp of order 1 must have frequencies either near

x ¼ xuh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � x2
p

q
or near x ¼ 2xv.

Since this dispersion relation comes from just the first 3

terms in a Taylor-series in r2
L, it is important to know the

sizes of the terms being neglected. The extended form of this

differential equation, through fourth order in Larmor radius,

can be written

a= k2ð Þ x2G0000

6
þ xG000

� �
þ xG00 þ 2G0 þ k2

4
G ¼ 0; (25)

where

a ¼ 120x2
ck2r2

L

ð9x2
v � x2Þ : (26)

The theory presented in this paper is only valid when the

leading term in Eq. (25) is small compared to the other three.

Using GðxÞ / J1ðk
ffiffiffi
x
p
Þ=k

ffiffiffi
x
p

to test the size of the leading

term for krp up to about 10 shows that

a
x2G0000

6
þ xG000

� �
xG00k2

� 50k2r2
L; (27)

which is less than 1% for the cases studied in this paper.

Even when this ratio is small, however, the higher-order

derivatives in this equation introduce new solutions and

change the singularities at the origin. A Frobenius analysis

shows that of the four independent solutions to this linear

differential equation two are singular at x¼ 0, one is regular

but oscillates wildly in x as a approaches zero, and one con-

nects smoothly to the Bessel-function solution as a
approaches zero. It is straightforward to find the power-

series solution to Eq. (25) corresponding to this physical

fourth solution. It is

GðxÞ ¼
X1
n¼0

anðk2xÞn with a0 ¼
1

2
; a1 ¼ �

1

16
(28)

and

anþ1 ¼
an

4ðnþ 1Þðnþ 2Þ � a
nðnþ 5Þ

6
anþ2: (29)

The apparent awkwardness of having anþ1 depends on anþ2

is solved by iterating. With a ¼ 0 this recursion relation gen-

erates the power series for J1ðk
ffiffiffi
x
p
Þ=ðk

ffiffiffi
x
p
Þ. Using it again

with a non-zero value of a and with anþ2 in the formula
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coming from the Bessel-function series gives a new series

an. This process may be repeated until convergence is

obtained for a � 4. For the cases studied in this paper, how-

ever, this analysis hardly matters because the difference

between the simple Bessel-function solution of Eq. (24) and

that of Eq. (28) is less than 0.1%.

Proceeding with the simple Bessel-function theory, the

dispersion relation in Eq. (24) can be solved to find x2ðkÞ

x2 ¼ 1

2

�
5x2

c � 9x2
p 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3x2

c � 7x2
pÞ

2 þ 12x2
cx

2
pk2r2

L

q �
;

(30)

valid as long as b is not close to one. In the limit where rL � rp

and assuming that the modes have variations on the order of the

plasma radius rp so that krp � Oð1Þ then krL � 1 and we may

expand this expression to find for the two modes

x2 ¼ 5

2
x2

c �
9

2
x2

p 6

���� 32 x2
c �

7

2
x2

p

���� 6
3x2

cx
2
pk2r2

L

j3x2
c � 7x2

pj
: (31)

For k real the upper sign gives modes near, but slightly

above, 2xv for b < 6=7, and modes near, but slightly above,

xuh when b > 6=7. For k real the lower sign gives modes

near, but slightly below, the upper hybrid frequency xuh for

3x2
c > 7x2

p, or b < 6=7, and modes near, but slightly below,

2xv when b > 6=7. This expansion breaks down when the

two cold mode frequencies are equal at 3x2
c ¼ 7x2

p, i.e.,

when b ¼ 6=7. In this case, we have

x2 ¼ 4

7
x2

c6
3ffiffiffi
7
p x2

ckrL (32)

so that the deviation away from the cold mode frequency is

much larger near this mode crossing ðOðkrLÞ instead of

Oðk2r2
LÞ). If k is imaginary, as it turns out to be in one case

discussed later, the thermal frequency shift caused by finite

Larmor radius is reversed.

It should be noted that the dispersion relation in Eq.

(24), when specialized to the case of small b and uniform

plasma density, agrees with Eq. (106) in Dubin’s recent pa-

per,9 both relations giving

x � xc �
x2

p

2xc
ð1þ k2r2

LÞ: (33)

It is interesting to note that the dispersion relation for

kðxÞ in Eq. (24) can be obtained from Davidson’s equation

(4.225) (Ref. 2) by setting his azimuthal mode number ‘ to

zero and by keeping terms in his equation through Oðk2
?r2

pÞ,
which only requires that terms from n ¼ �2 to n¼ 2 be kept

in the sum. This is somewhat surprising since Davidson’s

eigenfunctions are of form eik�r and his theory is restricted to

the case k?rp 	 1 while the mode differential equation (22)

is cylindrical, leads to Bessel functions, and allows

k?rp ’ 1. This equivalence of Cartesian k? for sines and

cosines with the radial mode number k for Bessel functions

also occurs with the eigenvalue problem r2/ ¼ k/, how-

ever, and the same thing apparently happens in the problem

at hand. If the kinetic theory described here is extended

through Oðk4r4
LÞ, however, the mode dispersion relation in

Eq. (22) contains the new term in Eq. (25) which is singular

at x ¼ 3xv, just as a is singular at x ¼ 2xv. Bessel’s equa-

tion is, then, no longer obtained and Davidson’s dispersion

relation does not describe the long wavelength modes. These

higher order resonances at 3xv and up are not studied in

detail in this paper.

