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The effect of a tilted magnetic field on the equilibrium of a pure 
electron plasma 

Grant W. Hart 
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 

(Received 12 March 1991; accepted 23 July 1991) 

If the magnetic field in a pure electron plasma containment device is not aligned with the axis 
of the conducting walls, the electrons in the device will accumulate at the ends of the plasma 
where the magnetic field lines come closest to the walls and the electrons bound to the field 
lines can be closest to their image charges. If the plasma is also offset radially from the center 
(as with an I= 1 diocotron mode), then more density will accumulate at one end than the 
other. As the plasma revolves around the center, the electrons will slosh from one end to the 
other, creating a measurable signal. This signal has been experimentally measured and its 
origin verified using a three-dimensional equilibrium code. This signal can be used 
experimentally to align the magnetic field with the conducting walls. 

I. INTRODUCTION 

A cylindrical pure electron plasma trap consists of a 
conducting cylinder that is long compared to its radius 
(typically L /r- 15 ), with a magnetic field applied parallel 
to its axis. The magnetic field confines the electrons in the 
radial direction and large negative potentials at the ends of 
the cylinder confine the electrons axially. It has a long been 
known that aligning the magnetic field with the conducting 
walls in such a trap is very important to minimize the cross- 
field transport of the electrons.’ It is also known that a tilted 
field can launch I = 1, k, #O diocotron waves.’ What has 
not been investigated, however, is how the tilted field affects 
the equilibrium and dynamics of the plasma itself. This is not 
a simple thing to do analytically, because a tilted magnetic 
field invalidates two of the assumptions usually made in the 
theory of pure electron plasmas, i.e., an infinite-length plas- 
ma and cylindrical symmetry. A tilted magnetic field neces- 
sarily implies a finite-length plasma because all magnetic 
field lines eventually run into a wall; it also destroys the 
cylindrical symmetry of the problem. 

A simple physical picture of what occurs with a tilted 
field is that the density will tend to accumulate wherever it 
can be closer to its image charge in the wall, since that is a 
point of lower energy. Since the plasma is strongly magne- 
tized (the gyroradius for a 1 eV electron in such a trap with a 
magnetic field of 700 G is 34 ,um, compared to a plasma 
radius of several centimeters), the electrons are only free to 
adjust their position along the field lines. This means that the 
density will tend to accumulate at the ends of the plasma 
where the field lines bring the electrons closer to the wall. If 
the plasma is also offset from the center of the trap in the 
radial direction by a distance D (as is the case for the I = 1 
diocotron mode), then one end of the plasma will be closer to 
the wall than the other, causing more charge to accumulate 
at that end. As the I = 1 diocotron mode causes the plasma 
to rotate around the center in the azimuthal direction, the 
two ends will switch roles; the previously closer end becom- 
ing the farther end and vice versa. This means the density 
perturbation will also change ends, causing the perturbed 

density to slosh back and forth in the system at the diocotron 
frequency. Since the diocotron frequency is much less than 
the plasma frequency cfd - 25 kHz eP - 15 MHz), the per- 
turbation can be viewed as a quasistatic change in the equi- 
librium rather than as a driven oscillation. 

The experimental consequences of this model will be 
discussed in Sec. II, a three-dimensional (3-D) equilibrium 
calculation to verify the signals seen will be discussed in Sec. 
III, and the conclusions will be presented in Sec. IV. 

II. EXPERIMENTAL MEASUREMENTS 

The experimental apparatus is a cylindrical, pure elec- 
tron plasma trap of the type used by Malmberg et al. at the 
University of California at San Diego.’ It operates in the 
usual fil l-manipulate-dump cycle: The electrons are allowed 
into the trap at one end, they are manipulated according to 
the experimental plan, and then they are dumped out the 
other end. The basic geometry of this type of trap is a cylin- 
drical conducting wall with a magnetic field applied parallel 
to the axis of the cylinder. The electrons are confined radial- 
ly by the magnetic field and axially by negative potentials 
applied to the conducting wall at the ends of the plasma. The 
wall is divided axially into rings for making measurements 
using the image charge of the plasma and for manipulating 
the length of the plasma. Two of the rings are further subdi- 
vided into four azimuthal sectors for measurement and ma- 
nipulation. The arrangement of the rings in the experiment is 
shown in Fig. 1. The confining potentials of - 150 V are 
applied to the two 2.5 cm length rings located at the ends of 
the cylinder. The inner radius of all the rings is 4.0 cm and 
the total distance between the inner edges of the confining 
potential rings is 60 cm, which will roughly be the same 
length as the plasma. The magnetic field of approximately 
700 G is applied along the z direction, the axis of the cylin- 
der. A uniform perpendicular magnetic field of order l-2 G 
can also be applied along the entire length of the trap. 

