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We consider the orbits of particles with spin in the Schwarzschild spacetime. Using the Papapetrou-

Dixon equations of motion for spinning particles, we solve for the orbits and focus on those that exhibit

chaos using both Poincaré maps and Lyapunov exponents. In particular, we develop a method for

comparing the Lyapunov exponents of chaotic orbits. We find chaotic orbits for smaller spin values

than previously thought and find chaotic orbits with astrophysically relevant spin values.
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I. INTRODUCTION

A significant amount of effort has gone into gravitational
wave detection over the last few decades. Many facilities,
including LIGO, VIRGO, and GEO are dedicated to their
detection and analysis. In addition, considerable effort has
been made in modeling possible sources for gravitational
waves. These include compact binaries with masses on the
order of a few solar masses. These detectors are particu-
larly well tuned to such sources. However, the proposed
space based gravitational wave detector, LISA, is better
tuned to detecting signals such as those coming from
compact objects orbiting supermassive black holes.

Such extreme mass-ratio inspirals [1] have been studied
extensively in recent years. In particular, in the test particle
limit, the dynamics of these systems, together with the
inclusion of spin, have been studied in a number of works
[2–6]. A subset of these studies has considered the question
of chaotic orbits in both the Schwarzschild [4] and Kerr
[5,6] spacetimes. This work has shown that chaotic orbits
are possible in these systems and are a consequence of the
spin orbit coupling. However, these same studies suggest
that chaotic orbits exist only when the orbiting particle has
an unphysically large amount of spin. Nonetheless, the
parameter space in which to search for chaos in these
systems is large and has not been fully explored. It has
been shown for both the Schwarzschild [7] and Kerr [8]
spacetimes that chaotic orbits change the character of the
energy spectrum of their gravitational waveform. Because
chaotic orbits might also lead to chaotic gravitational wave
signals, and such signals may be more difficult to detect
[9], the more we can say about these systems the better.

We consider the orbits of spinning test particles in
Schwarzschild. Our approach to studying the possibility
of chaos in this system is to use Poincaré sections as an
indicator of chaos similar to Suzuki and Maeda [4].
Further, we use and extend a somewhat more sophisticated
method of calculating the Lyapunov exponent of these
orbits as employed by Hartl [5,6]. As part of this, we

present a method for extracting an improved prediction
of the Lyapunov exponent which allows us to distinguish
more carefully small Lyapunov exponents from zero. This
analysis reveals some new classes of chaotic orbits. These
chaotic orbits include a previously unsuspected class of
orbits that have spins for the inspiraling member that may
be obtainable by astrophysical systems.
The remainder of the paper is constructed as follows. We

describe the equations of motion next together with our
choice of supplementary condition. In Secs. III and IV, we
describe our methods for determining the chaos of various
orbits, in Sec. V we present the results of our integrations,
and conclude in Sec. VI.

II. THE PAPAPETROU-DIXON EQUATIONS

To model a spinning test particle we use the equations of
motion of Papapetrou [10] and Dixon [11]. These equa-
tions describe a spinning particle in the pole-dipole ap-
proximation. That is to say, they describe the particle as a
mass monopole and spin dipole. These equations general-
ize geodesic motion to a spinning particle and are written
in terms of the momentum, Pa, and antisymmetric spin
tensor, Sab, of the particle. They can be written as

VcrcP
a ¼ �1

2R
a
bcdV

bScd; (1)

VcrcS
ab ¼ PaVb � PbVa; (2)

where Va is the particle’s velocity and, again, Sab defines
the spin of the particle. As can be seen from Eq. (2) the
momentum, Pa, is not simply a rescaling of the velocity
vector. Indeed, the momentum is defined as

Pa ¼ �Va � VbV
crcS

ab; (3)

where we will take � as the mass of our spinning test
particle.
As shown by Semerák [3] this definition of the momen-

tum can be combined with Eq. (2) to solve for Va is terms
of the momentum and spin of the particle

Va ¼ �

�PbPb

�
Pa þ 2SabRbcdeP

cSde

RbcdeS
bcSde � 4PbPb

�
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As they stand, the equations of motions are underdeter-
mined. This is a well-known issue with these equations and
several supplementary conditions have been suggested in
order to address this problem [10–12]. In this work, we
choose to use the supplementary condition SabPa ¼ 0.
This condition, in effect, picks out a center of mass frame
for the particle. (For more discussion of this and other
possible supplementary conditions see [12,13].)
Additionally, this supplementary condition implies that
the spin tensor, Sab, has at most three independent compo-
nents. As a result, it is possible to reformulate the equations
of motion in terms of a spin vector, Sa, which we will do
below.