C. Fluid moments

With G ¼ E1r=r in hand, it is straightforward to use Eq.

(18) to solve for the perturbed distribution function f1 and

then to find the physically important fluid moments consist-

ing of the perturbed velocities v1r and v1h, the perturbed

density n1, and the perturbed pressure tensor elements

P1rr; P1hh, and P1rh. In making this calculation, care must be

taken to make sure that all terms through Oðr2
LÞ are kept. The

fluid moments through this order are found to be (using the

dispersion relation, Eq. (24))

v1r ¼ dvJ1ðkrÞ; v1h ¼ �idv
xvð4x2 � x2

c � 3x2
vÞ

2xðx2 � x2
vÞ

J1ðkrÞ;

(34)

n1 ¼ �idv
kn0

x
J0ðkrÞ; E1r ¼ �idv

qn0

x�0

J1ðkrÞ; (35)

P1rr ¼ �idv
kx2

pn0kBT

xðx2 � x2
vÞðx2 � 4x2

vÞ

� ð3x2 � 6x2
vÞJ0ðkrÞ � ð2x2 þ 4x2

vÞ
J1ðkrÞ

kr

	 �
;

(36)

P1hh ¼ �idv
kx2

pn0kBT

xðx2 � x2
vÞðx2 � 4x2

vÞ

� ðx2 � 10x2
vÞJ0ðkrÞ þ ð2x2 þ 4x2

vÞ
J1ðkrÞ

kr

	 �
;

(37)

and

P1rh ¼ �3dv
kx2

pxvn0kBT

ðx2 � x2
vÞðx2 � 4x2

vÞ
J0ðkrÞ � 2

J1ðkrÞ
kr

	 �
:

(38)

It is straightforward to show that these moments satisfy the

perturbed continuity and momentum equations inside the

plasma where n0 and P0 are constant

@n1

@t
þr � ðn0v1Þ ¼ 0 and

m
@v1

@t
þ ðv � rvÞ1

	 �
¼ qE1 þ qv1 � B� 1

n0

r � P1;

(39)

where P1 is the anisotropic perturbed pressure tensor.

Note that these terms in the pressure tensor are very dif-

ferent from the ones that would be obtained from the ideal

fluid equation with an isotropic scalar pressure
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P1 ¼ �icP0ðr � v1Þ=x: (40)

The cyclotron orbits make the pressure tensor anisotropic and

change the first-order dynamics completely. The simulations

show, however, that near the upper-hybrid mode frequency,

x2 � x2
c � x2

p, for the case of b ¼ 6=7, there is a mode with

krp � 0. This is a simple “breathing” mode and the pressure

tensor elements for this mode in the krp ¼ 0 limit satisfy

P1rh � 0; P1rr � P1hh, and P1rr � �icP0ðr � v1Þ=x with

c ¼ 2. This means that this simple breathing mode (v1r / r)

at the upper-hybrid frequency has an adiabatic pressure

response appropriate for 2 degrees of freedom. This simple

breathing mode is only found at b ¼ 6=7, however.

D. The boundary condition at the plasma edge

The simulations produce modes with a discrete spec-

trum, as expected for a finite system. To find these mode fre-

quencies, it is necessary to impose a boundary condition at

the edge of the plasma. The particle orbits near the boundary

are very different from those in the interior and the perturbed

electric field, density, and pressure tensor may change rap-

idly as the plasma edge is approached. This makes the ki-

netic theory difficult to do there. It is possible, however, to

obtain approximate equations that determine the values of

krp for the observed modes by making a simple assumption

about the way the perturbed pressure tensor behaves in the

edge.

The calculation begins with the fluid momentum equa-

tions. The linearized radial and angular momentum equa-

tions in the Eulerian picture, including terms due to the

radial variation of n0ðrÞ and P0ðrÞ in the plasma edge, can

be written

mð�ixv1r � 2x0v1hÞ ¼ qv1hBþ qE1r �
r � P1

n0ðrÞ

� �
r

þ n1

n2
0ðrÞ

@P0ðrÞ
@r

(41)

and

mð�ixv1h þ 2x0v1rÞ ¼ �qv1rB�
r � P1

n0ðrÞ

� �
h

: (42)

