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We present an algorithm for generating all derivative superstructures—for arbitrary parent structures and for

any number of atom types. This algorithm enumerates superlattices and atomic configurations in a geometry-
independent way. The key concept is to use the quotient group associated with each superlattice to determine
all unique atomic configurations. The run time of the algorithm scales linearly with the number of unique

structures found.
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I. WHY DERIVATIVE STRUCTURES?

Derivative superstructures! play an important role in dif-
ferent material phenomena such as chemical ordering in al-
loys, spin ordering in magnets, and vacancy ordering in non-
stoichiometric materials. Similarly, derivative
superlattices”* are important in problems such as twinning.
What is a derivative superstructure? A derivative superstruc-
ture is a structure whose lattice vectors are multiples of those
of a “parent lattice” and whose atomic basis vectors corre-
spond to lattice points of the parent lattice. Many structures
of intermetallic compounds can be classified as fcc-derived
superstructures; an example is shown in Fig. 1. These super-
structures have atomic sites that closely correspond to the
sites of an fcc lattice but some of the translational symmetry
is broken by a periodic arrangement of different kinds of
atoms. The structures shown in Fig. 2 comprise the set of all
fcc-derived binary superstructures with unit cell sizes of two,
three, and four times larger than the parent lattice.

Large sets of derivative superstructures are often used in
(practically) exhaustive searches of binary configurations on
a lattice to determine ground state properties of intermetallic
systems. The approach is not limited to searches of configu-
rational energies, but other physical observables can also be
targeted if an appropriate Hamiltonian is available. For ex-
ample, Kim et al.’ used an empirical pseudopotential Hamil-
tonian and a large list of derivative superstructures to directly
search semiconductor alloys for desirable band gaps and ef-
fective masses. The set of derivative superstructures is useful
in any situation where the physical observable of interest
depends on the atomic configuration.

For the aforementioned reasons, an algorithm for system-
atically generating all superstructures of a given parent struc-
ture is useful. Such an algorithm has been presented in the
literature only once®’ by Ferreira, Wei, and Zunger (FWZ).
The FWZ algorithm generates superlattices using a geomet-
ric, “smallest first” approach® (see page 44 of Ref. 6) and
then generates all unique atomic configurations. Many of the
resulting structures are equivalent by rotational and/or trans-
lational symmetry. FWZ removes duplicates by calculating
interatom correlations (pairs, triplets, etc.) averaged over the
structure, eliminating structures with matching correlations.
Because of the limited range of correlations used in the origi-
nal FWZ implementation, some formally inequivalent struc-
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tures are eliminated, though in practice the list may be suf-
ficient.

Though the original presentation of the FWZ algorithm is
restricted to fcc- and bee-based superstructures and to binary
cases only, the superlattice generation can be extended to the
general case and it was implemented in several alloy model-
ing packages. The code of Ref. 9 overcomes the deficiencies
of finding duplicates via correlations by using a rigorously
complete list of correlations.!? The ATAT package'"-'? handles
the issue by directly comparing the structures geometrically.

The purpose of this paper is to present a general algorithm
that generates a formally complete list of two- or three-
dimensional superstructures, and that works for any parent
lattice and for arbitrary k-nary systems (binary, ternary, etc.).
This algorithm is conceptually distinct from FWZ and re-
lated implementations. Instead of using a geometrical ap-
proach, it takes advantage of known group-theoretical prop-
erties of integer matrices. The algorithm is orders of
magnitude faster than FWZ, more general, and formally
complete. A FORTRAN9S implementation of the algorithm is
included in this paper as supplementary material.'3

Mathematically, we can describe the purpose of the algo-
rithm as this: for a given parent lattice, enumerate all pos-
sible superlattices and all rotationally and translationally
unique “colorings” or labelings of each superlattice. In pre-
senting the algorithm in Sec. II, we shall refer to superlattices
and labelings rather than referring to crystal structures or
atomic sites.

(a)

FIG. 1. An example parent lattice (left) and a superstructure
(right). The parent lattice is fcc and the superlattice is defined by the
(doubled) unit cell outlined in gray. The two interior points of the
superlattice are occupied by one black atom and one gray atom.
Together the superlattice and atoms constitute a derivative structure.
The superstructure of this example is that of CuAu.
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II. ENUMERATING ALL DERIVATIVE STRUCTURES

Here is a brief outline of the algorithm.

(1) For each superlattice of size n, generate all Hermite
normal form (HNF) matrices.>* (In what follows, we refer to
n as the index of the superlattice.)

(2) Use the symmetry of the parent lattice to remove ro-
tationally equivalent superlattices, thus shrinking the list of
HNF matrices.

(3) For each superlattice index n, find the Smith normal
form (SNF) of each HNF in the list.

(a) Generate a list of possible labelings (atomic con-
figurations) for each SNF, essentially a list of all " numbers
in a base k, n-digit system. For the labels, we use the first k
letters of the alphabet, a,b, - -.

(b) Remove incomplete labelings where each of the k
labels (a,b,---) does not appear at least once."”

(c) Remove labelings that are equivalent under trans-
lation of the parent lattice vectors. This reduces the list of
labelings by a factor of ~n.

(d) Remove labelings that are equivalent under an ex-
change of labels, ie., a=b, so that, e.g., the labeling
aabbaa is removed from the list because it is equivalent to
bbaabb.

