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Observation of and model for nonlinear mode conversion
in a non-neutral plasma

Grant W. Hart, Ross L. Spencer, and Bryan G. Peterson
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 24 February 2003; accepted 17 April 2003!

The nonlinear interaction of the two lowest Trivelpiece–Gould modes in a non-neutral plasma has
been observed. Because of coupling in the nonlinear terms of the continuity and momentum
equations, the two modes can exchange energy and convert one to the other. This can be modeled
using the cold fluid equations and the averaging method. Experimentally, this process always stops
with the lower frequency mode dominating the final state. Numerical integration of the model
suggests that this occurs because the higher frequency mode is more strongly damped than the lower
frequency mode. ©2003 American Institute of Physics.@DOI: 10.1063/1.1581882#
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I. INTRODUCTION

Like most finite-sized systems, a non-neutral plasma
Malmberg–Penning trap has a spectrum of normal mode
oscillation. For a long, thin plasma, the lowest frequen
electrostatic Trivelpiece–Gould~TG! oscillations are almos
harmonically related in frequency and wavelength,1,2 making
it possible to easily couple them to each other.

In this paper we designate the mode numbers by
index j where j is the number of half-wavelengths of th
mode that fit into the plasma in thez-direction. The two
modes of interest in this paper are the two lowest modes,
j 51 mode ~with frequency and wavenumberv1 and k1),
where the whole plasma sloshes back and forth between
two ends, and thej 52 mode~with v2 and k2), where the
two ends of the plasma oscillate in opposite directions, m
ing a breathing-type of oscillation.

Experimentally, whenever a large amplitudej 52 mode
is created in the plasma, within a short time~of the order of
a hundred cycles! it converts into aj 51 oscillation. This
paper is intended to explain this phenomenon.

In this paper we first discuss the physical mechanism
the coupling and then a more complete theory which pred
how these modes should couple with each other. We t
present experimental measurements of this effect and c
pare them with the predictions of the theory.

II. THEORY

A. Illustration of the coupling mechanism

This effect can be calculated using cold fluid theory
the basic model. The equations used are the continuity e
tion, momentum equation and Poisson’s equation:

]n

]t
52¹•~nv!, ~1!

nm
]v

]t
1v•¹v52qn¹F, ~2!
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whereq is the charge on the particles (2e for electrons!.
The mechanism for the coupling between these mode

the beating between them as they interact in the nonlin
¹•(nv) term in the continuity equation and thev•¹v term in
the momentum equation. These terms contain the produc
the spatial and temporal sinusoidal dependencies of th
modes, which can be rewritten in terms of the sum and
ference frequencies. When those sum or difference te
match the spatial and temporal dependence of a given m
then they can cause that mode to grow or decay, depen
on the relative phase of those terms and the mode.

To illustrate roughly how this coupling works using on
the continuity equation, let us examine the nonlinear term
that equation. The starting point is the assumed express
for the density and velocity of the standing waves in t
plasma. Each mode is assumed to have a frequency
wavenumber given byv j andkj and density and velocitynj

andv j . We also assume for simplicity that these are the o
two modes that are of importance in this plasma. The p
turbed density for these modes can be expressed as

n15n̄1sin~v1t1f1!sin~k1z!, ~4!

n25n̄2sin~v2t1f2!cos~k2z!. ~5!

The quantityn̄ j represents the slowly varying~relative to the
mode frequency! density amplitude of the mode. Similarly
the fluid velocity of each mode can be written as

v15V1cos~v1t1f1!cos~k1z!, ~6!

v252V2cos~v2t1f2!sin~k2z!. ~7!

The coefficientsnj̄ andVj are connected by the linear con
tinuity equation,

]nj

]t
52

]

]z
~n0v j !,
8 © 2003 American Institute of Physics
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 This a
where the velocity in the equilibrium state is assumed to
zero. Applying this gives

Vj5
n̄ j

n0

v j

kj

, ~8!

which can be substituted into Eqs.~6! and~7! above to give

v15
n̄1

n0

v1

k1

cos~v1t1f1!cos~k1z!, ~9!

v252
n̄2

n0

v2

k2

cos~v2t1f2!sin~k2z!. ~10!

Taking the total densityn5n01n11n2 and the total ve-
locity v5v11v2 and putting them into the continuity equa
tion produces a number of terms:

]n1

]t
1

]n2

]t
1

]

]z
~n0v11n0v21n1v11n2v11n1v2

1n2v1!50. ~11!