The way the rings and sectors of the wall are connected 
together determines their sensitivity to different types of per- 
turbations when they are used as image charge detectors. 
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FIG. I. Positioning of the rings that make up the conducting wall of the 
pure electron plasma experiment. The rings marked with an asterisk are 
further segmented into four azimuthal sectors. The length of each ring in 
centimeters is indicated below it. The ccnfmement potentials are appbed to 
the unmarked short rings at the ends. The dashed lines indicate the connec- 
tions for an odd parity I = 0 detector. The dotted lines indicate the ccnnec- 
tions for an even parity I = 0 detector. 

The detectors can be characterized by their sensitivity to 
perturbations of the form e”“, where 0 is the azimuthal angle. 
If a sectored ring is connected together as shown in Fig. 
2(a), it is sensitive primarily to I = 1 perturbations. 
The + in the figure corresponds to the positive side of a dif- 
ferential amplifier and the - corresponds to the negative 
side. It also has some sensitivity to Z  = 3,5,..., perturbations. 
If the ring is connected as shown in Fig. 2 (b ) , it is primarily 
sensitive to I = 2 perturbations with some sensitivity to 
Z  = 6,10 ,..., perturbations. 

The image charge on an unsectored ring is due mainly to 
the charge located directly inside its circumference, with 
some sensitivity to charge that is located up to about a ring 
radius away in the axial direction. If the plasma is long and 
uniform in z, then the image charge per unit length will equal 
the plasma charge per unit length. If the plasma charge den- 
sity is peaked in z, then the wall charge density will be some- 
what less strongly peaked in z. Because an I = 0 perturbation 
has the effect of changing the charge per unit length of the 
plasma, unsectored rings are termed Z = 0 detectors. To de- 
tect the axial variation in the longitudinal line density of the 
plasma, the two 10 cm long rings are connected to the two 

sides of a diEerentia1 amplifier as in Fig. 1. This will detect 
perturbations that h.ave an odd parity in z. To detect an even 
parity signal, the two 10 cm rings are connected to the posi- 
tive side of the differential amplifier and the central 20 cm 
ring to the negative side of the same amplifier as also shown 
in Fig. 1. The two sectored rings (centered at z = 12.5 and 
- 27.5 cm) are configured as I = 1 and Z = 2 detectors, re- 

spectively. 
Because the input impedance of the differential ampli- 

fiers used is quite hi,gh (of order 1 AJO), the measured out- 
put voltage is due to the image charge induced by the plasma 
distributed over the capacitance to ground of the detector 
rings and the coaxial cables connecting the rings to the am- 
plifier. 

The signal observed on the Z = 1 and Z = 2 detectors is 
due to the image charge in a section of wall that is short 
compared to the length of the plasma. Because the detector is 
short and the tilt angle is small, a good approximation is that 
the image charge is the same as for an infinitely long rod of 
charge located at the average radial position of the plasma 
and having the same average charge per unit length. Because 
the ,axial bounce frequency of the electrons is much higher 
than the diocotron frequency Ub/fd - 15) and the tilt angle 
is small, the Z = 1, E:, = 0 diocotron mode can be approxi- 
mated by having the plasma oriented along the tilted mag- 
netic field and moving as a rigid body in a circle about the 
field line that goes through the geometric center of the ma- 
chine (i.e., r = z = II). The motion of the plasma could be 
more complex than this since much of the symmetry has 
been lost, but this assumption is consistent with the data. 
The radius of the circular motion is D. To lowest order, the 
effect of the sloshing density in the 1 = 1 and Z = 2 signals 
can be ignored. 

The geometry ofthis model is shown in Fig. 3. The main 
effect of the tilt on this model is that, at z#O, the center of 
rotation for the plas:ma (the point marked r in the figure) is 
no longer at the geometric center, but rather is offset from 
the center of the machine by a distance p at an angle 13,, 
where p and BP are determined by the assumption that the 
center of rotation is on the magnetic field line that runs 
through r = z = 0. If we think of the tilted magnetic field as 
consisting of an axis; field plus a perpendicular field, 0, is the 
direction of that perpendicular field in the x-y plane. 