(e) Remove labelings that are superperiodic, i.e., la-
belings that correspond to a nonprimitive superstructure.
This can be done without using the geometry of the
superlattice.

(4) For each HNF, remove labelings that are permuted by
symmetry operations (of the parent lattice) that leave the
superlattice fixed.

An important feature of the algorithm is that the list of
possible labelings, generated in step (3)(a), forms a minimal
hash table with a perfect hash function. Eliminating all du-
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FIG. 2. (Color) The first 17 bi-
nary structures derived from the
fce lattice. All have 4 atoms/cell
or less. Structures shown with a
green plane can be characterized
as a stacking of pure A and B

(Ag Pda) atomic layers. For example, the
L1 structure (upper left) is an al-
[201] [113] ternating (A;B;) sequence of lay-

ers stacked in the [001] direction.
All of the 2 and 3 atoms/cell
structures have physical manifes-
tations. Of the 4 atoms/cell struc-
tures only four have physical
manifestations. Three of the others
(yellow backgrounds) have been
predicted to exist (Ref. 14) but not
yet observed. The other five (blue
backgrounds) have never been ob-
served or predicted to exist in any
system.

plicate labelings in a list of N can be accomplished in O(N)
time. Coupled with the group-theoretical approach, this re-
sults in an extremely efficient algorithm that is orders of
magnitude faster than FWZ. Enumerating fcc-derived binary
structures up to n=20 takes five minutes with the present
algorithm but more than one day with FWZ. The case of n
=24 takes less than 2 h but about one month with FWZ.
More significantly, the run time of the algorithm scales lin-
early. That is, the time to find N unique structures is propor-
tional to N—the best possible scaling for this type of
problem.'® An illustration for binary superstructures of an fcc
parent lattice is shown in Fig. 3.

A. Generating all superlattices

Given a “parent” cell (any lattice), the first step in finding
all derivative structures of that cell is to enumerate all de-
rivative superlattices. Consider the transformation B=AH,

CPU time (sec)

2 3 4

Number of structures

FIG. 3. Required CPU time as a function of the number of
unique derivative superstructures found. The scaling is linear, the
best possible scaling for this type of problem.
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where A is the basis for the original lattice (the basis vectors
listed column-wise), H is a matrix with all integer elements,
and B is the matrix of the transformed lattice. If the determi-
nant of the transformation matrix |H| is =1, then H is merely
a change in basis that leaves the lattice represented by A
unchanged. Matrices A and B are merely two different
choices of basis for the same lattice. On the other hand, if the
elements of H are all integers but the determinant of H is 2,
say, then the lattice of B is a superlattice* of (i.e., a subgroup)
of the lattice defined by A, but with twice the volume of the
original (parent) lattice.

Two different matrices, H; and H,, with the same deter-
minant, will generate different bases for the same lattice if
and only if H; can be reduced to H, by elementary integer
column operations. The canonical form for such operations is
lower-triangular HNF. Thus, if we use only matrices H which
are in HNF, we will produce exactly one representation of
each superlattice.>* In three dimensions, the lower-triangular
Hermite normal form is

a 00
b ¢ 0|,
d e f

0=b<c, 0=de<f/. (1)

In this form, the product of the integers on the diagonal
alone, a X ¢ X f, fixes the determinant. Again, we refer to the
superlattice size, or the determinant, as the index n. Gener-
ating all HNF matrices of a given index can be done then by
, and then generating all
values of b, d, and e that obey the conditions in Eq. (1).
The algorithm for generating all possible HNF matrices of
a given index || is rather simple, comprising just two steps.
In the first step, find all possible diagonals: find all values a,
1=a=
ues, find all ¢, 1 =c=|H|/a, which evenly divide [H|/a. For
each value of ¢, let f=|H|/(ac). For example, consider the
case of |H|=6. We execute two nested loops over the pos-
sible values of a and c; each loop runs over all integers

iteration. The loops run from 1 to 6, and the algorithm finds
nine cases that meet the above conditions. They are

a‘111122336
6‘123613121

jl632131211

The set of acf triplets generated during this first step com-
prises all possible diagonals of the HNF matrices for the case
of n=|H|=6. The second step, generating each set of values
of b, d, and e for each diagonal (set of acf triplets), can be
accomplished simply by three nested loops that start at zero
and terminate at b<<c and d,e<f.

As an example of both steps, consider the case where the
index is merely double that of the original lattice, i.e., where
|H|=2. The factors of 2 are just the set {1,2}, so the first step
finds only three cases: (2,1,1), (1,2,1), and (1,1,2). Then,
generating the off-diagonal terms for each of these three
cases, we find seven HNF matrices:

PHYSICAL REVIEW B 77, 224115 (2008)

200 1 00\/1 0O
case 1: 01 0], case 2: 0201If1 2 0,

0 01 00 1/\0 01

1 00\/1TL 0 O0\(f1L O 0O\/fL OO
case 3: 01 0J)fO0O 1 0f{O0 1 OO 1 O

00 2/\0 1 2/\1 0 2/\1 1 2

For increasing index, n=|H|=1,2,3, -, the number of
HNF matrices generates an interesting sequence: 1, 7, 13, 35,
31, 91, ---. We find that the closed-form expression for nth
term in the series is

(pi? - 1)<p“1—1)>
2 dotd)= H( o-Dpien )@

where o is the sum of divisor function and the p; and e; are
the prime factors and powers of n: n=p{'-p3*---p*. This
expression is the same as that given for Sloane’s A001001."7
The sequence appears in the crystallography literature'®!° as
well as several other contexts.?0-23

Significantly, because we have an expression for the num-
ber of superlattices, the implementation of the HNF-
generating algorithm can be rigorously checked. Also note
that this step of the algorithm is independent of the choice of
parent lattice.