To handle these equations in the plasma edge we need

expressions for both n0ðrÞ and P0ðrÞ. The latter can be

obtained if n0ðrÞ is known through the ideal gas law

P0ðrÞ ¼ n0ðrÞkBT. The required expression for n0ðrÞ comes

from the plasma equilibrium equation

r2/ ¼ � q

�0

n0ðrÞ

¼ � qn0

�0

exp
mr2

2kBT
ðx2

0 þ x0xcÞ �
qð/ðrÞ � /ð0ÞÞ

kBT

	 �
:

(43)

The equilibrium density n0ðrÞ is nearly constant inside the

plasma then falls off rapidly in r on the scale length of the

Debye length near r ¼ rp. It is convenient to define a scaled

radial variable n in the edge by r ¼ rp þ kDn and to define

the new dependent variable

g ¼ qð/ðrÞ � /ð0ÞÞ
kBT

� mr2

2kBT
ðx2

0 þ x0xcÞ: (44)

Because kD � rp the Laplacian in the edge may be approxi-

mated by r2 � ð1=k2
DÞ@2=@n2 to obtain the following ap-

proximate equilibrium equation for gðnÞ:

g00 ¼ 1� e�g and nðnÞ ¼ n0e�g with

gð0Þ ¼ ln 2 so that njn¼0 ¼ n0=2: (45)

The function gðnÞ is very nearly zero inside the plasma

where n� �1 and gðnÞ / n2=2 for large positive n beyond

the plasma edge. The important quantity g0ðnÞ is also zero

inside the plasma and makes the transition to g0 � n over a

few Debye lengths through the plasma edge.

It is convenient to solve Eq. (42) for v1h to eliminate this

variable from Eq. (41). The variables E1r and n1 may then be

eliminated in favor of v1r by using the exact expressions

E1r ¼
�iq

�0x
n0ðrÞv1r and n1 ¼

�i

xr

@

@r
ðrn0ðrÞv1rÞ: (46)

The terms involving the perturbed pressure tensor elements

are more difficult because they depend critically on the

details of particle orbits, but an analysis of the simulation

results shows that the Lagrangian perturbed pressure tensor

elements (these elements in the moving frame of the plasma

edge) are given to a reasonable approximation by the fluid

expressions in Eqs. (36)–(38), with the replacements

dvJ1ðkrÞ ¼ v1r; kdvJ0ðkrÞ ¼ 1

r

@

@r
ðrv1rÞ; and

n0 ¼ n0ðrÞ: (47)

Note that this assumes that the connection between P1 and

v1r in the edge is the same as it is in the interior, even though

the particle orbits in the edge are much different than those

in the interior. Precision in the determination of krp for the

modes cannot be expected under this assumption.

Converting these Lagrangian expressions to their

Eulerian counterparts through

PE
1rr ¼ PL

1rr �
�

iv1r

x

�
@P0ðrÞ
@r

;

PE
1hh ¼ PL

1hh �
�

iv1r

x

�
@P0ðrÞ
@r

; and PE
1rh ¼ PL

1rh; (48)

where the superscripts “E” and “L” denote quantities in the

Eulerian and Lagrangian pictures, then leads to a compli-

cated mode differential equation in v1r alone. The mode

equation simplifies considerably by using the substitution

r2
L ¼

x2
p

x2
c

k2
D; (49)

the dispersion relation in Eq. (30), and the expressions x2
p

¼ ðb=2Þx2
c and x2

v ¼ ð1� bÞx2
c . It is also helpful to use the

equilibrium identity
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e�2g ¼ e�g

�
1� k2

D

d2g

dr2

�
(50)

to eliminate the troublesome term e�2g when it arises. The

mode differential equation can then be written as

d2v1r

dr2
þ 1

r

dv1r

dr
þ
�

k2 � 1

r2

�
v1r

� r
dv1r

dr
� 2½6ð1� bÞ þ bk2k2

D
v1r

6� 5b6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6� 7bÞ2 þ 12b2k2k2

D

q
0
@

1
A1

r

dg

dr
¼ 0;

(51)

where

dg

dr
¼ 1

kD

dg

dn
; (52)

and where the two choices for the sign in the denominator

correspond to the modes near 2xv and to those near xuh, as

in the discussion following Eqs. (30) and (31).

Further simplification results by assuming that k2k2
D � 1

and expanding in this small quantity. In this approximation,

the mode differential equation for the mode near 2xv is found

to be

d2v1r

dr2
þ 1

r

dv1r

dr
þ
�

k2 � 1

r2

�
v1r � r

dv1r

dr
� v1r

	 �
1

r

dg

dr
¼ 0:

(53)

For the mode near xuh in the same approximation, the result

is

d2v1r

dr2
þ 1

r

dv1r

dr
þ
�

k2 � 1

r2

�
v1r

� 1

b
br

dv1r

dr
� 6ð1� bÞv1r

	 �
1

r

dg

dr
¼ 0: (54)

Inside the plasma dg=dr ¼ 0 and the solutions of these

equations are simply v1r ¼ dvJ1ðkrÞ as we have seen

before. Outside the plasma numerical experimentation

shows that the solutions to these equations are generally

rapidly growing and unphysical because they grow even

faster than the equilibrium density n0ðrÞ decreases. For

particular values of k, however, the solutions are well-

behaved and physical for r > rp, which determines k and

hence the mode frequencies. For kD � rp these special

values of k are well-predicted by the condition that the

multiplier of dg/dr in the mode differential equations van-

ishes when evaluated using the interior Bessel function so-

lution v1r ¼ dvJ1ðkrÞ at r ¼ rp. The mathematical reason

for this condition is that if the interior solution for some

value of k does not result in the multiplier of dg/dr near

the edge being small then the rapid increase in dg/dr mov-

ing through the edge kicks the solution rapidly toward ei-

ther 1 or �1.