Calculating]n1 /]t produces two terms:

]n1

]t
5n̄1v1cos~v1t1f1!sin~k1z!

1
]n̄1

]t
sin~v1t1f1!sin~k1z!. ~12!

The first term on the right-hand side of Eq.~12! cancels with
then0v1 term from the]/]z(nv) part of the continuity equa
tion. Similarly, the equivalent part of]n2 /]t cancels with the
n0v2 part.

The forms ofn and v from Eqs. ~4!–~5! and ~9!–~10!
above are inserted into these equations and the trigonom
sum and difference formulas are used to rewrite the produ
We now make use of the fact that for a long plasmav2

'2v1 and k2'2k1 , so v22v1'v1 and k22k1'k1 . We
also group all the terms that have the time and spatial de
dence ofn1 andn2 together, since those are the only term
that can give a slow, long term change in the mode am
tudes. This gives

S ]n̄1

]t
2

n̄1n̄2

2n0

v1cosF D sin~v1t1f1!sin~k1z!1S ]n̄2

]t

1
n̄1

2

2n0

v1cosF D sin~2v1t1f2!sin~2k1z!1¯50,

whereF52f12f2 , which can be thought of as the relativ
phase between the two modes. Thē term represents the
terms with spatial and temporal dependence that do
match that of eithern̄1 or n̄2 .

This equation implies that

]n̄1

]t
5

n̄1n̄2

2n0

v1cos~F!, ~13!

]n̄2

]t
52

n̄1
2

2n0

v1cos~F!. ~14!
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Note that whenF is betweenp/2 and2p/2, the j 51
mode will grow at the expense of thej 52 mode, and the
reverse will occur whenF is outside of that range. The
maximum growth rate forn̄1 occurs whenF50.

Similar relationships to those above can be derived
]n̄3 /]t and]n̄4 /]t. We will not have a need for them in thi
paper because the frequency mismatch between the rele
modes is relatively large in the experiment. This produc
small oscillations in the amplitudes of the modes, but
wholesale conversion of one mode to another.

B. A more complete analysis

In the previous illustration, the phase was treated as
independent parameter that was not dynamically moved
the equations. If the momentum equation is included in
analysis it can model the evolution of the phase as wel
the amplitudes. We will also include damping for bo
modes.

We have included linear damping in our analysis b
cause we observe such damping experimentally for sm
amplitude modes. These modes are large enough that La
damping is almost certainly nonlinear, but we feel that t
observed damping is mostly caused by external resista
particularly in the amplifiers that supply the confineme
voltages. Since the TG modes are positive energy mo
resistive energy dissipation will cause them to damp. Part
in cell simulations support this interpretation of the dampin

The continuity equation, the momentum equation a
the Poisson equation cannot just be solved in one dimens
since for long, thin plasmas like ours the radial part of t
Poisson equation dominates over the axial part. Since
exact dispersion relation is not important, we will not a
tempt to derive it. We will just note that since we are d
cussing Trivelpiece–Gould normal modes of the plasma,
Poisson equation will take the form

~2kr
22k2!f52

nq

e0

, ~15!

and the dispersion relation obtained by linearizing Eqs.~1!–
~3! is then

v25
vp

2

kr
21k2

k2, ~16!

where kr is the eigenvalue associated with the the rad
direction andk is the usualk for sinusoidalz dependence.
This allows the term for the potential in the momentu
equation to be replaced with a density term. The set of eq
tions becomes

]n

]t
52

]

]z
~nv !, ~17!

]v
]t

1v
]v
]z

52
vp

2

~kr
21k2!

]n

]z
52

v2

k2

]n

]z
2gv. ~18!
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 This a
We have used Eq.~16! in the last step in Eq.~18!. For sim-
plicity of notation, our density variable in Eqs.~17!–~18! and
in the remainder of the paper is actually the dimensionl
variablen/n0 .

We again assume that the normalized density and ve
ity can be written in the form

n511n1~ t !sin~k1z!1n2~ t !cos~k2z!, ~19!

v5v1~ t !cos~k1z!1v2~ t !sin~k2z!. ~20!

Note that all of the time dependence is in the coefficien
These forms are put into Eqs.~17! and ~18!, the product
terms are converted into their sum and difference frequ
cies, and all terms with the same spatial dependence
gathered together. This gives four equations for the time
pendence:

ṅ15k1v11
k1

2
n1v21

k1

2
n2v1 , ~21!

ṅ252k2v22
k2

2
n1v1 , ~22!

v̇152
v1

2

k1

n11S k12k2

2
D v1v22g1v1 , ~23!

v̇25
v2

2

k2

n21
k1

2
v1

22g2v2 . ~24!