B. Reducing the Hermite normal form list by parent lattice
symmetry

The set of HNF matrices defines the set of all derivative
superlattices of a parent cell via the transformation men-
tioned above, B=AH. However, not all of the superlattices in
this set will be geometrically different. Some distinct lattices
will be equivalent under symmetries of the parent lattice,
illustrated in the example below.

Such duplicate superstructures must be eliminated by the
algorithm. At the end of the algorithm, we want all derivative
structures to be unique from a material point of view. So we
wish to exclude from the list any superstructures that are
related to others already in the list simply by a rotation,
reflection, or change in basis.

As an illustration, consider a two-dimensional parent lat-
tice that is square, that is, A=1I (the 2 X2 identity matrix).
There are three HNF matrices for which |H|=2 and three
corresponding superlattices, B=AH=I1H=H

b2
1 2

bt )

o e o e o e o o o o o o o o e O e o e o e
o e o e o e o . e o o o o o o e o e o
o o e o e o o %_: o o o o . &( o e o e
[} f—e—» o e o . e o o o o o e o e o
o e o e o e o o o o o o o o e o0 e o e o e

The parent lattice itself is indicated by the dots (filled and
unfilled), while the superlattice is indicated by the filled dots.
The vectors defined by the matrices are shown as arrows.
The first two lattices are clearly equivalent under a 90° rota-
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TABLE 1. (Color) An example labeling for the binary case,
k=2, with four interior points, n=4, in the superlattice. There are
k"=2*=16 distinct labelings, but the colored labelings represent
incomplete or duplicate superstructures. The yellow labelings are
incomplete (not all labels are present), purple are translation du-
plicates, blue are label-exchange duplicates, and green are super-
periodic labelings. Some labelings fall into more than one cat-

egory (e.g., baba is both a translation duplicate and
superperiodic).

aaaa abaa baaa bbaa

aaab 'abab| ‘baab bbab

aaba abba baba bbba

aabb abbb 'babb bbbb

tion, one of the eight symmetry operations of a square lattice.

To enumerate the distinct superlattices of a given index n
then, we must check that each new superlattice that is added
to the list is not a rotated duplicate of a previous superlattice.
More precisely, we must check that each new basis IB; is not
equivalent, under change of basis, to some symmetric image
RB; of a basis B; already in the list. In other words, we want
to av01d the relation B;=RB;H, where B; is a candidate su-
perlattice, R is any of the rotatlons of the parent lattice, B; is
a superlattice already in the list of distinct superlattices, and
H is any unimodular matrix of integers. (Since B; and B,
have the same determinant, we will only need to check that
B7'R7'B; is a matrix of integers.)

For the case of cubic symmetry, the seven superlattices
for the H=2 case mentioned above reduce to only two sym-
metrically distinct superlattices. The corresponding deriva-
tive superstructures are L1, and L1, both well-known struc-
tures in intermetallic compounds. The fact that these are the
only two 2 atoms/cell fcc structures is not coincidence or an
accident of chemistry; no other 2 atoms/cell structures are
possible geometrically. The hierarchy of physically observed
structures uncovered for fcc and bece lattices as the index is
increased is discussed in Refs. 24 and 25.

C. Find the unique labelings for all superlattices
1. Generate all possible labelings

For each HNF, each superlattice, we start by generating
all possible labelings of that superlattice. In other words,
given k colors (types of atoms), represented by the labels
a,b,---, we generate all possible ways of labeling (coloring)
the superlattice. Each HNF matrix of determinant size n rep-
resents a superlattice with n interior points to be decorated. If
the number of colors is k, then the list of all possible label-
ings is easily represented by the list of all n-digit, base-k
numbers. So, from a combinatorial point of view, there are k"
distinct labelings. For example, in the case of a binary sys-
tem (k=2) with four interior points (index n=4), there are
24=16 possible labelings (see Table I).

2. Concept of eliminating duplicate labelings

The rest of the algorithm deals with just one conceptual
issue—given the k" labelings (colorings) of the
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1 0000000000000

-2-10 1 2 3 4 5 6 7 8 910

1RO 0,0, L0,0,0, 10,0, 0, 0

-2-10 1 2 3 4 5 6 7 8 910

I -@-C- {}G 000000

-2 -1 2 3 4 5 6 7 8 910

FIG. 4. (Color online) (I) One-dimensional example of a parent
lattice, (IT) a derivative superlattice (index n=4), and (III) one pos-
sible superlattice labeling.

superlattice—eliminate the duplicates. In the FWZ algorithm
and its extended implementations, duplicate structures are
eliminated by comparing®® one candidate structure to an-
other, necessitating an expensive O(N?) search. We eliminate
the duplicates via group theory rather than checking the
structures themselves. Although this approach is more ab-
stract than the geometric approach, it is much more
efficient—eliminating the duplicates in a list becomes a
strictly O(N) procedure.

a. One-dimensional example. We start with a simple il-
lustration and then discuss the essential group-theoretical
concepts in the context of that example. Consider the one-
dimensional case of Fig. 4. The first line (I) is a parent lat-
tice, an infinite collection of equally spaced points, identified
with the set of integers, denoted Z. The second line (II) is a
superlattice, a subset of the parent lattice (every fourth point;
those colored black). The third line (III) is a superstructure, a
“labeling” or “coloring” of the parent lattice that has the
same periodicity as the superlattice. The points of the lattice
play the role of positions in a crystal, and the colors play the
role of atoms placed at those positions.

