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PHYSICS OF PLASMAS VOLUME 10, NUMBER 7 JULY 2003

Observation of and model for nonlinear mode conversion
in a non-neutral plasma

Grant W. Hart, Ross L. Spencer, and Bryan G. Peterson
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 24 February 2003; accepted 17 April 2003

The nonlinear interaction of the two lowest Trivelpiece—Gould modes in a non-neutral plasma has
been observed. Because of coupling in the nonlinear terms of the continuity and momentum
equations, the two modes can exchange energy and convert one to the other. This can be modeled
using the cold fluid equations and the averaging method. Experimentally, this process always stops
with the lower frequency mode dominating the final state. Numerical integration of the model
suggests that this occurs because the higher frequency mode is more strongly damped than the lower
frequency mode. €2003 American Institute of PhysicgDOI: 10.1063/1.1581882

I. INTRODUCTION

. o _ Vi =——, 3
Like most finite-sized systems, a non-neutral plasma in a €

Malmberg—Penning trap has a spectrum of normal modes of ) )
oscillation. For a long, thin plasma, the lowest frequencyWhereq is the charge on the particles-g for electrons.

electrostatic Trivelpiece—Gould G) oscillations are almost The mechanism for the coupling between these modes is
harmonically related in frequency and wavelengtmaking ~ the beating between them as they interact in the nonlinear

In this paper we designate the mode numbers by th&he momentum equation. These terms contain the products of
index j wherej is the number of half-wavelengths of the the spatial and temporal sinusoidal dependencies of these
mode that fit into the plasma in thedirection. The two modes, which can be rewritten in terms of the sum and dif-
modes of interest in this paper are the two lowest modes, thi€rence frequencies. When those sum or difference terms
j=1 mode (with frequency and wavenumbes; and k;), match the spatial and temporal dependence of a given mode,
where the whole plasma sloshes back and forth between tf{Ben they can cause that mode to grow or decay, depending
two ends, and th¢=2 mode(with w, andk,), where the ©ON the relative phase of those terms and the mode.

two ends of the plasma oscillate in opposite directions, mak- 10 illustrate roughly how this coupling works using only
ing a breathing-type of oscillation. the continuity equation, let us examine the nonlinear term in

Experimentally, whenever a large amplitugle 2 mode that equation_. The starting_ point is the as§umed expr_essions
is created in the plasma, within a short tife the order of for the density and vglocny of the standing waves in the
a hundred cyclesit converts into aj=1 oscillation. This Plasma. Each mode is assumed to have a frequency and
paper is intended to explain this phenomenon. wavenumber given by, andk; and density and velocity,

In this paper we first discuss the physical mechanism oftndv; . We also assume for simplicity that these are the only
the coupling and then a more complete theory which predictdV0 modes that are of importance in this plasma. The per-
how these modes should couple with each other. We thefrbed density for these modes can be expressed as
present experimental measurements of this effect and com-

pare them with the predictions of the theory. Ny =n;sin(wt+ ¢)sin(k,z), (4
N, = N,Sin(wot + ¢,) cog kyz). (5)
Il. THEORY The quantityﬁj represents the slowly varyingelative to the

mode frequencydensity amplitude of the mode. Similarly,

the fluid velocity of each mode can be written as
This effect can be calculated using cold fluid theory as

A. lllustration of the coupling mechanism

the basic model. The equations used are the continuity equa- v1=V1C0Sw t+ ¢1)cogk;2), (6)
tion, momentum equation and Poisson’s equation: .
Vo= — V2COE{ (1)2t+ ¢2)S|n( kzz) . (7)
”7_”= —V.(nv) (1 The coefficient:; andV; are connected by the linear con-
ot ' tinuity equation,
ov (9nJ Jd ( )
J— . — — —=——(N Ui s
nmat +v-Vv qnvao, 2 o 57\ NoYj
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where the velocity in the equilibrium state is assumed to be  Note that whend is betweens/2 and — 7/2, thej=1

zero. Applying this gives mode will grow at the expense of tje=2 mode, and the
o reverse will occur whenb is outside of that range. The
VJ:—J ﬂ, (8)  maximum growth rate fon; occurs whenbd=0.
No K; Similar relationships to those above can be derived for

which can be substituted into Eq$) and(7) above to give  dng/dt anddn,/at. We will not have a need for them in this
— paper because the frequency mismatch between the relevant