The condition for the mode near 2xv when kkD � 1 is

x � 2xv : 2
J1ðkrpÞ

krp
� J0ðkrpÞ ¼ J2ðkrpÞ ¼ 0: (55)

Note that the simplest root of this equation is krp ¼ 0 which

corresponds to v1r / r. This would be a simple “breathing

mode” at x ¼ 2xv, but the simulation never produces such a

mode. Since the pressure tensor elements in the interior have

a factor of ðx2 � 4x2
vÞ in their denominators, when x

approaches 2xv they become singular unless the velocity-

dependent terms in the numerator are very special. They are

special in the interior, but there is no guarantee that they

remain special in the edge. We conjecture that this breathing

mode at 2xv is an artifact of the assumption that the depend-

ence of the pressure tensor on v1r is the same in the edge as

in the interior.

The mode condition for the upper-hybrid mode when

kkD � 1 is

x � wuh : ð12� 10bÞ J1ðkrpÞ
krp

� 2bJ0ðkrpÞ

¼ ð6� 7bÞJ0ðkrpÞ þ ð6� 5bÞJ2ðkrpÞ ¼ 0: (56)

It is interesting that the condition on the modes near

x ¼ 2xv does not depend on b. This is because for kkD � 1

the mode near 2xv depends only on pressure restoring forces

and not on the perturbed electric field. It should also be noted

that the condition on the modes near xuh does depend on b
and that for b ¼ 6=7 this condition becomes identical to the

condition for the modes near 2xv.

It is important to know how accurate these approximate

conditions are compared to the more complete calculation

involving solving the mode dispersion differential equation

(51). Numerical experimentation shows that the errors intro-

duced by not solving the mode differential equation and by

not keeping terms of order k2k2
D when rp=kD > 40 are all

less than 1%, which turns out to be quite a bit less than the

discrepancies between the values of krp predicted by Eqs.

(55) and (56) and those obtained from the simulation (see

Sec. IV). The calculation probably does not agree better with

the simulation results because of the assumption that the

pressure tensor elements have the same dependence on v1r in

the edge that they have in the interior.

The fundamental mode observed in the simulations is a

special case of the upper-hybrid condition in Eq. (56). For

b > 6=7 this condition predicts the fundamental value of krp,

but for b < 6=7 the fundamental condition is obtained by let-

ting k be imaginary, resulting in the condition

x � wuh : ð6� 7bÞI0ðjkjrpÞ � ð6� 5bÞI2ðjkjrpÞ ¼ 0

for b <
6

7
: (57)

Note that when b ¼ 6=7 the condition is I2ðjkjrpÞ which

gives for the fundamental in this case k¼ 0, i.e., v1r for this

mode is simply proportional to r inside the plasma. This

means that a simple “breathing” mode is only obtained at

b ¼ 6=7. It is interesting to consider the prediction of this

condition for the fundamental as the plasma density becomes
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small, i.e., as b! 0. It predicts that krp !1 which means

that the fundamental is increasingly localized at the surface

as b goes to zero. Expanding this condition in large jkrpj
gives the approximate condition

jkjrp �
6

b
� 11

2
� 11

256
b: (58)

Because of the periodic nature of the Bessel functions J0

and J2 the zeroes of the roots of Eqs. (55) and (56) should be

separated in krp by about p. Using this result in the approxi-

mate dispersion relation (31) then shows that the experimen-

tal signature of these modes at low b would be a cluster of

frequencies near xuh and 2xv separated roughly by

dx � B
x2

p

xc

rL

rp

� �2

ðnþ 1Þ; (59)

where B is a number in the range of 5–10. The separation

between modes increases linearly with the radial mode num-

ber n ¼ 1; 2; 3;…. Comparison between this theory and the

simulation results will be given in Sec. IV B.

IV. SIMULATION RESULTS

A. Mode properties

Because the simulation was tied to a particular experi-

ment, many of the parameters were tied to that experiment.