Previous workers3*4 have calculated the image charge 
expected on a finite s.ize sector of a cylindrical wall due to an 

(al (b) 

FIG. 2. The connections of a sectored ring to configure it as an 1 = I or Z = 2 
detector. (a) shows the connections for an 2 = 1 detector and (b) shows the 
same for an I = 2 detector. The + and - on the figure indicate ccnnec- 
tions to the + and - sides of a differential amplifier, respectively. 

fit? 
FIG. 3. The geometry of the tilted magnetic field. (a) shows a side view of 
the field and (b) shows an end view at an axial position z. The perpendicular 
component of the magnetic field is oriented at an angel 0, relative to the x 
axis. The distancep is the offset of the magnetic field line that goes through 
r = z = 0 from the geom~:tric center of the machine at position z. The point 
labeled r in the figure is the position of the rotation axis for the plasma. 
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infinitely long rod of charge. The sector has wall radius R, , 
length L,, subtends an azimuthal angle A& and has its center 
located at an angular position I!?, relative to the x axis. The 
rod of charge has charge per unit length ,12, and is offset from 
the center of the cylinder by a distance R at an azimuthal 
angle 19. Their result for the image charge is 

qs = 2A,L, 2 -f- sin 
a=, ?lP e?(iy 

cos[n(B- es,]. 

(1) 
The relationship between R, p, D, 0, and 19, is illustrated in 
Fig. 4. The angle 4 in this figure is the angle from the x 
direction to the rod of charge measured relative to the center 
of rotation. There is no dependence on the radius of the rod 
since the electric field outside of an infinitely long axisym- 
metric rod of charge does not depend on the radial distribu- 
tion of that charge, even if there are nearby conductors.4 

We assume that the plasma revolves about the center of 
rotation in the - 19 direction (the ExB direction for an 
electron plasma with the magnetic field in the - z direction, 
i.e., into the paper in the figure) with frequency w. This im- 
plies that 4 = - wt + &. The relationships that 

RcOse=pcOsep +DCOS~ (2) 
and 

Rsine=psin8,+Dsin4 (3) 

can be used to calculate R n cos [ n (8 - 0, ) 1. The voltage 
contributions from each sector (the charge qs divided by the 
capacitance to ground) can then be added with the appropri- 
ate sign determined by the connection of that sector to the 
differential amplifier as shown in Fig. 2. We take the lowest 
surviving term of each sum and ignore any part that is con- 
stant in time. We then adjust $,-, so that we get a sine term 
with no phase shift for the I = 1 detector. This gives us sig- 
nals of the form 

V, = V, (D/R,)sin(wt), (4) 

FIG. 4. The relationship between R,p, D, 4, 0, and 0,. The plasma revolves 
with angular speed w in the direction indicated around the circle of radius 
D. The size ofp relative to R and D has been greatly exaggerated for clarity. 

D P V. = VA 2 R R sin 
[ ( 

wt - 6, + $ 

+ (~~sin~2~~)] , 

> 

(5) 

where V, and V. are the voltages on the I= 1 and I= 2 
detectors, respectively. Here, VA is a constant that depends 
on il,, L,, and the capacitance to ground. The higher-order 
terms that are neglected in Eq. (4) are at least cubic in prod- 
ucts of D /R, and p/R,. Using numbers typical for the ex- 
periment (see later in this section), the next term is a factor 
of 5 x lo- 3 smaller. Because of the symmetry of the I = 2 
configuration, there are no higher-order terms in Eq. (5) 
until sixth-order in products of D /R, andp/R,. These can 
truly be considered small. Because p is a linear function of z 
withp = 0 at z = 0, the wt term in Eq. (5) will be a function 
ofz, while the 2wt term in Eq. (5) and the wt term in Eq. (4) 
will be independent of z. 