As our background spacetime, we will choose spheri-
cally symmetric Schwarzschild spacetime. This provides a
number of conserved quantities with which to calculate test
particle orbits, even with the assumed spin. In particular, it
can be shown that for a Killing vector Xa the quantity

C ¼ XaPa þ 1
2S

bcrbXc (5)

is a constant of the motion. As a result, we can define the
following two constants of the motion:

E ¼ Pt þ m

r2
Str; (6)

L ¼ P� � r sin�ðsin�S�r þ r cos�S��Þ: (7)

In addition to these constants of the motion, the total
spin of the particle is also conserved. This quantity, here-
after S, is defined as the positive root of

S2 ¼ 1
2SabS

ab: (8)

In order to understand the physical constraints on S,
recall that lengths are measured in terms of the mass, m,
of the central object of the spacetime and the momentum of
the orbiting particle is measured in terms of its mass, �.
We might then think of S as being a unitless number
multiplying m�. Said another way, Sm� ¼ l, where l is
the spin angular momentum of the particle. Note that the
Papapetrou equations are valid in the test particle approxi-
mation and therefore only hold for � � m. Because of
this, the physical spin of the test particle must be much
smaller than 1 in these units. This can be seen perhaps most
clearly by considering the spinning test particle to be an
extremal Kerr black hole orbiting around a supermassive
black hole. For such an extremal black hole, its angular
momentum is l ¼ �2. This leads to a total spin of

S ¼ l

m�
¼ �2

m�
¼ �

m
� 1: (9)

Using this argument, Hartl [5] estimates physical spins as
being between about 10�4 and 10�6 in S.

For numerical simplicity we follow Suzuki and Maeda
[4] and Hartl [5,6] and modify the equation of motion by
working with the spin vector. This quantity can be defined

by

Sa ¼ 1
2"abcdP

bScd; (10)

where "abcd is the totally antisymmetric tensor density. On
making the following convenient definitions

R�
ab

cd ¼ 1
2Rabef"

efcd; (11)

�R�abcd ¼ 1
2"

efabR�
ef

cd; (12)

the equations of motion [14] become

VcrcPa ¼ R�
ab

cdVbPcSd; (13)

VcrcSa ¼ PaðR�b
c
deSbV

cPdSeÞ: (14)

With this substitution, the velocity and constants of the
motion are now defined by

Va ¼ �ðPa � �R�abcdSbPcSdÞ
�R�bcdeSbPcSdPe � PbPb

; (15)

E ¼ Pt þ m

r4 sin�
ðP�S� � P�S�Þ; (16)

L ¼ P� þ 1

r
½Ptðr cos�Sr � sin�S�Þ�

þ 1

r
½Stðsin�P� � r cos�PrÞ�; (17)

S2 ¼ SaSa: (18)

Initial conditions

In order to characterize each orbit in as simple a way as
possible, we make convenient choices in our initial con-
ditions, working at all times with Schwarzschild coordi-
nates. As every bound orbit will have turning points at
which the radial velocity will be zero, we choose to begin
all orbits with Pr ¼ 0. Also, because the spacetime is
spherically symmetric we can set P� ¼ 0 and begin motion
in the equatorial plane.
Under these conditions, our normalization, PaPa ¼ �1,

and supplementary conditions, SaPa ¼ 0, reduce to

P2
t ¼ r� 2m

r
þ r� 2m

r3
P2
� (19)

and

St ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 2m

rðr2 þ P2
�Þ

s
P�S�
r

; (20)

respectively. These relations allow us to express the total
spin as

S2 ¼ r� 2m

r
S2r þ 1

r2
S2� þ

1

P2
� þ r2

S2�: (21)
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Making the following definitions

tan� ¼ S�
Sr

; (22)

tan� ¼ � 1

S�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2r þ S2�

q
(23)

allows us to parametrize the spin vector components in
terms of the angles � and �. These angles are analogous to
the � and � of spherical polar coordinates, respectively,
and have their origin at the test particle’s center of mass.