The values used were B ¼ 0:43 T, the mass and charge were

that of a singly ionized Beryllium-7 ion, and the plasma ra-

dius was 2.0 cm. The temperatures used were 0.025 eV

(room temperature), 0.2 eV, and 0.4 eV. All simulations were

performed in SI units. The initial conditions of the simula-

tion were for the plasma to be in equilibrium at a specified

central density (which determines b) and temperature, with a

small perturbed radial velocity added to the plasma. The per-

turbation was of the form AJ1ðkrÞ where k was selected by

experience to produce the desired mode. It is not necessary

to choose the value of k very accurately; it is only necessary

to be near the correct value for the desired mode to be

launched. The simulation was then run for approximately

5000 cyclotron periods to get good frequency resolution of

the modes. This is necessary because the modes are very

closely spaced at colder temperatures and at values of b
away from 6/7.

The data set to be analyzed consisted of radial profiles

of v1r; v1h; n1; P1rr; P1hh; P1rh, and E1r versus time. The

analysis proceeded in two steps: first, accurate determination

of the mode frequency and second, determination of the

shape (in r) of the mode for each of the above quantities.

The frequency was determined by averaging each of

the above quantities over a small region of space (such as from

r ¼ 1:0 cm to r ¼ 1:2 cm) to reduce the shot noise produced

by the finite number of particles and to produce a single curve

of each quantity as a function of time. The curves were all then

Fourier transformed with a FFT to produce an initial guess for

the frequency. The data vs. time curves for all quantities were

then simultaneously least-squares fit to their expected time

dependence using a nonlinear least-squares algorithm. The

quantities vr and P1rh were fit to Acosðxtþ /Þe�ct and the

remaining quantities were fit to Asinðxtþ /Þe�ct. Damping

with decay rate c was included because many of the modes are

damped on the timescale of the simulation. The parameters of

the fit were x; c; / (which are common between all quantities)

and the amplitudes of each of the quantities. This process gives

between one and two more significant figures for the frequency

than just taking the value given by the FFT. The amplitude and

phase parameters are much more sensitive to noise in this pro-

cess than is the frequency.

Once the frequency has been determined, the shape of

the mode for each physical quantity can be calculated. This

was done for each quantity by stepping through all the radial

positions, using a nonlinear least-squares algorithm to fit the

time history at that point to A sinðxtþ /Þ or A cosðxtþ /Þ,
depending on the quantity involved, where x and / were the

values determined in the first step and where A was the only

free parameter. Putting together the amplitudes at each radial

position produces curves of mode shape vs. r for all seven of

the quantities mentioned above.

The final step in the analysis of each mode was to fit all

of the curves to their expected shapes as derived from the ki-

netic theory in Sec. III C, using the quantity k in the argu-

ment of J1ðkrÞ and the amplitudes of the quantities as the

free parameters.

Fig. 2 shows a typical FFT from one run of the simula-

tion. This case was seeded with a velocity profile that is

appropriate for a mode with one node in the plasma. There

were two large modes that resulted, well separated in fre-

quency. There were also some smaller contributions from

modes with higher numbers of nodes as well. This pattern of

having two modes with similar k is generally true for all of

the modes, except for the one with no nodes in the plasma

(which we call the fundamental mode). As shown near the

end of Sec. III B, these modes must exist near either the

Coriolis-shifted (by the equilibrium rotation and electric

field) upper-hybrid frequency (xuh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � x2
p

q
) or near

2xv ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c � 2x2
p

q
, twice the vortex frequency. The

higher-frequency mode is above the higher of xuh and 2xv

FIG. 2. FFT of vr for a typical run of the simulation. This run was seeded for

one node inside the plasma. Note the two large modes at different frequen-

cies. This is typical of all runs that have nodes in the plasma. There are also

some smaller contributions from modes with higher numbers of nodes in the

plasma.
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and the lower-frequency mode is below the lower of these

two frequencies. The one exception is the fundamental

mode, which has a unique value of k at a given b and is

always observed in the simulation to have a frequency just

slightly above xuh (see the discussion near Eqs. (55) and

(57)). Curves of xuh and 2xv vs. b cross each other at

b ¼ 6=7 � 0:857. Both the simulation and the dispersion

relation in Eq. (31), coupled with the boundary condition of

Eq. (56), have the property that above b ¼ 6=7 the funda-

mental behaves as J1ðkrÞ and below it behaves as I1ðkrÞ,
the modified Bessel function. This is because when x is

between xuh and 2xv (when b < 6=7) then k, defined by

Eqs. (23) and (24), becomes imaginary, which turns J1 into

I1. This is shown in Fig. 3, where v1r for the fundamental

mode at b ¼ 0:95 and b ¼ 0:75 are shown. The modified

Bessel function peaks near the surface of the plasma. As b
decreases, the magnitude of k increases and the fundamental

mode becomes more and more localized to the surface.

Figure 4 shows curves of the frequencies of several

modes vs. b for T ¼ 0:025 eV [part (a), where rp=rL ¼ 202]

and T ¼ 0:2 eV [part (b), rp=rL ¼ 71]. The upper-hybrid fre-

quency is the green dashed line that runs to 1=
ffiffiffi
2
p

at b ¼ 1.