The voltage on the I = 0 detectors should have the form 
v, = v, sin(d + ep - d4), (6) 

because the density perturbation should have a maximum at 
the time when the plasma is closest to the wall. This occurs 
when 4 = t9 = tJP. Applying this and the phase relationship 
between 4 and wt used in Eqs. (4) and (5), we get Eq. (6). 
From the physical model, we can conclude that the constant 
V, should be some function of D, the diocotron radius, since 
a tilted plasma radially centered in the tube should have no 
difference in charge density between the two ends, but one 
that is radially offset should have such a difference. For sim- 
plicity, a linear dependence will be assumed. For similar rea- 
sons, it will be assumed that V, has a linear dependence on 
the tilt angle. Both the 3-D equilibrium calculation and the 
data confirm this linear dependence for small tilts and small 
D/R,. 

The general form of the experimental signals on the 
I = 1, I = 2, and I = 0 detectors would be (assuming that 
only the terms shown above are present) 

V, = VI, sin(M), (7) 

V2 = V,, SinW + 4*,) + V,, sin(2mt + 4d, (8) 

V. = Vo, sin(wf + bol 1, (9) 

if we reference our time relative to V,. The first of the double 
subscripts labels the 1 value of the detector and the second 
labels the multiplier of wt associated with that quantity. 

Experimental data demonstrating these relationships 
are shown in Fig. 5. The I = 1 and I = 0 signals are shown on 
the upper axes, while the I = 2 signal and its Fourier decom- 
position are shown on the lower axes. Here, do1 is - 45”. 
421 = 135”, and 422 = o”, and V,, is the amplitude of the dot- 
ted curve of lower frequency on the lower axis, while V,, is 
the amplitude of the higher-frequency dotted curve. 

Comparing Eqs. (7)-(9) with Eqs. (4)-(6), we see 
that we have redundant information, allowing us to make 
sure that the data are consistent with this picture. We can see 
that 422 = 0 and that we have two equations with which to 
derive t9, from the experimentally measured phase shifts, 

e, = 40, + d4 = 3d4 - 42,, (10) 
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FIG. 5. Data traces showing the amplitude and phase relationships between 
the I = 1, I = 0, and I = 2 signals. The solid curve on the upper axis is the 
I = 1 signal and the dashed curve is the I = 0 signal. The solid curve on the 
lower axis is the I = 2 signal and the dotted lines indicate the Fourier com- 
ponents of the I = 2 signal. The signals have been digitally filtered to remove 
any noise components higher than ten times the fundamental frequency. 
The amplitude of the I = 1 signal is approximately 5 mV. 

which tells us that 

40, + 421 = d-2. 
We can also see that 

(11) 

D/R, = V,,/V,,, (12) 
p/R, = V,,/2V,,. (13) 
In the small tilt angle approximation, 
a = p/z, = 3,/B, (14) 

where a is the angle of tilt for the magnetic field, Z, is the z 
position of the I = 2 detector, and Bl is the magnitude of the 
perpendicular magnetic field. From our previous consider- 
ations of the dependence of V, on D atid a, we would expect 
that 

vii v aa-----a~, 
D/R, VI, (15) 

which, within a multiplicative constant, also gives us the 
magnitude of the perturbation B, . 

Since 0, is the direction of the perpendicular field, we 
can get a measure of both the magnitude and direction of the 
m isalignment between the geometric axis of the machine and 
the magnetic field from this measurement. Either the f = 2 
or I = 0 signal combined with the f = 1 signal is sufficient to 
make this measurement, and both give the same results. 
Some care must be used if either the I = 1 or I = 2 detector is 
located at the end of the plasma. The effective it, will be 
different because the plasma end is near. This changes VA in 
either JZq. (4) or (5). The exact amount depends on the 
plasma density and the size of the confinement potential. 
This effect can be compensated for, however, by measuring 
the I = 1 signal on both detectors (one near the center and 
one near the end) and finding the appropriate factor to mul- 
tiply the signals on the end detector. 

Applying Eqs. ( 12) and ( 13) to the experiment with no 
applied perpendicular magnetic field, the I = 1 and I = 2 sig- 
nals gave D = 5.0 m m  andp = 0.68 m m  atz = 27.5 cm. This 
implies that a = 2.5X 10T3 rad. Both the I = 2 and f = 0 

signals gave a perpendicular field direction of 178” relative to 
the horizontal. The absolute magnitude of the I = 0 signal 
will be discussed in the next section. 

