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Finding the radial parallel temperature profile in a non-neutral plasma
using equilibrium calculations on experimental data

Grant W. Hart and Bryan G. Peterson

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602
(Received 23 November 2005; accepted 22 December 2005; published online 8 February 2006)

In 1992, Eggleston et al. [D. L. Eggleston et al., Phys. Fluids B 4, 3432 (1992)] reported on a
technique for measuring the radial temperature profile in a pure-electron plasma confined in a
Malmberg-Penning trap by partially dumping the plasma onto a charge collector at the end of the
trap. For short plasmas and short confining rings, the assumptions in their paper are violated and a
more general calculation is needed. This paper presents a variation of the standard equilibrium
calculation to find the temperature profile of a pure-electron plasma. Eggleston’s shortcut
“evaporation” temperature method is found to require a correction factor that can be calculated
using methods described in this paper. For typical conditions, the evaporation method overstates the
actual temperature by a factor ranging from 1.1 to 1.5 or more, depending on the plasma’s total
charge and temperature and the geometry of the trap. © 2006 American Institute of Physics.

[DOI: 10.1063/1.2167586]

I. INTRODUCTION

When analyzing the behavior of a plasma, the two most
fundamental parameters are the plasma density and tempera-
ture. Pure electron plasmas have special challenges in mak-
ing these measurements because of their very low density,
typically in the 10'> m™ range. This means that most stan-
dard density and temperature diagnostics, such as Langmuir
probes, interferometry, and Thomson scattering, are imprac-
tical. Pure ion plasmas, on the other hand, can be diagnosed
with laser-induced fluorescence, at least for selected ion spe-
cies.

Pure electron plasmas are typically confined in
Malmberg-Penning traps.1 In these traps, the non-neutral
plasma is radially confined by an applied axial magnetic field
and axially confined by electrostatic potentials applied to
rings at the ends of these cylindrical traps. This is illustrated
in Fig. 1. These traps typically operate in a fill-manipulate-
dump cycle, as described in Sec. II.

The density in one of these traps is typically measured
destructively by collecting the charge at various radial posi-
tions as the plasma is dumped out the end of the trap. The
charge can be collected on either a single charge collector,’
Faraday cups behind holes in the end plate,2 a set of concen-
tric rings,S’4 or a two-dimensional phosphor screen.” What-
ever device is used, this process gives the integral of the
density along the field lines. The density as a function of z
(the direction of B) is then calculated using an assumption of
electrostatic equilibrium and the known geometry of the
device.*®

The temperature profile is a more difficult quantity to
measure. The earliest temperature measurements in a
Malmberg-Penning trap involved measuring the dispersion
relation of electrostatic waves in the plasma.7 This technique
gives an average measurement for the whole plasma and in-
volves careful wave propagation measurements. The perpen-
dicular temperature (involving velocity perpendicular to the
magnetic field) can be measured by a “magnetic beach
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analyzer.”8 The perpendicular temperature is normally as-
sumed to be closely related to the parallel temperature. More
recently, both the flrequencies4 and thermally exited
amplitudes9 of normal modes of oscillation have been pro-
posed or used to measure the parallel temperature. Again,
these measure an average temperature of the whole plasma.

In 1992, Eggleston et al."’ published a method of mea-
suring the radial parallel temperature profile. This method
works well if several assumptions are met. It also gave a
shortcut method that allowed a simple measurement of
the on-axis temperature. This paper is a generalization of
Eggleston’s method that is not restricted by the assumptions
of that method. In particular, it allows the measurement of
the temperature for short plasmas and devices with short
confining rings. A correction factor is found that can be ap-
plied to the simple on-axis temperature measurement.

In this paper, we first discuss Eggleston’s method and the
assumptions involved in it. The next section discusses equi-
librium calculations and the modifications that are necessary
in order to correctly model a plasma that has been partially
dumped. In the next sections, we apply this method to data
from a particle-in-cell (PIC) simulation and to data taken
from our experiment. In the final sections, we discuss the
necessary corrections to the simplified on-axis measurement
and draw our final conclusions.