The red dashed line is the line of 2xv. The þ and � symbols

mark the frequencies of modes as seen in the simulation. The

solid lines connect modes with the same number of radial

nodes, n. The fundamental, marked by the symbol �, is near-

est to the upper-hybrid frequency and modes with n¼ 1, 2,

and 3 are shown in the plot with the symbol þ. Modes with

increasing n are farther from both the upper-hybrid fre-

quency and 2xv. Note that increasing temperature also

moves the modes farther from each other, as expected. The

lower modes are not shown for b near 1 because those modes

are too heavily damped to be seen in the simulation. Modes

for b < 0:5 are not plotted on these graphs because the

modes are so closely spaced and close to their respective

resonances that they cannot be seen as separate values on the

plots. At b ¼ 0:1 the modes are so closely spaced that they

cannot be resolved in the simulation, even with a run of

�5000 oscillation cycles, but they may be able to be seen

experimentally. Note that near b ¼ 6=7 the spacing between

the modes is much greater than it is in other regions of the

plot. This is as predicted in Eq. (32) where the spacing is pre-

dicted to be of OðkrLÞ instead of Oðk2r2
LÞ as is the case away

from b ¼ 6=7.

Figure 5 shows the shape of v1r for the two n¼ 1 modes

at b ¼ 0:75 at a temperature of 0.2 eV. The labels “upper”

and “lower” refer to high and low frequency, respectively.

The solid lines are the data from the simulation; the dashed

lines are the best Bessel function fits. The two modes have

slightly different k’s, but otherwise look similar. They differ

in how they behave in the edge region, but describing these

differences theoretically requires a detailed kinetic theory of

the edge.

Figure 6 shows P1rr; P1hh, and P1rh for the higher fre-

quency mode at b ¼ 0:75. Note that the pressure is not at all

isotropic. The solid curves show the theoretical pressure

terms from Eqs. (36)–(38) and the dotted lines show the

results of the simulation. Clearly the theory works well for

this mode, until the edge of the plasma, beyond 0.018 m.

One obvious question to ask about these two modes is

that if they have different frequencies but almost the same

values of k, what is the physical difference between them? If

they are launched with just a vr perturbation at t¼ 0, both

FIG. 3. The shape of v1r for the fundamental mode at two values of b. The

solid curve is for b ¼ 0:95 and the dashed curve is for b ¼ 0:75. The solid

curve is well fit by J1ðkrÞ out to r ¼ 0:02 m and the dashed curve is well fit

by I1ðkrÞ out to r ¼ 0:018 m. The curves drop to zero when the density of

the plasma goes to zero.

FIG. 4. Frequencies of different modes

as a function of b. The dashed curves

are the upper-hybrid frequency (green)

and 2xv (red). The þ symbols mark

the frequencies seen in the simulation.

The solid lines connect modes that

have the same n’s, where n is the num-

ber of radial nodes inside the plasma.

The fundamental in both curves is

shown by the � symbols near the

upper hybrid frequency. The lower

modes are not shown for b near 1

because those modes are too heavily

damped to be seen in the simulation.
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modes are present in the final state. Almost all of the other

fluid quantities are 90� out of phase with vr, and so are not

seeded at t¼ 0. The solution is found in the perturbed distri-

bution function. The quantity P1rh from Eq. (38), the

off-diagonal term in the pressure tensor, is in phase with the

radial velocity vr, and so needs to be included in the initial

conditions to launch just one mode. The two modes in Fig. 5

have similar v1r profiles, but almost opposite P1rh profiles. If

a perturbation is launched with only a small radial velocity, a

linear combination of these two modes will be produced,

such that their profiles of P1rh add to zero. This determines

the relative magnitude of the two modes in the simulation, as

well as contributing to some of the higher n modes that

appear in Fig. 2.

To test this hypothesis, a variant of the simulation was

written that loads the particles differently. Rather than load-

ing a 2D Maxwellian velocity distribution and adding v1rðrÞ
to each particle, the code loaded the particles using the per-

turbed distribution function, f1ðvr; vhÞ, which is known from

the kinetic theory. The f1 that was used was simplified by

only including the terms that contributed to the physical

moments vr and P1rh.

The integral of f1 in /, the gyro-angle in velocity space,

is zero, which means that there are the same number of par-

ticles at each total velocity as before; they are just distributed

differently in gyro-angle. The old distribution was uniform

in /, while the new distribution has an angular dependence.

Figure 7 shows such a perturbed distribution function from

the initial load of particles in this modified simulation for the

higher mode shown in Fig. 2. For a perturbation where

Prh ¼ 0, the peaks should be symmetric around vh ¼ 0. Note

that the positive peak is not centered on vh ¼ 0, but rather is

skewed to the right. The negative peak is similarly skewed to

the left in vh. This is the effect of the non-zero Prh in this

system.