With these definitions we can specify an orbit by five
initial conditions. The determining quantities are r, P�, S,

�, and �. These correspond to the coordinate distance of
the test particle from the central mass, its momentum in the
� direction, and the magnitude and orientation of its spin.

III. MEASURING CHAOS

In order to gain confidence in deciding whether a par-
ticular orbit is chaotic or not we use two tests for chaos.
The first is to check for the breaking up of the KAM tori in
a Poincaré section of the phase space [15,16]. Following
Suzuki we choose the section defined by the r� Pr plane
in the phase space, where r is the coordinate distance the
test particle is from the center of the central mass and Pr is
the conjugate momentum. In the case where the particle
has no spin, typical sections look like ovals as in Fig. 1. A
closer look at the these plots (Fig. 2) shows that the phase
space trajectories are confined to the surface of a torus.

When considering sections for spinning test particle
orbits we look for this clean oval to break up as in Fig. 3.
A closer look at the bands (Fig. 4) clearly shows phase
space trajectories have left the torus surface. The orbits that

produce sections like this are close in to the black hole and
are in agreement with the sections produced by [4].
The second method we use to look for chaos in this

system is to calculate Lyapunov exponents. If one defines
the distance D between two phase space trajectories as

DðtÞ ¼ d0e
�t; (24)

where d0 is the initial separation between the two trajecto-
ries, then � is defined to be the Lyapunov exponent. When
� is greater than zero the system is said to be chaotic. In
Hamiltonian systems, of which the Papapetrou equations
are an example, the Lyapunov exponent can never be less
than zero. A negative exponent would indicate some kind
of attractor in the phase space, but these do not appear in
conservative systems.

FIG. 1 (color online). Three Poincaré sections of the phase
space trajectories of nonchaotic particle orbits. Each has L ¼ 3:6
and from the innermost orbit out E1 ¼ 0:9499, E2 ¼ 0:9511, and
E3 ¼ 0:9534. Notice that the trajectories are confined to the
surfaces of the tori which intersect the section.

FIG. 2 (color online). A close-up view of the orbits from
Fig. 1. Notice that this zoomed in view continues to show the
trajectories are constrained to the tori.

FIG. 3 (color online). Three Poincaré sections of the phase
space trajectories of chaotic particle orbits. From the inside orbit
out the orbits have spin values S1 ¼ 1:515, S2 ¼ 1:581, and
S3 ¼ 1:627. Notice that the trajectories stay close to the surface
of the tori similar to Fig. 1, but do not have the thinly defined
surface.
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In practice, calculating � is a challenge. The Jacobian
method used by Hartl has the advantage of following just
one phase space trajectory. The basic idea is that we can
track the growth of a vector in the tangent space of the
trajectory to compute the Lyapunov exponent (for more
detail see [5,6]). The equation that dictates the evolution of
this vector is

d�

d�
¼ Df � �; (25)

where � is a vector in the tangent space, and Df is the
Jacobian matrix of the system.

To understand this method, consider a high dimensional
ellipsoid in the phase space defined by some set of initial
conditions. As the system evolves away from these initial
conditions, this ellipsoid will becomewarped. However, by
virtue of Liouville’s theorem, the phase space volume of
this ellipsoid will be conserved. As a result, any axis of the
ellipsoid that corresponds to a chaotic coordinate will
stretch. This will necessitate that at least one other axis
will contract. The system can have more than one chaotic
coordinate, but for each chaotic coordinate there must be a
nonchaotic coordinate whose value converges at the same
rate as the chaotic coordinate’s value diverges. In other
words, for every Lyapunov exponent that corresponds to a
chaotic axis there is an exponent with the same magnitude
but opposite sign.