Il. EGGLESTON’S METHOD AND ITS ASSUMPTIONS

This method is applied to a single-species plasma con-
fined in a Malmberg-Penning trap operated in a fill-trap-
manipulate-dump cycle. The electrons are thermionically
emitted from a spiral filament (shown on the left in Fig. 1.)
The left-side ring is grounded and the electrons are allowed
to stream into the confinement region. After some time the
ring voltage is again changed to its confining value. The next
step is to perform whatever experiment is desired on the
confined plasma, and at the end of that time the plasma is
dumped onto the charge collectors on the right by grounding

© 2006 American Institute of Physics
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FIG. 1. Electric and magnetic fields in a Malmberg-Penning trap.

the right-side ring, allowing the electrons to escape along the
field lines until they impact and are absorbed by the posi-
tively biased charge collectors. In our experiment, these
charge collectors are a set of 10 concentric disks mounted in
a conical fashion, so that each disk collects all the charge that
impacts it between its outer radius and the radius of the next
smaller disk. See Fig. 2. Three of the disks are split to allow
measurement of up/down and right/left asymmetries in the
plasma. There were no such asymmetries in this set of ex-
periments. The disks are connected to a set of charge inte-
grators, allowing measurement of the total charge collected
as a function of radius. With this setup, there is no informa-
tion on the timing of the arrival of the charge.

To implement Eggleston’s method, the magnitude of the
voltage on one of the confining rings is dropped to a value
intermediate between the full voltage and ground and the
escaped charge is collected on the charge collectors. After
that measurement is made, the remainder of the plasma is
dumped and a new plasma is prepared. This new plasma can
be dumped at a different intermediate voltage. The entire
data set consists of the set of radial profiles of charge lost as
a function of voltage applied on the confinement ring.
Clearly this measurement requires reproducibility in the
plasma. Our shot-to-shot variability for density variations is
less than 1%.

The potential as a function of z along the r=0 axis for
one of our typical plasmas is shown in Fig. 3. This is taken
from a standard equilibrium calculation, but inverted to ap-
pear as a potential energy diagram for electrons. The plasma
creates a substantial self-potential, ¢,, in the center. Only the
particles that have enough energy to get over the potential
hill ¢, will escape. Therefore, the critical parameter to
know in the analysis of this data set is ¢y, = ¢p.— ¢.. Mea-
surement of charge lost versus ¢, will give us the tempera-
ture. All the particles in the plasma pass through the mid-
plane and in the absence of collisions have a constant energy.
This means that the fraction of the plasma lost for a given ¢,
is just the fraction of the particles with total energy greater
than g ¢, (relative to the middle of the plasma), which for a
Maxwellian velocity distribution is just erfc(\ge,/kT),

Side View

Front View

FIG. 2. Charge collection disks used in our experiment. Three of the rings
are split to check for up/down and right/left asymmetries in the plasma.
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FIG. 3. Potential energy curve for a partially dumped electron plasma. The
different potentials involved in the dump are indicated on the plot.

where the erfc function is the complimentary error function
of statistics.

In his calculation of ¢,, Eggleston made several ap-
proximations that were justified in his context, but which do
not work in our experiment. The first approximation had to
do with ¢,.. He approximated the plasma as a flat-ended cyl-
inder of known length. The total z-integrated charge as a
function of radius is then divided by 2#rL, where r is the
radial position and L is the assumed plasma length, to pro-
duce an approximation for the density of the plasma at the
midplane. Assuming axisymmetry and L much longer than
the wall radius, this can be integrated to find ¢.(r), using the
equation

1d| d

tdfd, N\__4a .
rdr(rdr¢c(r)>_ e_onr( )7 (1)

where n,(r) is the density of plasma remaining after the par-
tial dump and ¢ is the charge on a single particle.