In these equations we have introduced the mode-depen
damping coefficientsg1 andg2 . These terms model the ex
perimentally observed damping of the modes.

These equations include the entire time dependenc
the oscillations, but we are really only interested in the sl
~compared to the oscillation frequency! variation of the am-
plitude and the relative phase of the two modes. In orde
extract this information, we use the averaging method
these equations.3

We apply this method by converting these four fir
order equations into two second-order equations forv1 and
v2 . This is done by taking the time derivatives of Eqs.~23!
and ~24!. Equations~21! and ~22! for ṅ1 and ṅ2 are then
substituted into the resulting equations. We then solve E
~23! and ~24! for n1 and n2 and use them to eliminate a
references ton. The resulting pair of equations is

v̈11v1
2v15S k12

k2

2
D v̇1v21S k12k2

2
2

k2

2

v1
2

v2
2D v1v̇2

2
k1~k12k2!

4
v1v2

21
k1k2

4

v1
2

v2
2 v1

3

2S k2

2

v1
2

v2
2
g22

k1

2
g1D v1v22g1v̇1, ~25!
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v̈21v2
2v25k1S v2

2

2v1
2

11D v1v̇12
k1~k12k2!

4

v2
2

v1
2 v2v1

2

2
k1

2

v2
2

v1
2
g1v1

22g2v̇2. ~26!

We now assume that the quantitiesv1 and v2 can be
written as

v15a1cos~v1t1f1!, ~27!

v252a2cos~v2t1f2!, ~28!

whereaj is the time-dependent amplitude of modej andf j

is that mode’s time-dependent phase. Note that a nonzerḟ j

represents a frequency shift for modej. We have chosen to
include the negative sign on the expression forv2 in order to
simplify the interpretation of the relative phase of our da
which is related tonj and not v j . This follows the time
dependence given in Eqs.~4!–~7!.

If we call the right-hand side~rhs! of Eq. ~25! F and the
rhs of Eq.~26! G, then the averaging method in the form
Ref. 3 tells us that

ȧ152
1

v1

^sin~v1t1f1!F&, ~29!

ȧ252
1

v2

^2sin~v2t1f2!G&, ~30!

ḟ152
1

v1
K cos~v1t1f1!F

a1
L 1v1 , ~31!

ḟ252
1

v2
K 2cos~v2t1f2!G

a2
L 1v2 , ~32!

where the angle brackets indicate a time average over
period of the quantity inside of them, i.e.,

^X&5
1

2p/v
E

t

t12p/v

Xdt8.

Performing the indicated integrals yields the followin
results fora1 anda2 :

ȧ15
3

8
k1a1a2cos~F!2

k1

16v1

~2g12g2!a1a2sin~F!

2
1

2
g1a1 , ~33!

ȧ252
3

8
k1a1

2cos~F!2
k1

4v1

g1a1
2sin~F!2

1

2
g2a2 . ~34!

Note that these equations depend only on the rela
phaseF52f12f2 , and not onf1 or f2 separately. There-
fore Eqs.~31! and~32! can be combined to produce a sing
equation forF. This gives
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Ḟ52
k1

4v1
S g1

a1
2

a2

1
1

2
a2~2g12g2!D cos~F!

1
3

8
k1S a1

2

a2

22a2D sin~F!2
k1

2

32v1

~a1
224a2

2!1dv,

~35!

wheredv52v12v2 is the degree of mismatch between t
linear frequencies of the two modes.

It is convenient to express these equations in terms of
dimensionless variablesa j5v j /vp wherevp5v1 /k1 is the
phase velocity of the lowest mode. If we examine the c
nection between the density and velocity variables given
Eq. ~8!, we see that our dimensionless velocity is equal to
dimensionless density for each mode, i.e.,nj5a j . Express-
ing these three equations in terms ofa1 , a2 andF we find

ȧ15
3

8
v1a1a2cos~F!2

1

16
a1a2~2g12g2!sin~F!

2
1

2
a1g1 , ~36!

ȧ252
3

8
v1a1

2cos~F!2
1

4
g1a1

2sin~F!2
1

2
g2a2 , ~37!

Ḟ5
3

8
v1S a1

2

a2

22a2D sin~F!2
1

4 S g1

a1
2

a2

1
1

2
a2~2g1

2g2!D cos~F!2
v1

32
~a1

224a2
2!1dv. ~38!