Ny @y modes is relatively large in the experiment. This produces
v,=— —coq wqt+ ¢;)cogk;z), (9 rele y larg ! p . p
Ng Ky small oscillations in the amplitudes of the modes, but no
o wholesale conversion of one mode to another.
w
Vp=— — —2c0% wot + ) Sin(k,2). (10)
Ng ka

Taking the total densitp=n,+n;+n, and the total ve- B. A more complete analysis
locity v =v1+ v, and putting them into the continuity equa-

tion produces a number of terms: In the previous illustration, the phase was treated as an

independent parameter that was not dynamically moved by

ang dn, 9 the equations. If the momentum equation is included in the
EJF EJF =7 (Nov1+Nov 2+ Nyva+Navs+Nyu, analysis it can model the evolution of the phase as well as
the amplitudes. We will also include damping for both
+nav;)=0. (11 ~ modes.

We have included linear damping in our analysis be-
cause we observe such damping experimentally for small
ang  — ) amplitude modes. These modes are large enough that Landau
F=n1wlcos(w1t+ ¢1)sin(k,1z) damping is almost certainly nonlinear, but we feel that the

observed damping is mostly caused by external resistance,
any particularly in the amplifiers that supply the confinement
+ ——sin(w1t+ ¢1)sin(k,z). (12)  voltages. Since the TG modes are positive energy modes,
Jt resistive energy dissipation will cause them to damp. Particle
The first term on the right-hand side of EG2) cancels with  in cell simulations support this interpretation of the damping.

Calculatingaon, /dt produces two terms:

thengu, term from thed/ 9z(nv) part of the continuity equa- The continuity equation, the momentum equation and
tion. Similarly, the equivalent part @in,/Jt cancels with the  the Poisson equation cannot just be solved in one dimension,
Ngv, part. since for long, thin plasmas like ours the radial part of the

The forms ofn andv from Egs.(4)—(5) and (9)—(10) Poisson equation dominates over the axial part. Since the
above are inserted into these equations and the trigonometrégxact dispersion relation is not important, we will not at-
sum and difference formulas are used to rewrite the productsempt to derive it. We will just note that since we are dis-
We now make use of the fact that for a long plasma  cussing Trivelpiece—Gould normal modes of the plasma, the
~2w;, andk,~2K;, SO wr,—wi~w; andk,—k;~k;. We  Poisson equation will take the form
also group all the terms that have the time and spatial depen-

dence ofn; andn, together, since those are the only terms nq
. . L (—K-K)p=—— (15
that can give a slow, long term change in the mode ampli- (=K ¢= e
tudes. This gives 0
Pl an. and the dispersion relation obtained by linearizing Edjs-
(—1 - ﬁwlcosb) sin(wyt+ ¢y)sin(kyz) + | — (3) is then
gt 2ng ot
2
w
n . . w2=—Li2, (16
+ Z—wlcosb SiN(2w,t+ ¢,)sin(2k,z) +---=0, K2+ k?
No

whered =2, — &5, which can be thought of as the relative where k, is the eigenvalue associated with the the radial

phase between the two modes. Theterm represents the direction andk is the usualk for sinusoidalz dependence.

terms with spatial and temporal dependence that do nofhis allows the term for the potential in the momentum
match that of eithen; or n,. equation to be replaced with a density term. The set of equa-

This equation implies that tions becomes

an;  nin, on_d
—=—"20p,coqD), 13 — = o5 (), 17
ot 2no 1 5( ) ( ) ot 0z

ﬁﬁz Hi ® (14) v N dv w, dn w? an 18
— =——w;C0 . Vo E = — —— — Y.
at 2n, <) a9z (KP+k?) 9z Koz !
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We have used Ed16) in the last step in Eq(18). For sim- 2

. - . ) . . 2 w3 ky(kyi—ka) w%
plicity of notation, our density variable in Eq&.7)—(18) and Vot wiva=ky| —+1

Vi1 T —,UU7
in the remainder of the paper is actually the dimensionless w1 4 @1
variablen/ng. K o

We again assume that the normalized density and veloc- _ 1@ ')’1U§_ Yob . (26)
ity can be written in the form 2 w?

n=1+n,(t)sin(k,z) + n,(t)cogk,z), (19) _ We now assume that the quantities and v, can be

written as

U=vl(t)CO$(klz)+U2(t)sin(k22). (20) vl=a1005(w1t+ d’l)! (27)

Note that all of the time dependence is in the coefficients.  y,=—a,co w,t+ ¢,), (29)

These forms are put into Eq$l7) and (18), the product

terms are converted into their sum and difference frequenwherea; is the time-dependent amplitude of maodand ¢,
cies, and all terms with the same spatial dependence afe that mode’s time-dependent phase. Note that a nongero
gathered together. This gives four equations for the time detepresents a frequency shift for moge/Ne have chosen to

pendence: include the negative sign on the expressionugin order to
simplify the interpretation of the relative phase of our data,
_ Ky Ky which is related ton; and notv;. This follows the time
n=kqvq,+ En1v2+ Enzvl' (21)  dependence given in Eq&h)—(7).