In reality, the plasma extends some distance up the po-
tential hill, with the amount of that extent depending on the
radial position, the temperature, and the amount of charge at
that radius. Eggleston recognized that this limited the appli-
cability of his method to long plasmas, since the extra extent
of the plasma will not change the value of n,(r) significantly
if the plasma is long.

The second approximation is that the plasma does not
significantly affect the value of the potential hill, ¢,,... This
is a more problematic approximation, since by definition the
plasma is close to the confining ring while it is being
dumped. The importance of this approximation depends on
the density and temperature of the plasma and the length of
the confining ring. If the z extent of the confining ring is
greater than its radius, then this approximation is better. On
the other hand, if the confining ring is short compared to its
radius, then the plasma will have a significant effect on ¢, ..
Figure 4 shows the effect of the plasma on both the height
and position of ¢,,,, for our experiment, which has a confin-
ing ring that is 2.5 cm long and 4.0 cm in radius.

The confining potential ¢,,,, is made up of two parts: the
vacuum field contribution, ¢,, and the plasma contribution,
¢, The vacuum contribution depends on the radius and the
potential applied to the confining ring. We can write this as
¢,(r)=a(r)¢,, where ¢, is the potential on the confinement
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FIG. 4. The potential energy as a function of z with and without plasma in
the trap for our geometry. Note that both the size and position of the poten-
tial hill are affected by the presence of the plasma.

ring and a(r) is the ratio of the maximum potential at radius
r to the ring potential. This means that ¢, can be written as

¢h=¢max_¢c=a(r)¢r+¢p_¢c' (2)

Finding the temperature of the plasma at each radius
boils down to finding the mapping between the potential ap-
plied to the confinement ring and the size of the potential hill
at each radius and then fitting the curve of charge lost versus
confining potential hill to the function erfc(\g¢,/kT) and
obtaining the temperature from the fitting coefficient. In or-
der to calculate ¢, for use as the x axis of this fit, we need to
calculate both ¢, and ¢,,,,. This requires an equilibrium cal-
culation, as discussed in the next section.

The most commonly used result in Eggleston’s paper is
the shortcut method that he gave to determine the central
temperature of the plasma. This technique involves doing a
slow dump of the plasma and looking only at the charge that
escapes on the axis of the experiment. The charge escapes at
the center first because the plasma potential is highest there
and the vacuum potential is lowest. Expanding the erfc func-
tion in the tail of the distribution at that position, Eggleston
found that

d(n Q) - 1.05
dlgd) kT,

3)

to about 5% accuracy. This calculation still depends on ¢,
rather than ¢,, but the two assumptions mentioned above
make the calculation easier, since under conditions where
those assumptions hold, both ¢, and ¢, will be roughly con-
stant as the ring potential ¢, changes. This means that at the
center d(q¢,) =d(qp,)=a(0)d(ged,), allowing the simple
mapping between change in the ring voltage and the change
in the potential hill. This makes the fitting equation approxi-
mately
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= 1.05a(0)
= (d(ln Qesc)> ’ @
d(qé,)

where the derivative is calculated by a fit to the data. This
result works well when the assumptions hold, but must be
modified when they do not. Because of the slow dump and
escape of the plasma, the result of this temperature measure-
ment is often referred to as the evaporation temperature.

lll. EQUILIBRIUM CALCULATIONS FOR BARELY
CONFINED PLASMAS

The standard equilibrium calculation starts with the as-
sumption that for a plasma in electrostatic equilibrium along
the magnetic-field lines, the distribution function will be of
the form

m E
f,r,z) =ny(r) 27k T(r) eXp<_ kT(V))

[ m
=o(r) 2mkT(r)