Figure 1 shows how the results of integrating the av
aged Eqs.~36!–~38! compared with the results of integratin
the exact equations given in Eqs.~21!–~24!. The amplitude
curve calculated from the averaged set closely follows
envelope of the oscillations calculated from the exact
When the amplitude becomes large enough that the am

FIG. 1. A comparison of the solution of the full set of equations and
averaged equations. The gray lines indicate the solution of the full se
equations, including the high frequency time dependence. The solid b
line is the amplitude calculated from the averaged equations. Clearly
amplitude of the oscillation is closely matched to the amplitude calcula
from the averaged equations.
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tude changes significantly during one oscillation, then
assumptions of the averaging method are violated and
two sets of equations do not agree well. This starts to oc
at an initial value ofa2 of about 0.2.

C. Consequences of the model

As we will see in Sec. III, the experimental data sho
that this system often phase-locks, i.e., the relative ph
between the two modes approaches some particular v
and stays there. Experimentally, the final state also has
j 51 mode much larger than thej 52 mode as they both
decay away. We now explore this behavior analytically us
the averaged equations.

Several of the terms in the averaged equations are n
ligible compared to the others, so the first step is to elimin
them from the equations. The ratio of the second term to
first in Eq. ~36! is

~2g12g2!

6v1

tan~F!. ~39!

Since these modes are typically only weakly damped, thi
a small number unlessF is close to6p/2. We will ignore
this term now and show later that this is justified. By simil
reasoning, the second term in Eq.~37! can be ignored. The
ratio of the second term in Eq.~38! to the first term is of
order (g1 /v1)cot(F), so it is small unlessF is near 0 orp.
The ratio of the third term to the first in Eq.~38! is of order
a2 /sin(F), which is also a small number unlessF is near 0
or p.

The averaged equations with only the significant ter
are

ȧ15
3

8
v1a1a2cos~F!2

1

2
g1a1 , ~40!

ȧ252
3

8
v1a1

2cos~F!2
1

2
g2a2 , ~41!

Ḟ5
3

8
v1~a1

2/a222a2!sin~F!1dv. ~42!

We start with the assumption thatg2.2g1 , in line with
the experimentally observed data. Under these conditions
merical experimentation with Eqs.~40! to ~42! shows that,
not surprisingly,a2 decreases faster thana1 . This means
that late in time the first term in Eq.~40! becomes negligible
compared to the second term and Eq.~40! reduces to

ȧ152
1

2
g1a1 , ~43!

with the solution

a15ā1e2 g1t/2, ~44!

whereā1 is the amplitude of mode 1 at the time where th
approximation becomes valid.

At this late time we can use the solution given in E
~44! in Eq. ~41!, which becomes

e
of
ck
e
d
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ȧ252
3

8
v1ā1

2e2g1tcos~F!2g2a2 . ~45!

Then Eq.~42! becomes

Ḟ5
3

8
v1

ā1
2e2g1t

a2

sin~F!1dv. ~46!

Equations~44!–~46! have a phase-locked state~defined

asḞ50) where

tan~F0!5
22dv

2ge

~47!

and

a2052

3

4
v1ā1

2e2g1tcos~F0!

ge

, ~48!

where the subscript 0 indicates the phase-locked state ange

is defined to be

ge5g222g1 . ~49!

The minus signs are used in Eq.~47! to emphasize the fac
that this phase is in the third quadrant, where both the s
and cosine are negative.

Using standard perturbation techniques one can s
that this phase-locked state is stable and that the system
proaches that state as

e2 g2t/4 6 i ~A16dv21ge
2/4! t. ~50!

This state also has the property that the quantitya1
2/a2 is a

constant.
For future reference the expressions for sin(F), cos(F)

anda1
2/a2 are

sin~F!52
2dv

A4dv21ge
2

, ~51!

cos~F!52
ge

A4dv21ge
2

, ~52!

a1
2

a2

5
4

3
A4S dv

v1
D 2

1S ge

v1
D 2

. ~53!

We can now verify dropping the second terms from E
~36! and~37!. If the form of sin(F) from Eq.~51! is put into
Eq. ~39!, the result is of orderdv/v1 , and therefore can be
dropped. There could be problems with the terms
dropped from Eq.~38! if dv!ge , but that is not the case fo
our experimental parameters. Typicallydv is about ten times
a large asge .