If we call the right-hand sidérhs) of Eq. (25) F and the
rhs of Eq.(26) G, then the averaging method in the form of
Ref. 3 tells us that

h2=—k202——2n1v1, (22)
2 1
a;=— —(sif(wit+ ¢1)F), (29
w% ki—kz “1
U1 _k_nl+ U1V2~ Y1V1, (23 L
1 . .
a,=— —(—siN(wyt+ ¢,)G), (30
2 w2
v =22, +klv2 YU (24)
27 2T v . 1 | cogwit+ ¢y)F
ks, 2 ¢1:__< Loit+ o) >+w1, (31)
w1 a;
In these equations we have introduced the mode-dependent
damping coefficientsy,; andy,. These terms model the ex- ) 1 | —cofwot+ ¢,)G
perimentally observed damping of the modes. ho=—— a 2, (32
w2 2

These equations include the entire time dependence of

(c_ompared to the oscillation frequenayariation of the am-  perind of the quantity inside of them, i.e.,
plitude and the relative phase of the two modes. In order to

extract this information, we use the averaging method on 1 t+27l o
these equations. (Xy= —f Xdt'.
We apply this method by converting these four first- 2mlwt
order equations into two second-order equationsvfoand Performing the indicated integrals yields the following

v,. This is done by taking the time derivatives of E(®3)  results fora; anda,:
and (24). Equations(21) and (22) for n, andn, are then

substituted into the resulting equations. We then solve Egs. . 3 ky )
(23) and (24) for n, andn, and use them to eliminate all a;= gklalazcoiq))— (2y1— y2)aja,sin(d)
references ta. The resulting pair of equations is 1
1
. ’ A . ki—k, Ky w% _ - E'ylala (33
v wqV1= —— |01V —— —5 | U1V
1 1vV1 1 2 1v2 2 2 w% 1v2
. 3, kq - 1
kl( kl_ k2) klk2 wi a=— gklalcosq)) - 4_ Ylalsln(q)) - E Y2ay3. (34)
- —vlvg —zvf “1
4 (.')2

Note that these equations depend only on the relative
K, w'i‘ K, phased=2¢,— ¢,, and not onp, or ¢, separately. There-

- ( === 71) ViU~ Y1U1, (25)  fore Egs.(31) and(32) can be combined to produce a single
2 wj 2 equation for®. This gives
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tude changes significantly during one oscillation, then the
assumptions of the averaging method are violated and the
two sets of equations do not agree well. This starts to occur
at an initial value ofe, of about 0.2.
0.05} | ' 1
0.1 . : ! :
) C. Consequences of the model
0.05F % , _ ,
‘ As we will see in Sec. lll, the experimental data show
0.0 NN O O O @ —— that this system often phase-locks, i.e., the relative phase
ey | A A . between the two modes approaches some particular value
_0_1,,’ . . . . and stays there. Experimentally, the final state also has the
0 50 100 150 200 250 j=1 mode much larger than the=2 mode as they both
Time (us) decay away. We now explore this behavior analytically using

FIG. 1. A comparison of the solution of the full set of equations and thethe averaged equations. . .

averaged equations. The gray lines indicate the solution of the full set of Several of the terms in the averaged equa:t|0ns are neg-
equations, including the high frequency time dependence. The solid blackgible compared to the others, so the first step is to eliminate
line is the amplitude calculated from the averaged equations. Clearly thehem from the equations. The ratio of the second term to the
amplitude of the oscillation is closely matched to the amplitude calculated. . .

from the averaged equations. dant in Eq. (36) is

2 —
N7 ). (39)
2 6w,
: Ky 1
¢=- 2o\ 1o +58(2y1~y2) |cod @) Since these modes are typically only weakly damped, this is
@1 a a small number unles® is close to* 7/2. We will ignore
3 2 2 this term now and show later that this is justified. By similar
+ gkl —l—ZaZ) sin(d) — —1(a§—4a§)+ dw, reasoning, the second term in E87) can be ignored. The
a 32w, ratio of the second term in Ed38) to the first term is of