2 - r
Xexp(_ 1/2mv +q]E§f((rr),z) ¢ )])’ )

where ny(r) is the density profile in the midplane of the
plasma and ¢.(r) is the potential profile in the midplane. We
assume axisymmetry. The presence of 7(r) in the formula
above shows that this is not a full thermal equilibrium, where
everything would be at the same temperature, but rather a
pseudoequilibrium where the system has come to equilib-
rium in the axial z direction but the much slower equilibra-
tion in the radial » direction through collisions and viscosity
has not yet taken place. When this distribution is integrated
over all velocities, we get the density distribution

qlp(r.2) - d%(r)]).

kT(r) ©

n(r,z) =ny exp(—
An equilibrium code combines this equation with Poisson’s
equation and solves for the self-consistent density and poten-
tial, given the constraint that the integral of the charge den-
sity over z must match the measured values,

Q(r)=61fn(r,z)dz~ (7)

Our standard equilibrium code EQUILSOR has been described
elsewhere.’

However, this calculation needs correction if the plasma
has been partially dumped: all particles with a velocity
greater than that necessary to escape over the potential hill
will be gone. At a location where the potential is ¢(r,z), the
maximum velocity for a confined particle will be

_ \/Eq[fﬁmax(r) - (r.2)]

m

UBSC > (8)
where @.<(r) is the maximum potential hill at each radial
position r. Our distribution function is therefore a Maxwell-
ian truncated at velocity v... Again, this is only a pseu-
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doequilibrium, since collisions will cause modification of the
distribution function, but on a time scale short compared to a
collision time it should be correct. In our experiment, the
collision time is several milliseconds, and the dump takes
place in less than 20 ws. When the distribution function is
integrated from —v,. tO V.., rather than the result in Eq. (6)
we get

q[d)(r,Z) - ¢c(r)]>
kT(r)

Q[¢max(r) - ¢(V,Z)]
Xerf( \/ KT ) ©))

n(r,z) =ny exp(—

The erf part of this expression is most important at the ends.
This is because at the ends the potential is approaching ¢y,
and the low velocity (in the midplane) particles have already
been reflected back toward the center of the plasma, making
the fraction that has been lost more significant. Note that the
plasma density at the potential peak will be identically zero
with this expression, because ¢, (r)=@(r,z) at the peak, by
definition, so all particles that had enough energy to reach
that point will escape. Using our PIC code RATTLE'? to
model a partial dump, we have verified that the plasma re-
maining in the trap is closely approximated by this expres-
sion.

The equilibrium calculation for a partially dumped
plasma is therefore modified to use Eq. (9) instead of Eq. (6)
and otherwise proceeds as before, using the same constraint
on the integral of the density. This expression actually can be
used for any equilibrium calculation, because full confine-
ment would require an infinite potential hill, which is un-
physical. For a well confined plasma the difference between
Egs. (6) and (9) is negligibly small, however, since the height
of the potential hill is many times k7.

IV. TEMPERATURE CALCULATION
WITH THE EQUILIBRIUM CODE

The data set for a temperature calculation consists of
profiles of charge lost versus voltage applied to the confine-
ment ring. A complication in doing the equilibrium calcula-
tion to find ¢y, is that it is necessary to know the temperature
as a function of radius to do the calculation. This, of course,
is unknown because it is what we are trying to find. To start
the calculation, we use the idea behind the evaporation tem-
perature, but at each radius, using the appropriate « for that
radius. This does not give the correct temperature, but it is
close enough to get started. It should be pointed out that the
equilibrium calculation is nonlocal in that the size of the
potential hill at one radius is affected by the temperature and
density at other radii, since the potential depends on the dis-
tribution of all the charge.

There are two ways to use the data set to find the tem-
perature. One is to use the fraction of the plasma that is lost
at each radius for some ring voltage and adjust the tempera-
ture at each radius during the equilibrium solve so that the
appropriate fraction is lost. In practice it is necessary to do
this at a series of voltages because the plasma at different
radii does not escape at the same potential due to the radial
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variations in the confining voltage and midplane potential.
The confining potential goes up as a function of radius and
the central potential drops. This requires an iterative proce-
dure where the evaporation temperature is used as a first
guess, the temperature as a function of radius is calculated,
which is used as a second guess, and the temperature is cal-
culated again. Usually only two iterations are required. Our
experience with this method is that it is very sensitive to
experimental uncertainties. When used with real data, it often
gave results that were inconsistent at different ring voltages.