We note here that the time it takes to achieve a pha
locked state depends on the initial values ofa1 anda2 . For
our typical case of smalla1 and largera2 , the smallera2 is,
the longer it takes to phase lock. This can be understood
looking at Eq.~42! and noting that phase locking is achiev
when thea1

2/a2 part of the first term dominates over 2a2 . In
order for this to occur,a1 must grow from its initial small
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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state. The timescale fora1 to grow can be inferred from Eq
~40!; Eq. ~40! divided bya1 gives the timescale for change
in a1 . We can see that the first part is proportional toa2 ,
leading to longer times to phase lock for smaller initiala2 .
This is confirmed by numerical integration of the equatio

Note also that the damping is essential for the ph
locking of this system. As shown by numerical experimen
tion with the model above, without any damping the mod
just convert back and forth between each other. Also, ifge

,0 then phase locking never occurs at all.
It makes very little difference to the final state wheth

the plasma starts with a largej 52 mode or a largej 51
mode, since the plasma typically converts back and fo
between these two modes more than once before the
state is achieved~see Fig. 1!. Figure 1 starts with a largej
52 mode, but it converts to mostlyj 51 at 12ms. Since the
equations are first order in time, the system has no mem
and the evolution would be the same after that time whet
we just started with that initial condition or continued wi
the original calculation. The only significant difference b
tween starting with largej 52 or j 51 is that starting with a
large j 51 mode does not require the presence of anyj 52
mode to create more of aj 52 mode, whereas starting with
large j 52 mode does require the presence of a small amo
of the j 51 mode to start with to create more of aj 51
mode. Note the differences in Eqs.~36! and ~37!.

III. EXPERIMENT

Our experiment to observe this effect is a non-neu
~pure electron! plasma confined in a Malmberg–Pennin
trap4,5 operated in a fill–manipulate–dump cycle. The rad
confinement is provided by an axial magnetic field and
axial confinement is provided by electric fields at the ends
the confinement region. See Fig. 2. The confinement volta
are applied to the rings labeled 1 and 9 in the figure. T
electron plasma is created by thermionic emission from
spiral filament, confined and observed for several millis
onds and then dumped from the other end. The waves
interest are electrostatic TG waves created by oscillating
potential on the confining rings of the plasma. While su
waves in a finite length plasma do not have exactly the s
tial dependence shown in the theory earlier, that depende
is a good approximation as long as the plasma is long c
pared to its radius.1,2 Our experiment satisfies that criterion
the plasma being 60 cm long and about 2 cm in radius.
waves have the characteristic that the dispersion relatio

FIG. 2. The walls of the confinement region are divided into rings of d
ferent lengths. The axial confining potentials are applied to the two 2.5
rings ~numbers 1 and 9! at the ends of the plasma. The two 10 cm rin
~numbers 3 and 7! are used as the detectors for the modes discussed in
paper.
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approximately linear at lowj and drops below the linea
relationship asj increases. We used a drift kinetic code6

DRIFTK, to calculate the linear, uncoupled frequencies for
plasma profiles. There was less than a 1% frequency m
match between the quantity 2v22v1 andv1 , but about an
8% mismatch betweenv21v1 andv3 . The frequency mis-
match between 2v2 andv4 is about 20%. The percentage
are measured relative tov1 . This would imply that the am-
plitude of thej 54 mode should alternately grow and dam
over a period of a few cycles, leading to no net effect. E
perimentally, it is difficult to measure the unshifted fr
quency of thej 52 mode because thej 51 mode always
couples to it and causes its frequency to lock to twice tha
the j 51 mode even at a fairly low amplitude.

In this experiment we excited thej 52 mode by oscil-
lating the confining potentials on both ends of the plas
near the mode frequency, 4.38 MHz, in our case. The driv
signal is shown in Fig. 3. The driving signal was ramped
from zero to its maximum value in about 15ms, stayed at its
maximum value for about 40ms and then was ramped bac
to zero in about 15ms more. The drive was fully turned of
by 18ms. We took data with various values for the maximu
amplitude of the drive. We have taken data where we exc
the j 51 mode to start with, but they showed no significa
differences from the data shown here.

We observed the oscillations in the plasma by looking
the surface charge induced by the changing plasma dens
sections of the wall of the confinement region. The signa
approximately equal to the integral of the plasma charge d
sity over the length of the wall section divided by the capa
tance of the external circuit. The signals of the two mod
can be separated by making use of the different symme
of the modes. We recorded the charge oscillations in two
cm long sections of the wall that were symmetrically plac
relative to the middle of the plasma~rings 3 and 7 in Fig. 2,
located at615 to625 cm!. When the two signals are adde
the odd parityj 51 mode cancels out and we are left with t
even parityj 52 mode. If the two signals are subtracted, w
end up with only thej 51 mode. Higher-order even or od

FIG. 3. The oscillating drive voltage applied to the end rings of the plas
as a function of time. The drive is turned on and off over a 15ms period and
is on for about 40ms.
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modes can also show up in these signals. These partic
wall sections have very little sensitivity to thej 53 mode
because that mode has a node nearz520 cm. There was no
evidence for thej 54 mode in our data.