The Jacobian method finds the largest Lyapunov expo-
nent by evolving a vector, which is defined by the initial
conditions of the system, in the tangent space of the phase
space. As the system evolves, this vector lines up with the
direction of greatest stretching. By considering the magni-
tude of this vector as a function of the proper time �, we
can then define the largest Lyapunov exponent of the
system by

� ¼ lim
�!1

�
1

�
ln

� j�j
j�0j

��
; (26)

where �0 denotes the initial tangent vector. As our numeri-
cal integrations cannot continue indefinitely, wewill, in our
calculations, refer to the Lyapunov exponent as a function
of �,

�ð�Þ ¼ lnðj�jÞ
�

; (27)

where we have taken j�0j ¼ 1.
For this last analysis we have denoted the magnitude of a

vector � by j�j. Recall that this vector lives in the tangent
space to the phase space of our physical system. This leads
to uncertainty about what norm to use when calculating a
vector magnitude. Eckmann [17] shows that when calcu-
lating Lyapunov exponents, different norms may lead to
different values, but the sign of the exponent will not be
affected. With this in mind, we use the Euclidean norm for
simplicity when calculating vector magnitudes.
This method can be extended to find the Lyapunov

exponent corresponding to each axis of the stretching
ellipsoid. Hartl implements this extended method [5] in
some cases and shows that the Lyapunov exponents do
come in opposite sign pairs for the spinning particle sys-
tem. His results also indicate that the direction of greatest
stretching is not in the direction of any one coordinate or
conjugate momentum. Thus, when we find the largest
exponent we do not expect it to correspond to a particular
coordinate or momentum.

IV. METHOD FOR COMPARING LYAPUNOV
EXPONENTS

Because the Jacobian method requires the Lyapunov
exponent to be defined in terms of a limit we can in practice
only approximate its value. In previous work, a particular
orbit was allowed to evolve for some set amount of time
and with the corresponding value of �ð�Þ taken as the
approximate exponent.
A problem that arises with this method is that different

orbits converge to their Lyapunov exponents at different
rates. In particular, the Lyapunov exponent for the case
S ¼ 0 approaches zero much more slowly than for any
other similar orbit with small, nonzero spin. To address this
issue, we have developed a different method which both
reduces computation time and predicts the Lyapunov
exponent.
Consider the plots of �ð�Þ as shown in Figs. 5 and 6.

These are typical examples of how �ð�Þ converges for a
zero spin orbit and a nonzero spin orbit, respectively.
Notice that the functions are modeled well by the fit

fð�Þ ¼ a1 þ a2
�a3

; (28)

where a1, a2, and a3 are constants that are varied until the
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FIG. 4 (color online). A close-up view of the orbits from
Fig. 3. Notice that this zoomed in view continues to show the
trajectories are not constrained to the tori. Compare to Fig. 2.
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root mean square error between the fit and �ð�Þ is mini-
mized. More explicitly, the constants are varied to mini-
mize

err ð�Þ ¼ XN
i

�
a1 þ a2

�a3i
� �ð�iÞ

�
2
: (29)

It is then easy to define the rms error for the fit as

rms ¼
ffiffiffiffiffiffi
err

N

r
: (30)

The fitting function sets the Lyapunov exponent of the
system to be a1. Because our system is conservative we
cannot have negative Lyapunov exponents. However, in the
orbit corresponding to Fig. 5 the root mean square error of

the fit is 1:23� 10�5 while the calculated exponent is
nonzero and just a bit outside this error range. Based on
other results, such as Fig. 6, as well as our method’s
consistency with the results of [4,5], we are led to believe
that the fit slightly underestimates the Lyapunov exponent.
Another example is the orbit corresponding to Fig. 6 in
which the rms error is 6:1� 10�5 keeping zero well out-
side the error bars of the fit.
This model of the Lyapunov function also gives a mea-