The second method uses more of the data provided in the
data set. With this method we use the temperature estimates
discussed at the start of this section and calculate an equilib-
rium for each ring voltage in the data set and store ¢, as a
function of r for each one. The charge lost at each radius can
then be fit (using a nonlinear least-squares fit) to the function

_ [1%
Grost=C erfc( T ) (10)

where C and kT/q are the unknown parameters. If the par-
ticles in the plasma are electrons, k7/q is just the tempera-
ture in eV. We have tried iterating on the results as in the first
method, but it is found that the results are relatively insensi-
tive to the initial guess of the temperature (as long as it is in
the ballpark) and the iteration results in a negligible change
in the final results.

In doing the fit, the question arises as to how much of
the data should be used in the fit. There are experimental
difficulties in accurately measuring the charge dumped when
a large fraction of the plasma comes out. Our electronics
integrates the charge that comes out during a 10 us window.
This works very well for most of the dumps, but when we
approach the zero velocity portion of the Maxwellian distri-
bution, not all of the slow charge will have a chance to
escape. There are also dynamics associated with the dump
when it is deep11 that may affect the amount of charge
dumped beyond the simple picture given here. We deal with
this by doing the fit repeatedly on the data, including more
data each time. We start by doing a fit using the data up to
1% of the plasma lost and continue making fits until we
reach the point where 50% of the plasma is lost. We then
choose the fit that has smallest mean-square error per signifi-
cant data point. By significant data point we mean a data
point representing more than 1% of the plasma lost. This
procedure usually results in the fit extending to somewhere
between 10 and 25% of the plasma lost. By using the data
this way we use more of the information in the data than
with the first method and reduce the uncertainty associated
with experimental error.

V. COMPARISON WITH SIMULATION RESULTS

We first tested this measurement with data taken from
RATTLE. We did this because with a simulation we know
what the actual temperature distribution is and can compare
it to the analysis results. For our simulation we used a qua-
dratic temperature profile with a central temperature of 1 eV
and an outer temperature of 3.5 eV. We chose this profile
because that covers a range of temperatures that is fairly
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FIG. 5. The actual and measured temperatures from our simulation. The
dashed line is the actual temperature and the solid line is the result from the
equilibrium calculation.

typical of those we see in our plasmas (although not neces-
sarily at the same time) and we wanted to determine if the
method could handle significant gradients correctly. RATTLE
is an axisymmetric r-z PIC code where the particles can only
move along the field lines. For each run we started with the
plasma in equilibrium and then changed the end potential to
the desired intermediate value. We used experimentally mea-
sured time histories of the voltage on the rings so that the
simulation would closely correspond to the experimental
situation. The output for each simulation was the charge lost
as a function of radius and time. We did runs with the ring
voltage  dropping to —100V,-97.5V,-950V,...,
—-2.50 V,0 V. The profiles of total charge lost as a function
of radius and voltage were then used as inputs to the equi-
librium code calculation discussed in the section above.

One complication in the simulation results was the con-
tinued evaporation of simulation particles over the potential
hill after the potential stopped changing. The magnitude of
the evaporation was not physical; it is due to the fact that we
were only able to run with ~1X 10° simulation particles,
instead of the ~5X 10° actual particles in the experiment.
This created large density and potential fluctuations that scat-
tered the particles in velocity space and sent some of them
over the potential hill. The magnitude of this evaporation
decreased approximately as 1/N, where N is the number of
particles in the simulation. To compensate for this effect, we
ran the simulation for a long time after the ring voltage had
completed its change, measured the evaporation rate, and
subtracted that from the data. This allowed a more accurate
estimate of the charge that would be lost in the actual experi-
ment.