In order to compare our data with the theory, these r
voltages need to be converted intoa values. In the theory
a j5nj /n0 wherenj is the amplitude of the perturbed densi
of the j th mode. The sensitivity of a given ring to a particul
mode can be approximated by integrating the waveform
the perturbed charge over the length of the ring. For
ample, the charge induced on a ring located betweenzb and
ze with a j 51 mode would be

Q15E
zb

ze
n1sin~k1z!dz5n1S1 , ~54!

wheren1 is the charge/unit length of the mode~the perturbed
density integrated over the cross-sectional area! and Q1 is
the charge induced on the ring due to mode 1. This imp
that the relationship betweenV1 , the voltage induced on the
ring and the mode amplitude, is

V15Q1 /C5n1S1 /C, ~55!

whereC is the capacitance of the ring and cables to grou
In order to finda we also need to known0 . This can be
found from the signal on the ring when the plasma
dumped. Using the same reasoning as above, the relation
for V0 is found to be

V05Q0 /C5n0Lr /C, ~56!

whereLr is the length of the ring andV0 is the size of the
voltage spike when the plasma is dumped. So

a15
n1

n0

5
V1 /S1

V0 /Lr

5V1

Lr

V0S1

. ~57!

An equivalent expression fora2 can also be written. The
scale factorsS1 andS2 need to be multiplied by a factor of 2
from the expression given above to take into account the
that two rings are added or subtracted.

To compare the data with the model, we need to de
mine the amplitude, frequency and phase of the oscillati
as a function of time. We did this by taking 3 microseco
pieces of the data and doing a nonlinear least-squares fi
the data to a sinusoidal function. A fast Fourier transfo
~FFT! is not adequate in this situation because it does
have enough frequency resolution and makes the imp
assumption that the signal is periodic with a three micros
ond period. The least-squares method gives much higher
quency resolution~without the periodicity assumption! at the
expense of losing any information about other frequenc
present in the data.

We took data at five different driving amplitudes, 0.3
0.5 V, 1.0 V, 2.0 V and 3.0 V. The amount of plasma respon
depended on two factors: the size of the drive and h
closely the j 52 mode frequency matched the driving fr
quency of 4.38 MHz. Occasionally a shot with a lower dri
would have a larger response than a shot with a larger d
because its natural frequency matched the drive better
cause of shot-to-shot variability. All shots with 2 and 3

a
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drive were found to have solitons7,8 in them, which would
substantially complicate the interpretation, and so they w
excluded from further analysis. All shots witha1,0.02 on
the first peak after the drive turned off did not phase lo
within the time period of observation, although they a
peared to be approaching a lock near the end of the data.
data set included 8 shots with a significant plasma respo
Five of them produced a final phase-locked state and thre
them were too small to lock in the observation time.

Figures 4 and 5 show the results of applying this pro
dure to two sets of data with different drives. Figure 4 ref
to a shot with a 1 V drive applied to the confining rings a
represents the largest response obtained without solit
Figure 5 refers to a shot with a 0.3 V drive and represents
smallest response that phase locked. The top plot of e
data set shows the two mode amplitudes, witha2 being the
dashed line anda1 being the solid line. The relative phas
F52f12f2 is shown in the second plot. For both cases
locks near a value ofp/2 where tan(F)'`. This implies
that ge!2dv. The third plot shows both 2f 1 and f 2 mea-
sured in MHz. Note that the presence of aḟ1 andḟ2 can be
interpreted as a frequency shift. When the phase locks, t
two frequencies must be equal. The bottom plot in each c
is a1

2/a2 as a function of time. This ratio clearly approach
a constant value as the phase approaches a constant. Th
in Fig. 5 start at 27ms because the amplitude of thej 52
mode was too small before that time to make the data me
ingful; it was smaller than the noise in the data.