A perpendicu:iar field applied to the experiment will 
change the direction and magnitude of the net perturbation. 
The resultant perturbation will be the vector sum of the ini- 
tial perpendicular lield plus the applied perpendicular field. 
Data taken at different applied fields can be fit to this model. 
Three parameters :ue allowed to be free in performing this 
fit, the magnitude and direction of the initial field, and the 
direction of the applied field. Allowing the parameters to be 
free enables them to bedetermined with more accuracy than 
by a single measurement, It also allows discovery of system- 
atic errors, such as a rotation of the coordinate system, since 
all angles are measured relative to the orientation ofthe 2 = 1 
and f = 2 detectors, which are invisible inside the vacuum 
system. It is of course necessary that the parameters derived 
from this fit agree with other measurements. Figure 6 shows 
data fit in this manner for two cases, one with the external 
field coil aligned with the initial perturbation and one with 
the coil 120” away, The horizontal axis on the plots is the 
current in the correction coil. The vertical axis on the top 
curve is the direction of the net perpendicular field (initial 
plus applied) and the vertical axis on the lower curve is the 
relative magnitude of the perpendicular field derived from 

t 

,:,,,_;1.“1 TG t 

cs3.rrerlt (Amps) 

FIG. 6. The magnitude and phase of the I = 0 and I = 2 signals as a function 
ofthe current in the applied perpendicular magnetic field coil for two differ- 
ent coil orientations. The curves are nonlinear least squares fits of the data 
to the vector sum of a static field plus the applied field. Three parameters are 
allowed tube free in the fit, the magnitude and direction of the static field 
and the direction of the applied field. The top curves show the direction of 
the perturbation and the lower curves show the relative magnitude of the 
perturbation. The solid curves (with data points shown as solid circles) are 
I= 0 data taken with tile coil aligned with the initial perturbation. The 
dashed curves with open circIe points are I = 2 data taken with the coil at an 
angle of 120” relative to t:xe initial perturbation. The error bars shown are 2u 
error bars. 

2990 Phys. Fluids B, Vol. 3, No. 11, November 1991 Grant W. Hart 2990 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to  IP:

128.187.97.20 On: Fri, 14 Mar 2014 04:44:17



the I = 0 or I = 2 signal. The dashed curves are for the case of 
the nonaligned external coil and they are taken from I = 2 
data. The I = 0 data for this case fit equally well to the same 
parameters. The solid curves are for the aligned external coil 
case and show I= 0 data. The derived values for the direc- 
tion and magnitude of the external perturbation agree in the 
two fits. The derived direction of the external coil also agrees 
with external measurements. Figure 6 shows that an external 
coil can cancel the perpendicular field and therefore align 
the magnetic field with the axis of the machine. This is true 
whether the cause of the tilt is an external magnetic field 
(such as the Earth’s field) or a mechanical misalignment. In 
the latter case, the magnitude of the applied perpendicular 
field must vary with the magnitude of the solenoidal field. 
The minimum in the lower solid curve in Fig. 6 corresponds 
to a residual tilt of the order of 10 - 5 rad. The good fit of both 
this data and the data taken when the applied field is not 
aligned with the initial field shows that the underlying model 
of the vector addition of fields is appropriate and that the 
I = 0 signal depends linearly on the tilt angle. 

III. 3-D EQUILIBRIUM CALCULATION 
The model proposed here assumes that the frequency of 

the diocotron mode is much less than the plasma frequency 
so that the density will respond quasistatically as the plasma 
rotates around in the tube. An equilibrium calculation is 
therefore sufficient to determine the response of the density 
in this approximation. This calculation must necessarily be 
three dimensional because there is no cylindrical symmetry 
in the problem. 

In a highly magnetized plasma, the motion perpendicu- 
lar to the magnetic field is given by the EXB drift of the 
guiding centers. In the direction parallel to the magnetic 
field, the equilibrium equation for a plasma with pressure 
and flow is the parallel component of 

nmv*Vv = nqE - VP. (16) 
In the tilted case, a linear analysis of the equilibrium 

shows that, if the v*Vv term is not zero, it is very small com- 
pared to the other terms. This leaves us with the Boltzmann 
condition along the magnetic field that 

n = 4$-9+‘kT, (17) 
where 4 is the electrostatic potential and T is the plasma 
temperature. We put the Boltzmann condition into Pois- 
son’s equation and get 