Figure 8 shows the FFT of this single-mode simulation

for two runs, one where it was launched to select out the

higher frequency mode shown in Fig. 2 (the top graph) and

the other when the lower mode frequency was selected (the

bottom graph). Each mode is launched cleanly, with only a

small presence of the other mode. The other higher k modes

are also substantially suppressed. These two initialization

techniques [just loading vrðrÞ and loading the perturbed dis-

tribution function] give the same results for x and k for both

modes to within one part in 104.

B. Comparison with kinetic theory

The results of the simulation can be compared with the

kinetic theory and with the boundary condition given in

Sec. III D. Figures 9 and 10 show the comparison between

the values of krp predicted by the conditions in Eqs. (55)

and (56) and those obtained by simulation for a plasma

with b ¼ 0:75 and rL=rp ¼ 1=71 ¼ 0:0140. This corre-

sponds to a temperature of 0.2 eV and a plasma radius of

2 cm. We do not show a plot of the frequencies, since they

agree between the simulation and the theory to within a

fraction of a percent. Figure 9 shows krp for both the 2xv

FIG. 6. P1rr ; P1hh, and P1rh for the higher frequency mode of Fig. 5. The

solid lines are the theoretical expressions and the dotted lines are the results

from the simulation. Note that the pressure is clearly not isotropic and is not

even diagonal.

FIG. 7. Surface plot of the perturbed distribution function of the higher-

frequency mode shown in Fig. 5. This is used in initializing the particles for

the single mode simulation. The vh-direction is right and left and the

vr-direction is in and out of the page. Note that the positive peak is shifted to

the right from vh ¼ 0 and the negative peak is shifted to the left from

vh ¼ 0. This is the effect of the nonzero P1rh.

FIG. 5. v1r for the n¼ 1 modes at b ¼ 0:75 and T ¼ 0:2 eV. The modes are

shown with the solid lines. The dashed lines are the best fit to a J1ðkrÞ
Bessel function. Note that both have almost the same k, but behave differ-

ently in the boundary. The high frequency mode near 2xv is the upper mode

while the lower frequency mode at xuh is the lower mode.
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modes (black lines with circles) and the xuh modes (black

lines with þ symbols). The theoretical values are shown in

red. The dashed line is the prediction for the 2xv modes and

the dotted line is the prediction for the xuh modes. The

modes are labeled by the number of nodes (n) within the

plasma. Note that the long wavelength modes (n¼ 1) match

much better than the higher n modes, and that the error

increases as n increases. This is consistent with fact that the

theory does not have the correct orbits in the edge region.

Therefore as the wavelength approaches the size of the edge

region, the theory does an increasingly poor job of matching

the simulation.

Figure 10 shows the comparison between theory and

simulation for the fundamental mode. The theory is shown in

the solid line and the dotted line with þ symbols is the simu-

lation result. Below b ¼ 6=7, the results are shown as nega-

tive values. This is the region where krp is a pure imaginary

number. The values shown have the same magnitude as the

imaginary krp. Above b ¼ 6=7, the values of krp are real and

correspond to the values plotted. We can see that the theory

qualitatively captures the behavior of the mode, but is in

error by about 20% for b � 0:5. It diverges rapidly from the

simulation for b < 0:5. In this same region, the fundamental

mode becomes damped with a damping time of roughly

1000 cycles. It appears that in this region some of the

particles in the edge become resonant with the mode and

therefore cause it to damp. The mode frequency is too low

for b > 0:5 for a significant number of the particles to be in

resonance with the mode. Below b ¼ 0:25, it is not possible

to resolve the modes from each other in the simulation

because the damping of the modes and their decreasing spac-

ing cause them to overlap significantly.

C. Higher temperature, higher resonances,
and damping

As mentioned previously, the modes are spread farther

apart at higher temperature, as shown in Fig. 11. This figure

shows the frequency of the modes as determined by the sim-

ulation as a function of b for a temperature of T ¼ 0:4 eV

ðrL=rp ¼ 1=50Þ. It also shows the interaction of higher order

(3xv; 4xv, etc.) resonances with these modes as the tempera-

ture increases. When the thermal effects pull the modes far-

ther from xuh in the region for b > 0:9, it can be seen that

the interaction with the higher order resonances becomes sig-

nificant. When the thermal effects bring the frequency close

enough to the resonance then that mode will be pulled to a

FIG. 9. krp vs. b at T¼ 0.2 eV for modes that have nodes in the plasma. The

lines with circles are simulation results for the 2xv modes. Lines with þ
symbols are simulation results for the xuh modes. Red dashed lines are the

theoretical results for 2xv modes, and red dotted lines are the theoretical

results for the xuh modes. The labels indicate the number of nodes in the

plasma in each group of modes. The theory agrees much better at low n than

it does at high n, where the wavelength approaches the width of the edge.

FIG. 10. krp vs. b for the fundamental mode at T¼ 0.2 eV. Below b ¼ 6=7

the values of krp are imaginary, here plotted as negative. The magnitude of

krp is equal to the magnitude of the numbers plotted. Above b ¼ 6=7 krp is

real and is plotted accurately. Clearly the theory tends to overestimate the

value of krp for the fundamental mode by about 20%.