FIG. 4. Results of an analysis of a large amplitude wave. The top cu
shows the normalized amplitudes of the two modes. The second plot s
the relative phase, the third shows 2f 1 and f 2 and the fourth shows the ratio
a1

2/a2 . This shot phase locked quickly.
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It is clear in these data sets that in spite of their subst
tially different initial conditions, the final state is very sim
lar. The higher amplitude case actually locks sooner and
higher amplitude than the initially lower amplitude cas
This is not surprising, since the mode conversion proc
occurs faster for a higher amplitude wave. This means tha
the higher amplitude case thej 52 mode starts to convert to
the j 51 mode well before the drive is turned off and bo
modes are locked to the drive. This can be seen in the
that the frequencies of both modes are already equal be
t50 and never diverge very much. In the low amplitude ca
the j 51 mode does not start to grow until the drive is turn
off. They are initially locked together with a relative phase
zero, since thej 52 mode is the source of thej 51 mode and
the largest growth will occur withF50. When the ampli-
tude of thej 52 mode drops to near zero, they decouple
a while and the frequencies diverge, only to converge ag
later. Note that it is thej 52 mode that has the much mor
variable frequency. We have data sets with smaller initiala2 ,
but those cases take longer to lock than the length of the
record; they are showing signs of approaching the final st
such as the two frequencies converging, but have not
achieved it by the end of the data.

The asymptotic values ofF anda1
2/a2 can be estimated

by averaging their values over the portion of the trace wh
they are roughly constant. When we do so on all the pha
locked shots in our data set we get values ofa1

2/a250.026
and F50.53p with an uncertainty of about61 in the last
digit of both values. If we defineR5a1

2/a2 and T
5tan(F), we can rearrange Eqs.~47! and ~53! into

e
ws
FIG. 5. Results of an analysis of a smaller amplitude wave. The plots are
same as in the previous figure. This shot took longer to phase lock.
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dv

v1

5
3

8

R

A111/T2
, ~58!

ge

v1

5
3

4

R

A11T2
. ~59!

Putting the above values forR andT5tan(F)5215.9 into
these equations yieldsdv/v150.0098 and ge /v151
31023. Because of the steep slope of tan(F) nearp/2 and
the dependencies onT in the two equations, the uncertain
in ge /v1 is about a factor of 2, whereas the uncertainty
dv/v1 is about63 in the last digit. This value ofdv/v1 is
consistent with the theoretical value calculated fromDRIFTK

mentioned earlier. It is not possible to measuredv directly
from the data because by the time the modes are of mea
able amplitude they are already interacting with the drive a
each other.

In order to compare the data with the model in mo
detail, we refer to Eqs.~36! and~37!. Taking the time deriva-
tive of oura1 anda2 curves, the data can be fit to these tw
equations usingg1 andg2 as free parameters. Figures 6 a
7 showȧ1 and ȧ2 and the fits. Figure 6 is the large amp
tude case mentioned previously and Fig. 7 is the small
plitude case. The parameters were derived by fitting only
data in the time period from 40ms to 200ms, but the fit is
plotted using those parameters over the whole time pe
from 0 to 200ms. The fit matches well for the entire plot i
Fig. 7, but in Fig. 6 there are periods before 40ms where the
fit does not work well. The drive is not fully turned off unt
about 18ms, so the model cannot be expected to work w
for that time period. The model also assumes that noj 53
mode is present in the system to couple to thev11v2 term.
The deviation from the model during the time period fro
18–40 ms is possibly explained by coupling to thej 53

FIG. 6. Fits ofȧ1 and ȧ2 to the theoretical model for the large amplitud
case above. The fits work well except at times whenj 53 could reasonably
be expected to be driven by the modes present.
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mode. Note thata2 is not growing as fast as predicted by th
model and thata1 is not shrinking as fast as predicted durin
that time period. This might possibly represent a transfer
energy froma2 to a1 through the intermediary of thej 53
mode. It is significant that this deviation occurs at a tim
when both modes are of relatively large amplitude.

The fits produced slightly different values ofg from the
two shots shown here. For Fig. 6 we getg151.13104 s21

andg255.43104 s21, giving ge /v152.331023. For Fig. 7
we get g151.83104 and g256.03104. This implies
ge /v151.831023. If we average the values from our who
data set of shots that phase locked we get values ofg1

51.260.33104 and g255.660.73104, yielding ge /v1

52.361.031023. This is consistent with the results of th
asymptotic state analysis given above. Note that these va
of g1 and g2 are consistent with the condition thatg2

.2g1 .
Another interesting question is what happens to the

ergy that was initially in thej 52 mode. The small-signa
energy density of the mode is proportional to

Er
21Ez

2S 11S vp

v
D 2D , ~60!

where thevp /v part represents the kinetic energy of th
mode and the rest is the potential energy. The kinetic ene
only links to Ez because this mode only has motion in t
z-direction.