Results of applying our equilibrium calculation method
to these data are shown in Fig. 5. The dashed line is the
actual temperature distribution and the solid line is the cal-
culated temperature. As can be seen, they agree very well,
giving confidence that this method should work with real
data.

VI. USE WITH REAL DATA

Our experiment is a fairly typical Malmberg-Penning
trap with a nominal plasma length of 60 cm and a ring radius
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FIG. 6. A typical data set showing the amount of charge dumped as a
function of voltage on the confining ring. Each curve represents charge
collected at a different radius. Starting at the top curve, the radii are at 0.35,
0.85, 1.15, 1.45, 1.75, 2.05, 2.35, 2.6505, 2.95, and 3.50 cm. The raw data
are scaled by the area of the charge collectors so that they represent [ndz.
These data were taken at 0.125 s after the plasma was trapped.

of 4 cm. Typically our plasmas had a radius of about 2.5 cm.
The central density in these data is near 7 X 10'> m™3. Our
neutral gas pressure is normally near 8 X 10~ Torr. While
we have not made the measurement for these specific data
sets, a typical particle confinement time in this machine is
5-6s.

As discussed in Sec. II, a data set consists of measure-
ments of the charge dumped at various radii for different
voltages applied to the confinement ring. We measured both
the charge that came out when the voltage was changed to its
intermediate value and also the charge that came out later
when the voltage was changed to ground from the interme-
diate value. We checked our data for consistency between
these two measurements by summing them at a particular
voltage and verifying that we had accounted for all the
charge that was originally present in the plasma. A typical
data set is shown in Fig. 6. Each curve in this plot represents
charge collected at a different radius. The charge data are
divided by e and the area of the detector at that radius so that
it represents [ndz.

The results of analysis of this data set and two others are
shown in Fig. 7. The three data sets are taken at different
times in the evolution of the plasma: 0.125, 0.255, and
0.500 s after the trapping of the plasma. The solid curves in
the plot represent a fit of the measurements to a curve of the
form a+bx*. We do this because of the ~5% uncertainty in
the measurements and the requirement that the derivative of
the temperature with respect to r must be zero at r=0. We
can see that the temperature of the plasma is dropping with
time and that the temperature gradient is small at all times.
We expect the outer edge to be somewhat warmer than the
inside because expansion of the plasma column leads to con-
version of electrostatic potential energy into thermal
enelrgy.13 The fact that expansion of the plasma is a heating
mechanism makes the cooling of the plasma at the same time
as it is expanding somewhat puzzling. We think it is likely
due to inelastic collisions with neutral gas in the trap, par-
ticularly since a higher neutral pressure leads to colder plas-
mas as well as larger temperature gradients in our machine.
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FIG. 7. The results of the calculation on three data sets taken at three
different times in the evolution of our plasma. The solid line is for ¢
=0.125 s, the dashed line for r=0.255 s, and the dot-dashed line is for ¢
=0.500 s. Also shown for comparison to the left of the curves and marked
with circles are evaporation temperatures taken on the same plasmas, cor-
rected by the factor discussed in Sec. VIIL.

The higher gradient shows that radial diffusion has in-
creased, but the lower temperature shows that energy is be-
ing absorbed by the neutral gas.

Vil. CORRECTION OF EVAPORATION
TEMPERATURE MEASUREMENT

To the left of the curves in Fig. 7 there are three points
that are marked with circles. These are corrected evaporation
temperature measurements taken at the same times (0.125,
0.255, and 0.500 s) in the evolution of the plasma as the
other data. If we just take the temperature measurements as
specified in Eq. (4), we find that the temperatures measured
are significantly higher (a factor of 1.3-1.5 higher) than the
measurements reported here. To resolve this discrepancy, we
examined the assumptions of Eggleston’s theory in our situ-
ation. We found that both assumptions were violated, and the
violation of the second was about twice as big as the viola-
tion of the first in our case. Figure 8 shows d¢,/d¢, as a
function of the fraction of the plasma that was lost, derived
from the equilibrium calculation. Clearly, this slope never
equals «(0), the value predicted by Eggleston’s model