V’$ = - (q/Eo)n,e-9+‘kT. (18) 
Equation ( 17) is applied only along the field, since that is the 
only direction that the electrons can freely move. True ther- 
mal equilibrium’ would require that a modified form of Eq. 
( 18) be satisfied throughout the plasma with n, constant 
everywhere. This would therefore specify both the radial 
profile of the plasma as well as its z dependence. That condi- 
tion does not apply to this case, however, because the per- 
pendicular equilibration time is much longer than the 100 
msec duration of the experiment. Under these conditions, 
the constant n, in Eq. ( 18) is constant along the field lines, 
but can vary arbitrarily perpendicular to them. The perpen- 
dicular dependence is determined in the calculation by re- 

quiring that the total charge (integrated along the field) at a 
given position be equal to the experimentally measured val- 
ue. 

The solution to Eq. ( 18) under these conditions using 
the known boundary conditions of the experiment (specifi- 
cally the confinement potentials applied at the walls) consti- 
tutes the solution to the equilibrium problem. Equation ( 18) 
can be solved numerically using the simultaneous overrelax- 
ation (SOR) algorithm.6 To speed convergence of the solu- 
tion, Eq. ( 18) is slightly modified by taking the linear part of 
n as a function of 4 [i.e., (&/+)#I and subtracting the 
term associated with it from both sides of the equation before 
flnite differencing it. Doing so gives 

( v-~&)4= -?(I +$), (19) 

where n is given by Eq. ( 17). This gives a mathematically 
equivalent equation with very different numerical proper- 
ties. The solution of Eq. ( 19) converges much more rapidly 
and is numerically stable over a wider parameter range than 
a direct solution of IQ. ( 18). 

The Poisson solver used to solve Eq. ( 19) is the two- 
dimensional Poisson solver used by Spencer7 in recent work, 
extended in thezdirection to make a 3-D Poisson solver with 
a cylindrical boundary, but using Cartesian coordinates. The 
density is assumed to be circularly symmetric about the cen- 
ter-of-mass of the plasma in the x-y plane. This assumption is 
not really correct for plasmas that are offset from the geo- 
metrical center of the machine,* but for offsets and plasma 
radii typical of the data in this paper (D = 5 mm, rp = 2 
cm), the quadrupole moment of the distortion of the plasma 
density is of the order of 1%. This would correspond to an 
increase of the plasma size in the 8 direction of about 1% 
compared to that in the r direction. Since the calculation 
used a 50 X 50 grid in the x-y plane and the plasma radius 
was about half of the wall radius, this asymmetry corre- 
sponds to a difference of about one-quarter of a grid space. 
This should have an insignificant effect on the total charge 
integrated over x and y, which is the quantity of interest. 

Figure 7 shows contours of perturbed density and per- 
turbed potential in a case that is both tilted and shifted. The 
plot is a cross section in the x = 0 plane. The shift is 5 mm 
(D/R, = 0.125) and the tilt angle is 2.5~ lop3 rad. Both 
the shift and the tilt are in the positive y direction, which 
should give the maximum perturbation for both the density 
and potential. The confinement potentials are applied on the 
2.5 cm rings at the ends of the machine, producing a plasma 
that is roughly 60 cm long. The perturbations are calculated 
relative to an equilibrium that is shifted by 5 mm and not 
tilted, so this figure shows the effects of the tilt on the equilib- 
rium. The perturbed density has two parts, one piece due to 
the rigid motion of the unperturbed density QVn, where g is 
the vector corresponding to the rigid tilt motion, and the 
other due to the attraction of the electrons to the wall. The 
eVn piece has been subtracted out of the density plot in Fig. 
7. For small angles a, the QVn piece contributes no extra 
charge per unit length as a function of z, since it just corre- 
sponds to a small radial displacement of the density. The 
other piece, the change in density due to being closer to the 
wall at one end than the other, is the one that produces a 
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FIG. 7. Contours of perturbed density and perturbed potential for a plasma 
shifted by 5 mm and tilted by 2 x lo- 3 rad, both in they direction. These 
plot crosssections in the x = 0 plane. The perturbation is relative to a pias- 
ma shifted by 5 mm but untilted. The top plot is the perturbed potential and 
the bottom is the perturbed density. The &Vn part of the perturbed density 
has been subtracted out. The shaded regions in both piots indicate where the 
perturbation is negative. 

change in the charge per unit length. In this case, the two 
pieces are of roughly equal magnitudes. It can be seen that 
the density is much more peaked in~z than the potential be- 
cause of the exponential dependence of the density on the 
potential. The positive density in the upper right-hand quad- 
rant has a much larger magnitude than the negative per- 
turbed density at the same z position, which gives a net posi- 
tive density at that end. The opposite will be true at the other 
end, which will have a net negative density. 