The connection between thea j ’s and the mode energy
can be obtained by starting with the mode density. If t
modes are assumed to have the same radial dependence
it R(krr ), nj is just

nj5n̄ jR~krr !H sin~kzz! odd j modes

cos~kzz! even j modesJ , ~61!

FIG. 7. Fits ofȧ1 and ȧ2 to the theoretical model for the small amplitud
case above. The fits work well throughout the observation period.
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where n̄ j is the maximum amplitude of thej th mode and
kz52p j /L. From our definition ofa j , we know thata j

5n̄ j /n0 . Equation~15! provides the link between the poten
tial and the density, so thatf j is

f j5
a jn0R~krr !

~kr
21kz

2!
H sin~kzz! odd j modes

cos~kzz! even j modesJ . ~62!

Given the mode energy density given in Eq.~60! above,
the total mode energy will be

Wj}E
0

a

2prdr E
2L/2

L/2

dzFEr
21Ez

2S 11
vp

2

v2D G , ~63!

wherea is the wall radius. Writing this in terms of the po
tential gives

Wj}E
0

a

2prdr E
2L/2

L/2

dzF S a j krR8~krr !

~kr
21kz

2!
D 2

3H sin2~kzz! odd j modes

cos2~kzz! even j modesJ
1S a j kR~krr !

~kr
21kz

2!
D 2S 11

vp
2

v2D
3H cos2~kzz! odd j modes

sin2~kzz! even j modesJ G , ~64!

where all common factors that are not mode dependent h
been factored out, since this is a proportionality.

When thez-dependence shown in Eq.~64! is integrated,
it producesL/2 for all modes, since the integral is over
whole number of half wavelengths. We note thatvp /v is a
large number, of order 10, and so we can ignore the 1 rela
to vp

2/v2. Noting thatk25v2/vp
2 , wherevp is the approxi-

mately mode-independent phase velocity of the wave,
expression simplifies to

Wj}
a j

2

~kr
21kz

2!2E0

a

rdr F ~krR8„krr !…21S R~krr !vp

vp
D 2G .

~65!

The only remaining mode dependence in this expressio
the (kr

21kz
2)2 in the denominator.kr is of order 1/a andkz is

of order 1/l, wherel is the wavelength of the wave in thez
direction. For our experimental configurationkr is much
larger thankz unless the mode number is very high, so thekz

2

term can be removed, making the initial constant mode
dependent. This leads us to the conclusion that

Wj5Ca j
2, ~66!

where the constantC includes all the factors that are consta
between the two modes.

Without determining the constantC, it is possible to
study the transfer of energy between the two modes. Fig
8 and 9 show this for the same two cases shown ab
Figure 8 is the high amplitude case. In both plots the th
curves are the energy in thej 52 mode, the energy in thej
51 mode and the total energy. At late times~after about 50
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

128.187.97.22 On: Mon, 
ve

e

is

is

-

t

es
e.
e

ms! both plots show the energy decaying at the rate app
priate for the mode which is dominant at that time. Before
ms there is an interesting difference. While Fig. 9 sho
exponential decay at the dominant mode’s rate, the high
plitude case~Fig. 8! shows more complicated behavior. Th
total energy decays too rapidly between 0 and 10ms and is
too high between 20 and 40ms. This is perhaps an indicatio
of energy initially being stored in thej 53 mode and par-
tially given back later. The high frequency oscillation seen
the total energy before 50ms is at about the expected be
frequency betweenv21v1 andv3 .

IV. CONCLUSIONS

In conclusion, we have used the cold fluid equations a
the averaging method to derive a set of equations to desc
the nonlinear coupling of the fundamental and second h
monic (j 51 and j 52) Trivelpiece–Gould modes in a non
neutral plasma. These equations match the data well, as
as the assumptions inherent in the derivation are not viola

FIG. 8. The energy of the modes in the system for the large amplitude c
The dotted line is the energy in thej 52 mode, the dashed line is the energ
in the j 51 mode and the solid line is the total energy.

FIG. 9. The energy of the modes in the system for the small amplitude c
The dotted line is the energy in thej 52 mode, the dashed line is the energ
in the j 51 mode and the solid line is the total energy.
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In particular, there is some evidence that thej 53 mode
~third harmonic! can be present when the amplitude of bo
modes is particularly large and affect the coupling of the
modes. If the amplitude of the waves is too large, then
model does not work well either, probably because of
presence of solitons in the plasma.
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