(35) order (y1/wq)cot(®), so it is small unles® is near 0 orsw.
The ratio of the third term to the first in E¢B8) is of order
a5 /sin(@®), which is also a small number unle$sis near 0
ar.
The averaged equations with only the significant terms

wheredw=2w,— w, is the degree of mismatch between the

linear frequencies of the two modes. or
It is convenient to express these equations in terms of the

dimensionless variables;=v; /v, wherev,= w,/k; is the are

phase velocity of the lowest mode. If we examine the con-

nection between the density and velocity variables given in

Eqg.(8), we see that our dimensionless velocity is equal to the ~ *1~ §"’10‘1“2C°5(q)) P RASEY (40

dimensionless density for each mode, irg5 «;. Express-

ing these three equations in termsf, @, and® we find : 3 1
’ | o == S alcod @)~ 5 voaz, (4)
.3 1 _
al:gwlalazcos{cb)—1—6a1a2(271—72)sm(cb) .3
. O = gwl(a'f/az—zaz)sirm)H Sw. (42

T 2% (36) We start with the assumption thgs>2y;, in line with

3 1 1 the experimentally observed data. Under these conditions nu-
ay=— —wlafcos(db) -3 ylafsir(db) - 5720, (37) merical experlmentatlon with Eq$40) to (42 shpws that,

8 not surprisingly,a, decreases faster tham,. This means
that late in time the first term in E¢40) becomes negligible

.3 ai ) 1 af 1
b= gwl( a_z _ 2a2) Sin(®) — Z( 710[_2 + §a2(271 compared to the second term and E40) reduces to
: 1
© ;== 5naer, (43)
1,2 2
—y2))cos(<1>)——(a —4a3)+ dw. (38) _ _
32 2 with the solution

Figure 1 shows how the results of integrating the aver-
aged Eqgs(36)—(38) compared with the results of integrating -
the exact equations given in Eq21)—(24). The amplitude wherea; is the amplitude of mode 1 at the time where this
curve calculated from the averaged set closely follows thepproximation becomes valid.
envelope of the oscillations calculated from the exact set. At this late time we can use the solution given in Eq.
When the amplitude becomes large enough that the ampli44) in Eq. (41), which becomes

a= ;167 ‘yl'[/2, (44)
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ar=— gwﬁie’ ilcog @) — ya;. (45)
Then Eq.(42) becomes
.3 ;%e* nt
O=-w; sSin(®) + dw. (46)
8 ay

Equations(44)—(46) have a phase-locked stafgefined
as®=0) where

— 26w
tan( @)= (47)
—Ye
and
s
21218 "1'cog D)
0=~ : (48

Ye

Hart, Spencer, and Peterson

Ring Dimensions (cm)

25 5 10 5 20 5

= =

1] | [ ]

9 8 7 6 5 4 3
Ring Number

Filament

10 525
L] Ie
2 1

Charge Collector

FIG. 2. The walls of the confinement region are divided into rings of dif-
ferent lengths. The axial confining potentials are applied to the two 2.5 cm
rings (numbers 1 and )9at the ends of the plasma. The two 10 cm rings
(numbers 3 and)7are used as the detectors for the modes discussed in this
paper.

state. The timescale far, to grow can be inferred from Eq.

(40); Eq. (40) divided by a; gives the timescale for changes

in a1. We can see that the first part is proportionalatp,

leading to longer times to phase lock for smaller initgl.

This is confirmed by numerical integration of the equations.
Note also that the damping is essential for the phase

where the subscript 0 indicates the phase-locked stateand locking of this system. As shown by numerical experimenta-

is defined to be

Ye=Y2—2Y1- (49

The minus signs are used in Ed.7) to emphasize the fact

tion with the model above, without any damping the modes
just convert back and forth between each other. Alsoy,if
<0 then phase locking never occurs at all.

It makes very little difference to the final state whether

that this phase is in the third quadrant, where both the sinthe plasma starts with a large=2 mode or a largg =1

and cosine are negative.

mode, since the plasma typically converts back and forth

Using standard perturbation techniques one can showetween these two modes more than once before the final
that this phase-locked state is stable and that the system aptate is achievedsee Fig. 1 Figure 1 starts with a largg

proaches that state as
e~ 72t/ =i (y/1600%+ Yal4) t (50)

This state also has the property that the quamﬁyaz is a
constant.