FIG. 8. FFT of data from the single mode simulation. Compare the FFT in

Fig. 2. The top graph was for a run where the the higher mode was selected.

The lower mode run is shown in the lower graph.
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frequency above the resonance. This same effect can be seen

less dramatically in Fig. 4 in the upper branch frequencies

for b ¼ 0:95 and 0.99.

The FFTs of v1r also indicate resonances at higher multi-

ples of xv. For example, the n¼ 3 mode at b ¼ 0:9 is pulled

above the 3xv resonance, and there are indications in the

FFT of this run of another mode near 4xv, although its shape

and properties are hard to extract from the simulation data.15

As would be expected from the fact that there are additional

terms in the mode differential equation, the modes in this

region no longer agree with the theory presented in Sec. III.

These modes are not completely different, however. Many

times v1r still is approximately described by a J1ðkrÞ Bessel

function, but it has additional high-spatial-frequency wiggles

in it. Even when v1r and v1h still appear to be reasonably

described by J1ðkrÞ, the pressure terms are very different in

magnitude than the theory predicts in this region.

Many of these modes are damped, some heavily, with

2pc=x of the order of 0.1. In general, the damping is higher

at higher temperatures and the farther the mode’s frequency

is below the upper-hybrid frequency. The lower-branch

modes are the most affected. The fundamental mode is

weakly damped (2pc=x < 10�3) for b < 0:5. The energy

from damped modes appears as random kinetic energy (the

term temperature is poorly defined in this collisionless ki-

netic system) of the particles, mainly deposited in the regions

of the plasma nearest the outer edge.

While not a part of the work reported here, it is interesting

to note that a recent PIC simulation of these modes has been

done in r-z geometry, so that the plasma has finite length.12

Because of the finite length, and because electrostatic modes

have potentials that vanish near the plasma ends,11 kz is non-

zero and the electrostatic mode potential behaves as cosðkzzÞ,
where z¼ 0 is the midplane of the plasma. This cosðkzzÞ behav-

ior extends to the electric field at the wall as well, so that the

maximum induced surface charge density for a finite-z plasma

occurs at the center of the plasma, rather than at the ends. This

means that these modes in long plasmas could be detected near

the center of the plasma and not only near the ends, as might be

supposed by thinking about Gauss’s law.

V. CONCLUSIONS

We have observed axisymmetric electrostatic Bernstein

modes in a simulation of an infinite-length non-neutral cylindri-

cal plasma. A kinetic theory has been developed that describes

these modes well as long as the higher order resonances

(3xv; 4xv, etc.) are not important. There are three classes of

modes: the fundamental, which is slightly higher than the upper-

hybrid frequency ðx2
c � x2

pÞ
1=2

, a high-frequency branch, and a

low-frequency branch. The two branches are clustered near two

frequencies: the upper-hybrid frequency and twice the Coriolis-

shifted cyclotron frequency, 2xv. The low modes are below the

lower of these two frequencies while the high modes are above

the higher of these two frequencies. The frequencies cross each

other at b ¼ 6=7, and display classic mode-crossing behavior.

At low b, the separation between adjacent modes is roughly

given by dx � Bx2
p=xcðrL=rpÞ2ðnþ 1Þ, where B is a number

in the range of 5–10 and n is the number of radial nodes in v1r .

The frequency of the lower modes decreases with higher k,

while the frequency of the higher modes increases with higher

k. The wavenumber k is only real when x is less than both or

greater than both xuh and 2xv. Between the two frequencies k
is imaginary. This is true for the fundamental mode when

b < 6=7, since the frequency of the fundamental is always

observed in the simulation to be just slightly greater than xuh.

The magnitude of k increases as b decreases in this region, mak-

ing the fundamental more and more localized on the surface of

the plasma, since I1ðkrÞ increases exponentially with r. At typi-

cal experimental parameters, where b is usually <10%, the fun-

damental would be difficult to see at all, as the oscillations

would be almost entirely localized at the surface. Where k is

real, as in the high and low branches of the modes and for the

fundamental for b > 6=7; v1r goes as J1ðkrÞ and the pressure is

highly anisotropic.

The simulation also shows several effects that are not

included in this theory, including interactions with higher

resonances of xv and damping of the modes.
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FIG. 11. Frequency vs. b for a T ¼ 0:4 eV plasma (rL=rp ¼ 1=50). Compare

Fig. 4. The dashed curves are the upper-hybrid frequency (green) and multi-

ples (2, 3, 4, 5) of xv (red). The þ symbols mark the frequencies seen in the

simulation. The solid lines connect modes that have the same n’s, where n is

the number of radial nodes inside the plasma. The fundamental in both

curves is shown by the � symbols near the upper hybrid frequency. Note the

interaction of the modes with the higher order resonances at high b. The vr

for those modes where the interactions with the higher modes are important

is still roughly of the form J1ðkrÞ, but the pressure terms do not fit the theory

in this paper.
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