A Fourier analysis of the perturbed density relative to 
the tilted axis shows the density perturbation to be mostly 
I = 1 in nature. The I = 0 and i = 2 contributions are an 
order of magnitude smaller, and the other contributions are 
of the same order or smaller than the error in the calculation. 
The 2 = 1 component is typically about 2% of the peak un- 
perturbed density. 

Figure 8 shows the perturbed density integrated over x 
andy to become the linear charge density as a function ofz. It 
also shows the perturbed image charge density in the wall, 
calculated from the electric field, as a function ofz. The total 
perturbed charge induced in the wall (of one sign) agrees 
with the total perturbed charge in the plasma to within the 
accuracy of this calculation (a relative error of about lo- * 
in the perturbed quantities). The wall image charge density 
can be integrated over the positions of the I = 0 detector 
rings (shown as dark bars on the axis of the figure) to give 
the responses of the detectors to this perturbation. 

The results of these calculations show that, to within the 
accuracy of the calculation, the f = 0 signal is linear in 
D/R,, as expected, up to valuesof at least 0.125. The mag- 
nitude of the experimentally measured odd parity I = 0 sig- 
nal was 1.1 ( + 0.1) X lo- I2 C, which agrees with the calcu- 
lated value of 1.17 x IO- I2 C, within theexperimental error, 
The calculation shows a time-varying, even-parity I = 0 sig- 
nal that is more than two orders of magnitude smaller than 
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FIG. 8. The perturbed Line charge density of the plasma and the wall as a 
function of z. The bars on the horizontal axis represent the positions of the 
I = 0 detector rings. 

the odd parity signal, and, indeed, no such signal was ob- 
served experimentally. 

It is more difficult to calculate the expected I = 1 and 
I = 2 signals, since ,it is necessary to use a sequence of equili- 
bria as the plasma revolves about the center of the machine. 
Doing so, however, gives signals that agree (within the accu- 
racy of the calculat:lon ) with Eqs. (4 ) and ( 5 ) . The calcula- 
tion also finds a small 3w signal on the I = 2 detector and a 
20 signal on the I= 1 detector. These unexpected signals are 
due to the fact that the sloshing density shows up in the 
coefficient V’ in EQs. (4) and (5). These signals are about 
two orders of magnitude smaller than the other signals on 
the detectors, which makes them similar in magnitude to the 
first neglected term in Fq. (4). 

Using a simple model of the diocotron mode as a rigid 
rod of charge aligned with the magnetic field, moving with 
the (l/Q)FXB drift motion, where F is the total electric 
force on the rod and Q is the charge of the rod, the expected 
frequency shift of the diocotron mode due to the tilted field 
can be estimated. The change in frequency is due to the fact 
that the axially averaged radial electric fields in the tilted 
plasma are slightly different than those in an untilted plas- 
ma. This calculation shows a frequency increase of about 1% 
for the case shown above, which corresponds to slightly 
higher fields in the tilted plasma. This is several times 
smaller than the shot-to-shot variation of the experiment, 
and therefore could not be observed. 

IV. CONCLUSION8 

A tilted magnetic field causes small but measurable 
changes in the equilibrium and dynamics of a pure electron 
plasma. Because of the asymmetry between the two ends of 
the plasma, a small amount of the density sloshes back and 
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forth as the plasma revolves azimuthally inside the machine. 
Because the diocotron mode frequency (25 kHz) is much 
less than the plasma frequency ( 15 MHz), the density slosh- 
ing can be considered as a quasistatic modification of the 
equilibrium, rather than as a driven plasma mode. A 3-D 
equilibrium calculation of the plasma verifies this model. It 
also predicts a small ( 1% ) increase in the frequency of the 
diocotron mode, but this effect was too small to be seen ex- 
perimentally. 

The presence of this I = 0 signal is useful experimental- 
ly, because it allows a single measurement to determine the 
magnitude and direction of any magnetic field misalign- 
ment. This allows a straightforward correction of that misa- 
lignment. 
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