There are labelings that are distinct yet physically equiva-
lent, as shown in Fig. 5. If Fig. 5 note that line (I) is ob-
tained from line (I) by shifting the colors two units to the
right, and line (III) is obtained from line (I) by shifting the
numbers two units to the left—with the same result. Lines
(IT) and (IIT) are the same labeling, obtained in different
ways from (I). Both are physically equivalent to (I). The fact
that we can obtain such a shifted labeling either by shifting
the numbers or by shifting the labels explains why we can do
much of our equivalence checking within a finite group, in-
stead of geometrically within an infinite lattice. By this
method, we will identify these equivalent labelings and re-

I 000000000000

-2-10 1 2 3 4 5 6 7 8 910
-2-10 1 2 3 4 5 6 7 8 910

111 - 6-0-0-0-00-0000000-

01 2 3 4 5 6 7 8 9 1011 12

FIG. 5. (Color online) Three labelings of the superlattice of Fig.
4. Lines II and III are identical to line I except the colors (labels)
are shifted. In line II the colors have been shifted two units to the
right. In line 111, the shift has been effected by translating the lattice
two units to the left.
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TABLE II. Two representations of the Cayley table for the quotient group G (cosets of the subgroup S).
On the right, the elements of the group have been denoted (0,1,2,3) for notational convenience.

| Z 1+7Z 2+7Z 3+1Z 0123

Z| z 1+Z 2+Z 3+%Z 00123

1+2Z| 1+7Z 2+7Z 3+72 Z 111230

24+ 72| 24+7Z 3+7Z 1+7Z 212301

3+Z| 3+2 Z 1+Z 2+Z 313012
move them from the original list of k" labelings. 0: 47, — r,
We may illustrate the group theory approach using Fig. 4. 1: 1447 —b,

The parent lattice (I) is the set of integers Z, which is a group

under the addition operation. We refer to this group as L. The 20 2+4L—g,
superlattice is the set of multiples of 4, denoted 4Z. We refer 3: 3+4Z —y.

to this subgroup of L as S. We label the parent lattice L in a
manner which is periodic with respect to the superlattice S
and note that if two points differ by an element of the super-
lattice, they must receive the same label. We use colors as
labels in line (III) of Fig. 4 and note that every fourth point
has the same color.

Notice that our superlattice, the green points, are 4Z, and
the yellow points are a copy of 4Z, but translated one unit to
the right. Thus, we may denote the latter set (the yellow
points) by the set 1+4Z. Similarly, the red points are the set
2+47Z and the blue points are 3+4Z. These four sets,
47.,1+47,2+47Z,3+47Z, are mutually disjoint (they do not
overlap), and their union is the entire parent lattice L. They
are translations of S and thus are the cosets of the subgroup
S. This means we can use them to form a new group, called
the quotient group G=L/S (see Table II). This new group is
finite, having only four elements. For notational convenience
we shall also refer to these four elements of G as (0,1,2,3).
We only need to label the four elements of our quotient
group in order to label the entire parent lattice.

Suppose we wish to translate a labeling (in order to iden-
tify and eliminate equivalent structures). As shown in line (I)
of Fig. 5, we have labeled the elements of the quotient group
as follows (using g, v, r, and b for the colors):

0: 47 — g,
I: 1+4Z —y,
2: 2+4Z —r,
3: 3+4Z —b.

In Fig. 5, we see that translating the labels by 2 is the same
as simply adding 2 to each coordinate, thus

47 — 2+ 47 0 — 2
1+47Z — 3+ 47 1 — 3
2+47Z — 4+ 47 =47 2 — 0
3+4Z — 5+4+4Z=1+4Z 3 — 1

The effect is the same as if we had assigned the colors dif-
ferently,

Translating the lattice by adding +2 to every point (moving
the origin by two units) has the same effect on the labeling as
if we had merely labeled the four elements of the quotient
group, and then added +2 to every element of the group,
producing the permutation 0 —2, 1 -3, 2—0, and 3—1,
denoted (2,3,0,1).

Instead of determining that two labelings of the (infinite)
lattice are equivalent by translation, we may simply check
that the corresponding labelings of our finite quotient group
G=7Z, are equivalent. We do this by just adding a fixed ele-
ment to every element in the group, effecting a permutation
of the cyclic group Z,. This idea—of labeling the quotient
group instead of the lattice elements and checking equiva-
lence within the group instead of by translating the lattice—
may seem unduly abstract and unnecessary in one dimen-
sion, but it becomes much more efficient and crucial in
higher dimensions, as we now show.

b. Application to higher dimensions. In any dimension,
we have a parent lattice L and a superlattice S which is a
subgroup of L. Labeling L in a manner which is periodic
with respect to S is equivalent to merely labeling the ele-
ments of the quotient group G=L/S. Note that even though L
and S are infinite sets, their quotient group is always a finite
group with the same number of elements as the superlattice
index n. Again, we check for equivalence by doing opera-
tions within the group instead of by lattice translation.