sure of how quickly the exponent converges. In working
with this model we found that orbits with large spin had
Lyapunov functions that, in general, converged faster than
those with small spin. It is possible that in previous work
similar Lyapunov exponents with slower convergence rates
might have been discounted as numerical error. The dif-
ference in convergence rates between the zero point and
these small spin exponents is much smaller than the dif-
ference between the zero point and the high spin expo-
nents. If these differing rates of convergence are not taken
into account, terminating each orbit after some predeter-
mined time seems natural. Unfortunately, our experience
shows that this can inflate the value of the Lyapunov
exponent in the zero spin case. Because that case has the
slowest rate of convergence, it can then be difficult to
distinguish it from cases with nonzero spin and nonzero
Lyapunov exponents.
We avoid this problem by comparing Lyapunov expo-

nents once a uniform degree of convergence has been
reached rather than a particular time. While evolving the
system we fit the Lyaponv function to Eq. (28) and con-
tinue the evolution until the derivative of the fitting func-
tion reaches a predefined tolerance close to zero. When the
derivative of the fit has become sufficiently small, specifi-
cally when the value is on the order of 10�8, we say that the
function has converged. In this way we compare exponents
which have all converged the same amount rather than
comparing by the overall time of evolution. We find that
this method reveals more of the chaotic nature of these
orbits.
Further, we can use the fit curve to predict the Lyapunov

exponent for a given orbit without integrating for infinite
time. These predicted values, together with an estimate of
their error, give us confidence that the true exponent is
within the corresponding range of values and, more im-
portantly, provide a clear differentiation between positive
and zero values.

V. RESULTS

A primary motivation for our work is to determine
whether or not astrophysically relevant spins can give
rise to chaotic orbits. We first consider orbits similar to
those considered by Suzuki and Maeda and then look at
other types of orbits. Because the orbits considered by
Suzuki and Maeda are confined to high curvature regions,
the additional orbital types we consider are those that
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x 104τ

λ 
(τ
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FIG. 5 (color online). We see the jagged Lyapunov function
converging to zero for an orbit with S ¼ 0. We also plot the
curve fit to the data. This orbit begins at r ¼ 6m with P� ¼ 3:6.

The predicted Lyapunov exponent for this orbit is�1:68� 10�5

with an rms error of 1:23� 10�5.
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FIG. 6 (color online). We see the jagged Lyapunov function
converging to a nonzero value for an orbit with S ¼ 0:5. The
initial conditions are r ¼ 6m, P� ¼ 3:6, � ¼ �

4 , and � ¼ �
4 . We

also plot the curve fit to the data. The predicted Lyapunov
exponent is 3:787� 10�4 with 0 well outside the rms error,
6:1� 10�5, of the fit.
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remain in regions of low curvature and orbits that traverse
both high and low curvature regions. For each orbital type
we begin with a set of initial conditions with S ¼ 0 and
calculate the Lyapunov exponent. We then increase the
magnitude of the spin and plot the Lyapunov exponents
for each spin.

A. High curvature orbits

We first consider orbits similar to those used by Suzuki
and Maeda [4]. These orbits remain close to the center of
the spacetime throughout the system’s evolution. This
confines the orbits to regions of high curvature which
allows the coupling between the curvature and spin to
have a large effect on the particle’s motion.

One difference between the orbits we consider and those
used by Suzuki and Maeda is the orbital angular momen-
tum of the spinning particle. They consider orbits with L ¼
4:0 whereas we begin our analysis with orbits having
angular momentum of L ¼ 3:6. Our initial values for
energy E ¼ 0:9522 and an initial radius of r ¼ 6m are
chosen to make the orbit close to circular. We also keep
track of the initial conditions in spin that produce these
orbits. In particular, we consider what spin magnitudes
produce chaotic orbits and how the spin vector’s initial
orientation affects the Lyapunov exponents. In the first case
the spin vector’s initial orientation is given by � ¼ �

4 and

� ¼ �
4 .