For future reference the expressions for &iy)(cos(b)
anda?/a, are

20w

Sin(q))z—m, (51

cos(cb)z—ﬁ, (52
2 2 2

ﬂ=‘—1\/4(5—“’) +(ﬁ> . (53

C(z 3 (Ul (1)1

=2 mode, but it converts to mostjy=1 at 12us. Since the
equations are first order in time, the system has no memory
and the evolution would be the same after that time whether
we just started with that initial condition or continued with
the original calculation. The only significant difference be-
tween starting with largg=2 or j=1 is that starting with a
largej=1 mode does not require the presence of pry
mode to create more ofja= 2 mode, whereas starting with a
largej =2 mode does require the presence of a small amount
of the j=1 mode to start with to create more ofja1
mode. Note the differences in Eq86) and (37).

lll. EXPERIMENT

Our experiment to observe this effect is a non-neutral
(pure electron plasma confined in a Malmberg—Penning
trag"® operated in a fill-manipulate—dump cycle. The radial
confinement is provided by an axial magnetic field and the

We can now verify dropping the second terms from Egs.axial confinement is provided by electric fields at the ends of

(36) and(37). If the form of sin@) from Eq.(51) is put into

the confinement region. See Fig. 2. The confinement voltages

Eq. (39), the result is of ordebw/w,, and therefore can be are applied to the rings labeled 1 and 9 in the figure. The
dropped. There could be problems with the terms weelectron plasma is created by thermionic emission from a
dropped from Eq(39) if Sw< 7., but that is not the case for spiral filament, confined and observed for several millisec-
our experimental parameters. Typicadly is about ten times onds and then dumped from the other end. The waves of
a large asye. interest are electrostatic TG waves created by oscillating the
We note here that the time it takes to achieve a phasesotential on the confining rings of the plasma. While such
locked state depends on the initial valuessgfanda,. For ~ waves in a finite length plasma do not have exactly the spa-
our typical case of smalt; and largerx,, the smallere, is,  tial dependence shown in the theory earlier, that dependence
the longer it takes to phase lock. This can be understood big a good approximation as long as the plasma is long com-
looking at Eq.(42) and noting that phase locking is achieved pared to its radiu? Our experiment satisfies that criterion,
when theaf/az part of the first term dominates overg. In  the plasma being 60 cm long and about 2 cm in radius. TG
order for this to occure; must grow from its initial small waves have the characteristic that the dispersion relation is
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0.6

modes can also show up in these signals. These particular
wall sections have very little sensitivity to tHe=3 mode

= because that mode has a node r=aR0 cm. There was no
evidence for thg =4 mode in our data.

= In order to compare our data with the theory, these raw
voltages need to be converted indovalues. In the theory

- a;=n;/ny wheren; is the amplitude of the perturbed density
of the jth mode. The sensitivity of a given ring to a particular
mode can be approximated by integrating the waveform of
the perturbed charge over the length of the ring. For ex-
ample, the charge induced on a ring located betwagesmd

Z, with a j=1 mode would be

0.4

0.2

RF signal (Volts)
o
(=]

06 I I 1 I I
-60.00 -40.00 -2000 0.00 20.00 40.00 60.00
Q.= f

Ze
n,sin(k;z)dz=n;S,, (54

Time (ps) z,

FIG. 3. The oscillating drive voltage applied to the end rings of the plasmawheren; is the charge/unit length of the modtae perturbed

as a function of time. The drive is turned on and off over auperiod and  density integrated over the cross-sectional amad Q; is

is on for about 4Qus. the charge induced on the ring due to mode 1. This implies
that the relationship betweadry, the voltage induced on the

. ) ) ) ring and the mode amplitude, is
approximately linear at low and drops below the linear

relationship ag increases. We used a drift kinetic cdte, V1=Q:/C=n;$,/C, (55)

DRIFTK, tO cglculate the linear, uncoupled frequencies for OUyhereC is the capacitance of the ring and cables to ground.
plasma profiles. There was less than a 1% frequency misy grder to finda we also need to know,. This can be
match between the quantity —w; andw,, but about an  foyng from the signal on the ring when the plasma is