0.5

0.45
0.4
0.35
03

r

0.25

do, /¢

0 0.05 0.1 0.15 0.2 0.25
Plasma fraction lost

FIG. 8. d¢,/d¢r plotted as a function of fraction of central plasma lost. The
dashed line at the top is a(0). Even at zero plasma loss, these do not agree.

Phys. Plasmas 13, 022101 (2006)

(shown by the dashed line in the figure) even at zero plasma
loss. Taking the derivative of Eq. (2) gives us

Do _ o)+ 20 - 20 (1)
a, a¢,~ dg,

As the ring potential is dropped, the plasma starts to expand,
even before plasma starts to be lost. This causes two effects.
First, the central potential drops because the central density
drops. This makes d¢./d¢, a positive number. Eggleston
discussed this and chose to ignore it because it is only a few
percent effect [in our case 4%-5% of «(0) just as the plasma
starts to escape]. The second effect is that the plasma moves
closer to the point of peak potential. As it does so, it makes
more significant contributions to the potential at that point,
as can be seen in Fig. 4. This makes d¢,/d¢, a negative
number. In our plasma it is about 8% of «(0) at the point
where the plasma is just starting to be lost. These two effects
(the central potential dropping and the maximum potential
being raised) combine to make the change in the hill poten-
tial less than you would calculate from the change in vacuum
potential alone, which makes the temperature calculated
from Eq. (4) too high.

To quantify the density and temperature dependence of
this correction factor, we modified the equilibrium code to
calculate the fraction that would remain in the plasma for a
given ring voltage. During the convergence of the equilib-
rium calculation, the program calculates the height of the
confining hill and modifies the [ndz constraint so that the
proper fraction of the plasma is confined. Calculating equi-
libria for multiple confining potentials allows calculation of
d¢,/deg,. Looking at Fig. 8 makes it clear that the correction
factor depends on how much plasma has been dumped. We
calculate the correction factor to use in analyzing experimen-
tal data by calculating the quantity

a(0)

—1\, 12
dd, (12)

de,

where the brackets indicate an average over the range of a
fraction of central plasma lost from 0.005 to 0.1. These limits
represent a typical range for collecting evaporation data. The
lower limit comes from the fact that our digital oscilloscope
has an 8 bit resolution, so if the entire charge dumped from
the center of the plasma fills the screen, we cannot see a
change of less than one part in 256 of that charge. The upper
limit comes from the fact that a plot of the log of the col-
lected charge versus ring voltage starts to deviate from lin-
earity in the neighborhood of 10% of the central charge lost.

The result of these calculations for the profile of the
125 ms data is shown in Fig. 9. Part (a) shows theoretical
curves of the correction factor as a function of total particle
number for different temperatures. Note that higher particle
number and lower temperature tend to make the correction
factor larger and that at zero particles it goes to 1, as ex-
pected. Clearly we would expect more plasma to increase the
plasma effect at the ring. The effect of a lower temperature is
also reasonable, since a hotter plasma is more diffuse at the
ends and so the effect of the plasma on the potential hill

()=
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FIG. 9. (a) Theoretical curves of the correction factor as a function of total
number of particles. Each curve is for the indicated temperature. (b) Theo-
retical curves of the correction factor as a function of temperature. Each
curve is for the indicated total number of particles.

would occur over a larger voltage range, decreasing the mag-
nitude of d¢,/d¢,. Bach of these curves can be approxi-
mated by a power-law relation of the form

(cy=con’ +1, (13)

where both ¢, and p are functions of temperature. For ex-
ample, at the lowest temperature, 7=0.16 eV, ¢y=0.91, and
p=0.38. At the highest temperature, 7=5.0 eV, ¢(=0.18, and
p=0.68. Part (b) of the figure shows curves of the correction
factor as a function of temperature at several values of the
total number of electrons in the plasma. By calculating these
curves for different density profiles, we have found that they
scale as total particle number rather than central density.
Each of these curves can also be approximated by a power
law of the form of Eq. (13). With 1.1X10% particles,
cp=0.023 and p=-0.83. With 7.4X 10° particles, c,=0.40
and p=-0.40.