The key to this approach is the SNF. The SNF is useful
because it provides the quotient group directly as follows.
Recall that if A is a basis for L, then the distinct lattices of
index n are uniquely characterized by bases B=AH, where H
is a matrix of determinant n» in HNF. If § is given by one
such basis B;=AH, then the quotient group G=L/S can be
found by converting the matrix H; into SNF (which is a
diagonal matrix with certain special properties; see Appen-
dix). In higher dimensions the quotient group may not be
purely cyclic, but it is a direct sum of cyclic groups which
are given by the diagonal entries in the SNF matrix (see Fig.
6). For example, if the SNF matrix is

o3
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12345678 = 21436587 12345678 = 34567812

0000000 0000000 06000000
0000000 0000000 OO00O000
0000000 0000000 OO00O000
0000000 0000000 OOOOO0O0O0
0000000 0000000 0000000
@@Q00000 @®@0000 PEOVOO000
®e00000 ®®®0000 ®®O0000
®@00000 @®BO®O000 G@OO0000
0000000 0000000 0000000

FIG. 6. A superlattice whose SNF is nontrivial (noncyclic). Be-
cause the quotient group of the superlattice is noncyclic, transla-
tions of the lattice are not cyclic permutations. Instead the sites are
permuted in groups of two or four with each translation (rather than
permuting as a single group of 8). In the figure, three different
pictures of the same superlattice are shown. In each case a different
origin is chosen. In the second case, the translation permutes two
groups of four sites and in the third, four pairs are permuted.

then the quotient group G=L/S is the direct sum Z,® Z,.

In relation to the algorithm, there are two important facts
to note about the SNF. (i) The SNF provides the quotient
group directly, which in turn is the key to implementing an
O(N) algorithm. (ii) The number of SNFs (and so quotient
groups) is small compared to the number of distinct lattices
of index n (see Table III). This means that translation dupli-
cates can be removed from the k" list for hundreds or thou-
sands of different superlattices simultaneously. (The surpris-
ing geometric implications of this are discussed in
Appendix.) This reduces the running time by many orders of
magnitude.

3. Eliminating translation duplicates

Because of its periodicity, the choice of origin of a super-
lattice is arbitrary. A change in origin implies a permutation
of the labels which nonetheless defines the same superstruc-
ture (compare lines I and IIT in Fig. 5). As stated previously,
by examining the quotient group instead of directly compar-
ing the structures, the duplicate labelings can be readily iden-
tified. For example, consider the case for n=4. Adding each
member to the quotient group Z,=(0,1,2,3) produces four
permutations as follows:

Member Mapping Permutation
0 0—0,1—1,2—2,3-3 0,1,2,3)
1 0—1—-2—-3—-0 (1,2,3,0)
2 0—2—0,1—3—1 (2,3,0,1)
3 0—-3—-2—1—0 (3,0,1,2)

If we take the 14 complete labelings of Table I and the
three nontrivial permutations above, we find that ten are du-
plicates (colored purple in Table I),
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duplicates
(0,1,2,3)| (1,2,3,0) (2,3,0,1) (3,0,1,2)
aaab aaba abaa baaa
aabb abba bbaa baab
abab baba abab baba
abbb bbba bbab babb

Of the original 2*=16 labelings, two were discarded im-
mediately because they were incomplete. Of the remaining
14, 10 are translation duplicates, leaving 4 that are transla-
tionally inequivalent (left column above).

4. Remove “label-exchange” duplicates

The next step in the algorithm is to remove labelings that
are equivalent under exchange of labels. Structurally, there is
no difference between a superlattice whose interior points are
labeled aaab versus bbba. Although the energy of an isos-
tructural compound with composition X3Y is different from
one with composition X;Y5, we only wish to include one
entry in our list of derivative superstructures because the full
composition list can always be recovered by making all pos-
sible label exchanges (i.e., a=05b). In the example above,
four labelings were unique under translations:

aaab,
aabb,
abab,
abbb.

However, the first and the fourth are equivalent by exchang-
ing a=b and applying the permutation (1,2,3,0).

5. Remove superperiodic labelings (nonprimitive structures)

At this point of the algorithm, many of the duplicate la-
belings have been removed from the original £" list. How-
ever, there are still more duplicates to remove. Some of the
labelings in the list will represent superstructures that are not
primitive. In other words, the labelings will be
superperiodic—they will have periods shorter scale than the
superlattice.?’

The superperiodic duplicates are easily identified because
they are identical under at least one permutation. The quo-
tient group G dictates a set of permutations under which the
labelings are duplicate. One of these permutations will leave
the labeling unchanged if it is superperiodic. For example,
continuing the example above, three unique labelings are still
in the list: aaab, aabb, and abab. One of the permutations of
the quotient group G=Z, is (2,3,0,1). Under this permuta-
tion, the labeling abab is unchanged. Thus it is superperi-
odic, as depicted in Fig. 7. It is a duplicate in the sense that
the algorithm would have already enumerated this structure
with the index n=2 structures.

6. For each Hermite normal form: remove “label-rotation”
duplicates

The previous three steps of the algorithm yield a list of
distinct labelings for each SNF of index n. Three kinds of

224115-6



GENERATING DERIVATIVE STRUCTURES: ALGORITHM...