8% mismatch betweem,+ w; andws. The frequency mis- g mped. Using the same reasoning as above, the relationship
match between @, and w, is about 20%. The percentages ¢, V, is found to be

are measured relative #,. This would imply that the am-
plitude of thej =4 mode should alternately grow and damp ~ Vo=Qo/C=ngL,/C, (56)
over a period of a few cycles, leading to no net effect. Exyypere| s the length of the ring anif, is the size of the
perimentally, |F is difficult to measure the unshifted fre- voltage spike when the plasma is dumped. So
qguency of thej=2 mode because the=1 mode always
couples to it and causes its frequency to lock to twice that of n, V,/S; L,
the j=1 mode even at a fairly low amplitude. alzn_: Vo/L = Vs
In this experiment we excited the=2 mode by oscil- o rorEr 01
lating the confining potentials on both ends of the plasmaAn equivalent expression faw, can also be written. The
near the mode frequency, 4.38 MHz, in our case. The drivingcale factor$s, andS, need to be multiplied by a factor of 2
signal is shown in Fig. 3. The driving signal was ramped upfrom the expression given above to take into account the fact
from zero to its maximum value in about 1, stayed at its that two rings are added or subtracted.
maximum value for about 4@.s and then was ramped back To compare the data with the model, we need to deter-
to zero in about 15«s more. The drive was fully turned off mine the amplitude, frequency and phase of the oscillations
by 18 us. We took data with various values for the maximumas a function of time. We did this by taking 3 microsecond
amplitude of the drive. We have taken data where we excite@ieces of the data and doing a nonlinear least-squares fit of
the j=1 mode to start with, but they showed no significantthe data to a sinusoidal function. A fast Fourier transform
differences from the data shown here. (FFT) is not adequate in this situation because it does not
We observed the oscillations in the plasma by looking athave enough frequency resolution and makes the implicit
the surface charge induced by the changing plasma density assumption that the signal is periodic with a three microsec-
sections of the wall of the confinement region. The signal isond period. The least-squares method gives much higher fre-
approximately equal to the integral of the plasma charge dergquency resolutiorfwithout the periodicity assumptiomt the
sity over the length of the wall section divided by the capaci-expense of losing any information about other frequencies
tance of the external circuit. The signals of the two modegpresent in the data.
can be separated by making use of the different symmetries We took data at five different driving amplitudes, 0.3V,
of the modes. We recorded the charge oscillations in two 10.5V, 1.0V, 2.0 V and 3.0 V. The amount of plasma response
cm long sections of the wall that were symmetrically placeddepended on two factors: the size of the drive and how
relative to the middle of the plasnieings 3 and 7 in Fig. 2, closely thej=2 mode frequency matched the driving fre-
located at+ 15 to =25 cm). When the two signals are added, quency of 4.38 MHz. Occasionally a shot with a lower drive
the odd parityj =1 mode cancels out and we are left with the would have a larger response than a shot with a larger drive
even parityj =2 mode. If the two signals are subtracted, webecause its natural frequency matched the drive better be-
end up with only thg =1 mode. Higher-order even or odd cause of shot-to-shot variability. All shots with 2 and 3 V

(57)
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FIG. 4. Results of an analysis of a large amplitude wave. The top curvé=IG. 5. Results of an analysis of a smaller amplitude wave. The plots are the
shows the normalized amplitudes of the two modes. The second plot showsame as in the previous figure. This shot took longer to phase lock.

the relative phase, the third show§,2andf, and the fourth shows the ratio

a3l a,. This shot phase locked quickly.