There is a small effect of temperature profile on this
correction factor. When we calculated the correction factor
for both a plasma with a uniform temperature and the plasma
with the large temperature gradient shown in Sec. V, we
found a variation of about 5% in the value of the correction
factor. This is small enough not to be particularly significant
in the experimental measurement.

The exact curves shown here are specific to our geom-
etry. They would need to be recalculated for plasmas of dif-
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ferent lengths and different confinement ring lengths. For
example, with longer rings this effect is somewhat less im-
portant, but not ignorable. The value of (¢)—1 is about 2/3
as large for a 10 cm confinement ring as it is for a 2.5 cm
ring. For the case of the data taken at 125 ms shown above,
a 2.5 cm ring has a correction factor of about 1.3. With a
10 cm confinement ring the correction factor would be about
1.2. Longer rings have a smaller contribution from d¢,/d ¢,
(the bulk of the plasma is kept farther from the potential
peak) but a slightly larger contribution from d¢./d¢, (the
plasma has to expand more before it can escape). Even at
zero plasma loss the correction factor for a 10 cm ring is a
little below 1.1. Note that with a longer ring the adiabatic
expansion of the plasma during the slow dump becomes
important.14 With a 10 cm ring length and a 4 cm ring ra-
dius, the adiabatic expansion and this correction factor are of
roughly equal size and opposite in direction.

To verify these correction factors, we have compared
these theoretical results with measurements of evaporation
temperature and equilibrium temperature calculation over a
range of temperatures from 4 to 0.3 eV (obtained by an ap-
propriate time delay in our cooling plasma) and total particle
number from 5X 10 to 1 X 10°. The theoretical correction
factors always made the two agree within the experimental
erTor.

Since these correction factors were calculated using an
equilibrium calculation and the evaporation temperature
measurement is a dynamic (albeit slow) process, we verified
the results using RATTLE. We simulated a slow dump and
analyzed the charge that came out as a function of time. To
avoid the extra evaporation problem mentioned in Sec. V, we
did runs with increasing numbers of simulation particles un-
til the results stopped changing significantly. The results of
the RATTLE runs were consistent with the equilibrium calcu-
lations and they verified that adiabatic expansion was insig-
nificant for our end rings, but that it would be significant for
longer end rings. For 10 cm rings, the evaporation tempera-
ture without any corrections was correct within a few percent
because of the offsetting effects of the adiabatic expansion
and the effects discussed here.

VIil. CONCLUSIONS

With a short plasma or short confinement rings, it is not
possible to make the assumptions that Eggleston made in his
paper for finding the temperature profile in a non-neutral
plasma in a Malmberg-Penning trap. This can be overcome
by using a modified equilibrium calculation to find the map-
ping between the confinement ring potential and the potential
hill that the plasma must overcome. Eggleston’s shortcut
evaporation method of finding the central temperature is
found to need a correction factor even when only a small
fraction of the central plasma has been lost. The size of the
correction factor depends on the total number of particles in
the plasma, the temperature of the plasma, and the fraction of
the plasma that is used for the measurement. For a very low
number of particles in the plasma, the correction factor ap-
proaches 1, but for densities, temperatures, and geometries
typical of these experiments the correction factor ranges
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from 1 plus a few percent up to a factor of 2. Typical cor-
rection factors for our plasmas are in the range 1.2-1.5. The
proper correction factor can be calculated using the equilib-
rium techniques described in this paper.
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