1 0000000000000

-3-2-10 1 2 3 4 5 6 7 8 9

I IRO,0,0, 10,00, L0,0,0, 04

1 2 3 01 2 3 01 2 3 01

l-62-626a-6a6aCab

1 2 3 01 2 3 01 2 3 01

FIG. 7. (Color online) (I) One-dimensional example of a parent
lattice, (IT) a derivative superlattice (index n=4), and (III) a super-
periodic (or nonprimitive) labeling. Although the index of the su-
perlattice is n=4, the structure can be represented by a superlattice
labeling of period 2 instead of 4. The superstructure of line III
would have been found as an index n=2 derivative structure and is
therefore a duplicate.

duplicate labelings (translation duplicates, label-exchange
duplicates, and superperiodic duplicates) have already been
removed. One kind of duplicate remains, however, and these
are eliminated in the current step.

This step removes labelings which are permuted by the
rotations of the parent lattice. Whereas the preceding steps
were applied to generate a list of unique labelings for each
SNF, the current step must be applied to each HNF. In other
words, this step must be applied to the surviving labelings
separately for each superlattice.

Superlattices which are not fixed by rotations of the par-
ent lattice were already eliminated as duplicates in step (2) of
the algorithm. However, rotations which leave the superlat-
tice unchanged may still permute the labeling itself. Such
permutations are physically equivalent (merely rotated with
respect to one another). So any two labelings which are
equivalent under rotations that fix the superlattice are dupli-
cate and one must be removed from the list. Figure 8 illus-
trates the situation in two dimensions.

Here again, the group theory approach and the SNF make
the search extremely efficient. Label-rotation duplicates can
be identified easily using the properties of the quotient group
and the SNF transformation. The row and column operations
required to transform the HNF matrix of a superlattice into
its SNF can be represented by two integer transform matri-
ces, L and R, so that LHR =S, where S is the SNF. This step
of the algorithm is implemented using the left transformation
matrix L.

Let G be a 3 X n matrix where each member of the quo-
tient group is represented as a column?® in G and let R be
one of the rotations that fixes the superlattice. Then the per-
mutation of the labels (which is the same as the permutations
of the quotient group) enacted by the rotation R is given by
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FIG. 8. (Color online) Two identical 4 X 4 superlattices (dotted
lines) with rotationally equivalent labelings (red and blue circles).
Although the superlattices themselves are unchanged, a 90° rotation
applied to the left labeling yields that shown on the right. Thus the
second is a duplicate of the first and should be removed from the
list of labelings.

¢’ =LATR(LATY'G 3)

where columns of A are the lattice vectors of the parent
lattice and L is the left transformation matrix for the SNF.
The power of this expression is that it allows the label-
rotation duplicates to be identified by working entirely
within the quotient group, without requiring any explicit ref-
erence to the geometry of the superlattice. Thus, as in the
other steps, duplicate labelings can be eliminated in a time
proportional only to the number of labelings in the list.

II1. EXAMPLES

In this section, we give several example derivative struc-
ture lists enumerated by the algorithm. We discuss the sym-
metry reduction of the structure lists and then give results for
several cases. First, we compare the fcc/bee binary list to that
generated by the FWZ algorithm. We also show the small-
unit-cell binary structures for a simple-cubic parent lattice
and the small-unit-cell ternary structures for an fcc parent
lattice.

A. Symmetry reduction of superlattice lists

In step (2) of the algorithm, the complete list of HNF
matrices is reduced to those that are unique under the sym-
metry operations of the parent lattice. Asymptotically, the
factor by which the list is reduced is one half the order of the
rotation group of the parent lattice. For example, for cubic
parent lattices (simple cubic, face-centered cubic, or body-
centered cubic), the point group contains 48 rotations (proper

TABLE III. Table showing the number of Hermite normal form (HNF) matrices and Smith normal form (SNF) matrices as a function of
index n (determinant size). The number of HNFs is a rapidly increasing function of n [see Eq. (2)], whereas the number of SNFs grows very

slowly.

n 2 3 4 5 6 7 8 10 11 12 13 14 15 16
HNFs 7 13 35 31 91 57 155 130 217 133 455 183 399 403 651
SNFs 1 1 2 1 1 1 3 1 1 2 1 1 1 4
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20 40 60 80 100
Determinant size
FIG. 9. Symmetrically unique HNF matrices as a function of the
index n (determinant size) for an fcc parent lattice. Asymptotically,
the fraction of unique superlattices approaches 2/N=1/24=5%,
where N=48 is the number of symmetry operations of the fcc par-
ent lattice.

and improper). For superlattices with large index n, the num-
ber of HNFs is reduced by a factor of 48/2=24. Because
every lattice is symmetric under inversion, only the proper
rotations (i.e., not reflections) need to be considered in the
reduction (thus the factor of 1/2). Figure 9 shows the fraction
of symmetrically distinct superlattices for determinant sizes
of up to 100, while Fig. 10 shows the actual number of
fcc-based superlattices compared to the total number of dis-
tinct HNF matrices.

For an fcc or bee parent lattice (the numbers are the
same), the number of unique lattices as a function of index n
(cell size) appears to be equivalent to the Sloane sequence
A045790.% For the sequences generated for other parent lat-
tices, which accordingly have a different symmetry group,
there are no known number-theoretic connections. Surpris-
ingly, this is even true for the simple-cubic lattice. For the
simple-cubic lattice, the sequence is identical to the fcc/bee
one for odd values of the index n but larger for the even
values (see Table IV).