Itis clear in these data sets that in spite of their substan-
tially different initial conditions, the final state is very simi-
drive were found to have solitoh§in them, which would lar. The higher amplitude case actually locks sooner and at a
substantially complicate the interpretation, and so they wer@igher amplitude than the initially lower amplitude case.
excluded from further analysis. All shots witly<<0.02 on  This is not surprising, since the mode conversion process
the first peak after the drive turned off did not phase lockoccurs faster for a higher amplitude wave. This means that in
within the time period of observation, although they ap-the higher amplitude case thie=2 mode starts to convert to
peared to be approaching a lock near the end of the data. Otite j =1 mode well before the drive is turned off and both
data set included 8 shots with a significant plasma responseodes are locked to the drive. This can be seen in the fact
Five of them produced a final phase-locked state and three difiat the frequencies of both modes are already equal before
them were too small to lock in the observation time. t=0 and never diverge very much. In the low amplitude case
Figures 4 and 5 show the results of applying this procethe j =1 mode does not start to grow until the drive is turned
dure to two sets of data with different drives. Figure 4 refersoff. They are initially locked together with a relative phase of
to a shot with a 1 V drive applied to the confining rings andzero, since th¢é=2 mode is the source of tje=1 mode and
represents the largest response obtained without solitonthe largest growth will occur witlb =0. When the ampli-
Figure 5 refers to a shot with a 0.3 V drive and represents theude of thej =2 mode drops to near zero, they decouple for
smallest response that phase locked. The top plot of each while and the frequencies diverge, only to converge again
data set shows the two mode amplitudes, withbeing the Ilater. Note that it is thg =2 mode that has the much more
dashed line andy; being the solid line. The relative phase variable frequency. We have data sets with smaller initial
®=2¢,— ¢, is shown in the second plot. For both cases itbut those cases take longer to lock than the length of the data
locks near a value ofr/2 where tanp)~c. This implies  record; they are showing signs of approaching the final state,
that yo<2dw. The third plot shows bothfZ andf, mea- such as the two frequencies converging, but have not yet
sured in MHz. Note that the presence ofpaand ¢, can be achieved it by the end of the data.
interpreted as a frequency shift. When the phase locks, these The asymptotic values @b anda?/ a, can be estimated
two frequencies must be equal. The bottom plot in each cadey averaging their values over the portion of the trace where
is &%/ a, as a function of time. This ratio clearly approachesthey are roughly constant. When we do so on all the phase-
a constant value as the phase approaches a constant. The datked shots in our data set we get valuesa@faz: 0.026
in Fig. 5 start at 27us because the amplitude of the2  and®=0.537 with an uncertainty of about-1 in the last
mode was too small before that time to make the data meardigit of both values. If we defineR= ai/az and T
ingful; it was smaller than the noise in the data. =tan(®), we can rearrange Eqel7) and (53) into
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FIG. 6. Fits ofa; and a, to the theoretical model for the large amplitude FIG. 7. Fits ofa; and a, to the theoretical model for the small amplitude
case above. The fits work well except at times wher8 could reasonably  case above. The fits work well throughout the observation period.
be expected to be driven by the modes present.

mode. Note thaty, is not growing as fast as predicted by the

dw 3 R model and that, is not shrinking as fast as predicted during
w_ ) \/?1/-'-2 (58 that time period. This might possibly represent a transfer of
. energy fromea, to a4 through the intermediary of thg=3
ve 3 R mode. It is significant that this deviation occurs at a time
=1 s (590 when both modes are of relatively large amplitude.
1 The fits produced slightly different values gffrom the

Putting the above values f& and T=tan(@®)=—15.9 into  two shots shown here. For Fig. 6 we ggt=1.1x10" s™*

these equations yieldsSw/w;=0.0098 and y./w;=1  andy,=5.4x10*s ™, giving ye/w,=2.3x10 3. For Fig. 7

x 10" 3. Because of the steep slope of t&)(nearm/2 and we get y;=1.8x10* and y,=6.0<10*. This implies

the dependencies ohin the two equations, the uncertainty ye/w;=1.8X 10" 3. If we average the values from our whole

in yo/w; is about a factor of 2, whereas the uncertainty indata set of shots that phase locked we get values,of

dwlwy is about* 3 in the last digit. This value ofw/w; is ~ =1.2£0.3x10* and y,=5.6=0.7x10% yielding ye/w,

consistent with the theoretical value calculated fromFTK =2.3+1.0x10 3. This is consistent with the results of the

mentioned earlier. It is not possible to measute directly ~ asymptotic state analysis given above. Note that these values

from the data because by the time the modes are of measwf 7y, and y, are consistent with the condition that,

able amplitude they are already interacting with the drive and>2y;.

each other. Another interesting question is what happens to the en-
In order to compare the data with the model in moreergy that was initially in thg =2 mode. The small-signal

detail, we refer to Eqg36) and(37). Taking the time deriva- energy density of the mode is proportional to

tive of our ¢4 and «, curves, the data can be fit to these two 5

equatiorjs using_yl and y, as free parameters. Figures 6 and @) ) (60)

7 showa, and a, and the fits. Figure 6 is the large ampli- » '

tude case mentioned previously and Fig. 7 is the small am-

plitude case. The parameters were derived by fitting only thavhere thew,/w part represents the kinetic energy of the

data in the time period from 4@s to 200us, but the fitis mode and the rest is the potential energy. The kinetic energy

plotted using those parameters over the whole time periodnly links to E, because this mode only has motion in the

from O to 200us. The fit matches well for the entire plot in z-direction.