As Fig. 7 shows, the Lyapunov values for this orbit can
be put into one of two groups. From the maximal spin value
of one down to about S ¼ 0:5 there seems to be a well-
defined trend with nonzero Lyapunov exponents and cor-
responding chaotic orbits. These values are in agreement

with those reported by Suzuki and Maeda as well as Hartl.
From S ¼ 0:5 down to zero spin the orbits are not chaotic.
Again, we find excellent agreement with [4,6].
The initial spin vector orientation can affect the magni-

tude of the Lyapunov exponent. As an example, if we
change the spin orientation but otherwise keep the same
initial conditions as before, the particle’s behavior changes.
When � ¼ �, the spin is pointed down perpendicular to
the equatorial plane, and the spin orbit coupling causes the
particle to be pulled in closer to the center of the spacetime.
We find that when the spin angular momentum and orbital
angular momentum are parallel there is a repulsive spin
orbit interaction and when the momenta are antiparallel
there is an attractive interaction. These results agree with
Wald’s [18] analysis of similar systems. When this inter-
action becomes strong enough the particle will no longer
exhibit a bound orbit, and is captured by the black hole. In
Fig. 8 we see the Lyapunov exponent values for increasing
spin values. Notice that after S � 0:3 there are no data.
These data points are not included because for S > 0:3 the
particle is captured by the black hole.
Notice also that the exponents in Fig. 8 appear to be

nonzero below S ¼ 0:05. Since the interaction between the
spin angular momentum and the orbital angular momen-
tum pulls the particle in closer, the particle traverses higher
curvature regions of the spacetime than the orbits described
by Fig. 7. This spin orientation is the only difference
between the two cases. Thus, on comparing Figs. 7 and 8
we can see that the orientation of the spin can have a
dramatic effect on the dynamics of the particle.
In Fig. 9 we zoom in on the small spin value orbits.

These data clearly show positive Lyapunov exponents for
spins as small as S � 0:015. This lower bound in spin is
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FIG. 7 (color online). These Lyapunov exponents are given by
the constant term in the curve fitting model, Eq. (28), with root
mean square error bars. The initial spin orientation is � ¼ �

4 and

� ¼ �
4 and constants of the motion for the spinless case are L ¼

3:6 and E ¼ 0:9522. Compare with Figs. 8 and 10. Note that the
orbits transition from nonchaotic to chaotic around a spin of S ¼
0:5.
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FIG. 8 (color online). These Lyapunov exponents are given by
the constant value in the curve fitting model with the root mean
square value providing the error bars. The initial spin orientation
is � ¼ � and constants of the motion for the spinless case are
L ¼ 3:6 and E ¼ 0:9522. All spin values higher than S ¼ 0:3
cause the particle to cross the event horizon. Note that lower spin
values give exponents of the same order of magnitude as those in
Fig. 7.

CHRIS VERHAAREN AND ERIC W. HIRSCHMANN PHYSICAL REVIEW D 81, 124034 (2010)

124034-6



considerably less than the bounds given in [4,6]. Notice
that exponents in Fig. 9 are small in comparison to Fig. 7.
Using our particular fitting method here to predict the
Lyapunov exponent was crucial in being able to distinguish
these small exponents from zero.

When we set the initial spin orientation to � ¼ 0, as in
Fig. 10, the particle is pushed farther out from the center
instead of pulled closer in. In this case the spin vector and
orbital angular momentum vector are parallel. In this case
the particle is never captured by the black hole. Instead the
particle’s orbit stays in areas of the spacetime with slightly
less curvature. Also, the Lyapunov exponents stay at the

same order of magnitude as the smaller values from Fig. 7
for all spin values, but unlike Fig. 7 no nonzero spins
correspond to a zero exponent. In Fig. 11 we look more
closely at the small spin values for the same orbit. We
notice the monotonicity in the predicted exponent values,
and a nonzero exponent for spin values as low as S ¼ 0:01.
We also consider orbits which remain in areas of low

curvature. Choosing nearly circular orbits at radii of 100m
and calculating the Lyapunov exponents as above, we find
such orbits to have a uniformly zero Lyapunov exponent
for every spin orientation which we consider above. When
the radii is sufficiently reduced, r � 19m, positive expo-
nents are again obtained. These positive exponents first
occur for very large spin, but as the radius continues to
decrease, less spin is required to achieve a chaotic orbit.