B. Number of structures of different parent lattices

The number of superstructures increases much faster than
the number of superlattices as a function of n. In general,

6000 300

5000F 250
[ (2]
[0] [0
S 4000 200.8
*g ©
L 3000F 150 §
z @
“5 2000/ 1008
H* B3

1000 50

0 10 20 30 Iy

Determinant size

FIG. 10. (Color online) Left axis (red): number of HNF matrices
as a function of determinant size. Right axis (blue): number of
inequivalent fcc superlattices as a function of volume.
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TABLE IV. Number of symmetrically unique superlattices
(HNFs) for several different parent lattices as a function of the
index size n. Note that fcc/bee is the same as simple cubic (sc) only
for the odd values of n and always smaller for the even values.
Hexagonal (hex) and simple tetragonal parent lattices have more
unique lattices than the cubic systems because of their lower
symmetry.

Index No. of superlattices

n fce/bee sc hex tetragonal
2 2 3 5
3 3 3 5
4 7 9 11 17
5 5 5 7 9
6 10 13 19 29
7 7 7 11 13
8 20 24 34 51
9 14 14 23 28
10 18 23 33 53

TABLE V. Number of unique fcc derivative structures as a func-
tion of the index n. The second and fifth columns show the number
of unique structures for each n, while the third and sixth columns
show the cumulative total.

n Structures Cumulative
2 2 2

3 5

4 12 17

5 14 31

6 50 81

7 52 133

8 229 362

9 252 614

10 685 1299
11 682 1981
12 3875 5856
13 2624 8480
14 9628 181 08
15 165 84 3469
16 497 64 844 56
17 42135 126 591
18 212612 339203
19 174 104 513 307
20 867 893 138 1200
21 112070 8 250 190 8
22 262 818 0 513 008 8
23 3042732 8172820
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TABLE VI. Simple cubic superstructures for n=4.

n HNF SNF Superlattices Labelings
7 1 3 3
3 13 1 3 3
35 2 9 15
Total 55 4 15 21

each superlattice has many different unique labelings. Table
V shows the number of fcc/bece derivative structures as a
function of n. The FWZ begins to undercount (as expected)
at n=15 but the FWZ count is probably sufficient for appli-
cations where it was used. Our algorithm is formally com-
plete and does not undercount.

Table VI lists the number of superlattices and superstruc-
tures for the simple-cubic lattice when n=4. The corre-
sponding structures are visualized in Fig. 11 (compare this to
Fig. 2). There are more simple-cubic derivitive structures
than fcc/bec because there are more superlattices for a
simple-cubic parent lattice than for an fcc/bee parent.

Similar to the fcc case shown in Fig. 2, most of the
simple-cubic superstructures can be characterized as stack-
ings of pure A and B planes. The stacking directions are
indicated in the figure. In contrast to the fcc case, there are
six unique stacking directions. It is interesting to note that
the three structures that cannot be characterized as pure
stackings are the only ones corresponding to a composite
quotient group, namely, G=Z,® Z,. This is also true for the
nonstacked structures in the fcc case (Fig. 2), L1, and
AgPd;. For the “stackable” structures, the quotient group is a
single cyclic group, Z,.

Table VII lists the number of fcc/bee ternary and quater-
nary derivative structures. A figure displaying the ternary

[19] o] °
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TABLE VII. Number of ternary and quaternary derivative struc-
tures for an fcc parent lattice. Compare to the number of binary
structures of Table V. As the number of labels k is increased, the
number of derivative structures increases rapidly.

n Ternary Quaternary
Structures Cumulative Structures Cumulative

3 3 3

4 13 16 7 7

5 23 39 9 16

6 130 169 110 126

7 197 366 211 337

8 1267 1633 2110 2447

9 2322 3955 5471 7918

10 9332 13287 32362 40280

structures for n=4 is unnecessary—the ternary structures
have the same unit cell as the binary structures, only the
labelings are different. For n=3 the labeling aab is replaced
by abc. For n=4 the labelings aaab and aabb are replaced
by aabc and abac, and the AgPd; structure has both label-
ings, rather than one.

IV. SUMMARY

We developed an algorithm for enumerating derivative
structures. The results of such an algorithm are useful in a
variety of physics and materials science contexts. The algo-
rithm first generates all unique superlattices by enumerating
all Hermite normal form matrices and using the symmetry
operations of the parent lattice to eliminate rotationally
equivalent superlattices. Next, the algorithm generates all
possible atomic configurations (labelings) of each superlat-

FIG. 11. The first 21 binary structures derived from the simple-cubic lattice. All have 4 atoms/cell or less. Structures marked with a
crystallographic direction (hkl) can be characterized as a stacking of pure A and B atomic layers (black and white spheres). For n=4 all of
the stacked structures occur in pairs, A3B; and A,B,. The last three structures, labeled 19, 20, and 21, cannot be characterized as pure
stackings. These structures have basis vectors whose corresponding quotient group is G=Z, ® Z, (rather than Zy).
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tice and eliminates duplicates using a group-theoretical ap-
proach rather than geometric analysis.