Fig. 7, but in Fig. 6 there are periods before 48 where the The connection between thg's and the mode energy

fit does not work well. The drive is not fully turned off until can be obtained by starting with the mode density. If the

about 18us, so the model cannot be expected to work wellmodes are assumed to have the same radial dependence, call

for that time period. The model also assumes thafj #3 it R(k,r), n; is just

mode is present in the system to couple to dhe- w, term. . )

The deviation from the model during the time period from sin(k;z) odd j modes

18-40 us is possibly explained by coupling to the=3 cogk,z) evenj modes’

E2+ E§(1+

n;=n;R(K,r) (61
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wheren; is the maximum amplitude of thgth mode and 0.010 1 1 1
k,=2mj/L. From our definition ofa;, we know thatq; i ————————— Mode 1 Energy
=n;/ny. Equation(15) provides the link between the poten- ooost+  _____ Mode 2 Energy
tial and the density, so thag; is )
_ _ g Total Energy
_ajngR(kr) [ sink,z) odd j modes 62 £ 0.0086 - .
7 (K2+Kk?) [cogk,z) evenj modeg’ <
% 0.004 -
Given the mode energy density given in E60) above, 3
the total mode energy will be L 0.002 _
a L2 - wg
Wjocf0 zwrdrf_uzdz Ef+EZ 1+; , (63 0.000
0 200
wherea is the wall radius. Writing this in terms of the po- Time (ps)

tential gives

a L/2
Wjocf Zwrdrf dz
0 —L2

sirf(k,z) odd j modes
X
cog(k,z) evenj mode

2 FIG. 8. The energy of the modes in the system for the large amplitude case.
( a; krR’(krr)) The dotted line is the energy in thie- 2 mode, the dashed line is the energy
o o in the j=1 mode and the solid line is the total energy.
(kr+k3)

uS) both plots show the energy decaying at the rate appro-
priate for the mode which is dominant at that time. Before 50
2 " us there is an interesting difference. While Fig. 9 shows
“p exponential decay at the dominant mode’s rate, the high am-
( wZ) plitude casdFig. 8 shows more complicated behavior. The
total energy decays too rapidly between 0 anduland is
cog(k,z) odd j modes too high between 20 and 40s. This is perhaps an indication
X sirf(k,z) evenj modes |’ (64) of energy initially being stored in the=3 mode and par-
tially given back later. The high frequency oscillation seen in

where all common factors that are not mode dependent haw@e total energy before 5As is at about the expected beat
been factored out, since this is a proportionality. frequency betweem,+ w; and ws.

When thez-dependence shown in E(4) is integrated,
it producesL/2 for all modes, since the integral is OVer & | CONCLUSIONS
whole number of half wavelengths. We note thgl/ » is a _ _ _
large number, of order 10, and so we can ignore the 1 relative  In conclusion, we have used the cold fluid equations and
to ws/w% Noting thatk?= wzlvﬁ, wherev,, is the approxi- the averaging method to derive a set of equations to describe
mately mode-independent phase velocity of the wave, thighe nonlinear coupling of the fundamental and second har-
expression simplifies to monic (j=1 andj=2) Trivelpiece—Gould modes in a non-
neutral plasma. These equations match the data well, as long

aJkR(krr)
+ -
(kr+k2)

2 a 2 i . . o .
W — j . ZJ' rdr| (k R’ (.1 ))2+ R(krr)wp) . as the assumptions inherent in the derivation are not violated.
(K2+k%)2Jo vy
(65 0.0014 T T T
The only rem_aining mode. depen(jence in this expres;ion i< I e —— Mode 1 Energy |
the (k?+k2)2 in the denominatolk, is of order 14 andk, is 0.0012
of order 1k, where is the wavelength of the wave in tlze 7 ooot0 |\ T~ Mode 2 Energy
direction. For our experimental configuratidq is much & Total Energy
larger thark, unless the mode number is very high, so kﬁle 2 0.0008 -
term can be removed, making the initial constant mode in-g
dependent. This leads us to the conclusion that g 0.0006 [~ -
W,=Ca?, (66) & 0.0004 -
where the constari includes all the factors that are constant 0.0002 —
between the two modes.
Without determining the constar@, it is possible to 0-00000 1J50 200
study the transfer of energy between the two modes. Figure:
8 and 9 show this for the same two cases shown above. Time (ps)

Figure 8 is the hlgh amp“tUde case. In both plOtS the threie:IG. 9. The energy of the modes in the system for the small amplitude case.

curves are the energy in the=2 mode, the energy in the  The dotted line is the energy in the=2 mode, the dashed line is the energy
=1 mode and the total energy. At late tim@dter about 50 in thej=1 mode and the solid line is the total energy.
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In particular, there is some evidence that fe3 mode  3For a description of this method see, for example, Appendix C of R.
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