The algorithm is exceptionally efficient due to the use of
(i) perfect, minimal hash tables and (ii) a group-theoretical
approach to eliminating duplicate structures. These two fea-
tures result in a linearly scaling algorithm that is orders of
magnitude faster than the previous method. Moreover, the
method can be applied to any parent lattice and to arbitrary
k-nary systems (binary, ternary, quaternary, etc.). The method
is formally complete (does not undercount) and the key parts
of the algorithm (and its implementation) can be rigorously
checked by number theory results and Burnside’s lemma.
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APPENDIX
1. Hermite normal form

If L is a lattice, with basis given by the columns of a
square matrix A, and S is a superlattice, then S will have
basis AM, where M is a square matrix of integers. Further-
more, all bases of S will have the form AMN, where N is an
integer matrix with determinant *=1. Thus, to find a canoni-
cal basis for S, we may use elementary infeger column op-
erations on M to make it lower triangular, with positive en-
tries down the diagonal. Furthermore, we can arrange that
the lower-triangular matrix H=MN have the property that
every off-diagonal element is less than the diagonal element
in its row. Such a matrix H is said to be in Hermite normal
form and is unique with respect to the matrix M.

Thus, if the determinant of M is n, then the number of
superlattices S of L with index n is equal to the number of
distinct HNF matrices with determinant n. In three dimen-
sions, that number is

k e+2 e+l
(=D —1))
dzp,d"(d)‘g( G- e )

where n=IIp{ is the prime factorization of n.

2. Smith normal form

Using elementary integer row and column operations
(adding or subtracting an integer multiple of one row or col-
umn to another, multiplying a row or column by *1, or
exchanging two rows or columns), we may reduce the inte-
ger matrix M to a diagonal matrix D with the following prop-
erties.

(i) Each diagonal entry of D divides the next one down.
(ii) The product of the diagonal entries of D is the abso-
lute value of the determinant of M.

PHYSICAL REVIEW B 77, 224115 (2008)
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FIG. 12. Two-dimensional superlattices of index n=8. The first
and third share the same SNF, while the second has the trivial SNF,
implying a purely cyclic quotient group. In contrast to the first and
third superlattices, the lattice points in layers parallel to the super-
lattice edge (dotted line) must all have the same label.

This is called the Smith normal form of M. In the lattice case,
where L is a lattice with basis A and S is a superlattice
(subgroup) with basis AM, then D describes the quotient
group L/S as a direct sum of cyclic groups. The diagonal
entries of D are the orders of the cyclic direct summands of
the quotient group (as in the Fundamental Theorem of Finite
Abelian Groups). For example, using the notation Z,
=7Z/nZ, if

Dy, 0 0
D= O D22 O s
0 0 Dy

then
L/S = G= ZD11 (&) ZD22 @ ZD33'

A simple, two-dimensional example may help us to show
how this affects our lattice labeling problem. Consider the
three matrices (all in HNF form):

20 20 20
]UIO= 5 ]HII = 5 ]HI2= .
0 4 1 4 2 4

The matrices Hy and H, both reduce to the SNF matrix
20
<0 4 )
which corresponds to a quotient group which is Abelian, but
not cyclic, but the middle matrix H,; reduces to SNF matrix

o 3

corresponding to the cyclic group of order 8. Thus, if we take
A to be the identity matrix, so L=72, and let S; be the lattice
with basis H;, then L/S, and L/S, are each isomorphic to the
group Z,®Z,, while L/S; is isomorphic to the cyclic group
of order 8.

The fact that the latter is cyclic means that we can layer
the parent lattice in such a way that each parallel layer con-
sists of points which all must get the same label (see Fig.
12). We can arbitrarily label each layer passing through the
interior points of the basis parallelogram and label the rest of
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the lattice cyclically, as if labeling a one-dimensional lattice.
The quotient group for S, or S, is not cyclic but can just as
easily be used to determine equivalent labelings.

In general, SNF provides a natural homomorphism from
the parent lattice L onto the direct-sum group G=Zp
EBZD2269ZD33, with kernel S. By the First Homomorphism
Theorem, it effectively gives an isomorphism from L/S to G.
Since we do only elementary integer row and column opera-
tions, we may write D=PM(), where the transition matrices
P and () are integer matrices with determinant = 1. Note that
AM(Q) is another basis for S, so an element xE S if and only
if M()z=A""x for some integer column vector z, which is true
if and only if Dz=PA~'x. So the map

Dy,
X > PA_I)C mod D22
Ds;

(meaning that each row of the resulting column matrix is
reduced modulo the corresponding diagonal element of D)

PHYSICAL REVIEW B 77, 224115 (2008)

maps from L into the direct-sum group G, with its kernel
being the superlattice S.

As for computing the SNF of a matrix, there are special
algorithms designed to compute it efficiently when M is very
large but the simplest algorithm, effective for small (e.g., 3
X 3) matrices, is basically an extension of Euclid’s algorithm
for finding the greatest common divisor of two numbers. One
subtracts multiples of elements in the matrix from other ele-
ments in the same row or column (using column or row
operations, respectively) until the greatest common divisor
of all the elements of M is exposed. That element is then
moved to the upper left corner of the matrix and used to zero
out all other elements in the first row and in the first column.
Then one applies the same algorithm to the 2 X2 submatrix
in the lower right. Thus, in particular, the upper left entry in
D is always the greatest common divisor of all the entries in

Note that the number of 3 X3 SNF matrices with deter-
minant n is given by I;P;(e;), where n=I1,p{" (the prime
factorization) and P;(k) is the number of partitions of an
integer k using at most three summands.>°
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