B. Knife edge orbits

Knife edge orbits are some of the more interesting test
particle trajectories allowed in black hole spacetimes.
These orbits have large scale precession and execute small
tight loops around the center of the system. Their dynamics
can be understood by considering the effective potential in
the Schwarzschild spacetime. For large enough angular
momentum this potential has a sharp peak close to the
center of the spacetime. These ‘‘knife edge’’ potentials
are what give these orbits their particular dynamics [19].
(For more discussion of these orbits see [20].) These orbits
are also known as ‘‘zoom whirl’’ orbits, the name being
used to describe their behavior, namely, they zoom in from
large radius and whirl about the center. (For a comprehen-
sive cataloging of these orbits see [21]).
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FIG. 9 (color online). These Lyapunov exponents correspond
to the small spin case of Fig. 8 with � ¼ �. Note the mono-
tonically decreasing, yet still positive, values of the exponent for
decreasing spin values. This trend continues for spins as low as
S ¼ 0:015. However, this trend would appear to be lost for the
very smallest values of spin. Indeed, we feel confident to treat
these values as zero with correspondingly nonchaotic orbits.
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FIG. 10 (color online). These Lyapunov exponents are given
by the constant value in the curve fitting model with the root
mean square value providing the error bars. The initial spin
orientation is � ¼ 0 and constants of the motion for the spinless
case are L ¼ 3:6 and E ¼ 0:9522. No large exponents (compare
to Fig. 7) appear in this configuration.
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FIG. 11 (color online). These Lyapunov exponents are given
by the constant value in the curve fitting model with the root
mean square providing the error bars. The initial spin orientation
is � ¼ 0 and constants of the motion for the spinless case are
L ¼ 3:6 and E ¼ 0:9522. Note that unlike Fig. 7 the exponents
all appear to be nonzero. No large exponents (compare to Fig. 7)
appear in this configuration. Note the continuous nature to the
exponents and the apparently positive value for spin as low as
S ¼ 0:01.
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As we consider knife edge orbits for spinning test par-
ticles we focus on the geometry surrounding their path.
Unlike the orbits we have considered so far, these move
through both high and low curvature regions of the space-
time. These orbits start out relatively far from the center of
the spacetime, where the curvature is comparatively low.
But during the course of their orbits they execute several
small orbits in much higher curvature regions. These types
of orbits help us determine whether chaotic orbits must
remain in high curvature or just pass through them
regularly.

In Fig. 12 we plot the Lyapunov exponents for a knife
edge orbit that has an outer radius of r ¼ 100m and makes
three small radius loops for each large radius orbit. The
orientation of the spin is� ¼ 0. The angular momentum of
the particle is L ¼ 3:9246 and which is nearly the angular
momentum of the particles investigated by Suzuki and
Maeda. We choose this spin orientation to keep the particle
from being captured by the black hole. Recall that this
orientation gives an effective centrifugal force which
pushes the particle away from the black hole. This keeps
the particle from being captured, but also reduces the
number of inner loops traversed in each orbital period.
Thus, as the spin increases, the particle can be thought to
be retreating from the knife’s edge.

One important aspect to notice is that the S ¼ 0 orbit has
a drastically nonzero Lyapunov exponent. This effect is
referred to as a ‘‘chaos mimic’’ [22] and Hartl finds the
same effect for knife edge orbits in the Kerr spacetime [6].
This effect casts some doubt on the Lyapunov exponents
calculated for the nonzero case. Some confidence is re-
stored by the trend in the exponents as the spin decreases,
specifically that the values approach zero as spin goes to
zero. In Fig. 13 we see a close-up look at small spin values

for the knife edge orbit. We still have the chaos mimic
when S ¼ 0, but we also see a very clear trend in the
exponents as the spin decreases.

C. Chaotic orbits with physical spin

We now present a particular chaotic orbit at spin values
that may be relevant astrophysically. In this case, the
constants of the motion are E ¼ 0:9432 and L ¼ 3:47
and the spin vector orientation is � ¼ �. These initial
conditions define a knife edge orbit which is constrained
to regions of high curvature. The effective potential for this
orbit is shown in Fig. 14. Notice that the potential well
confines the particle with E2 ¼ 0:8897, denoted by the
dotted line, to remain close to r ¼ 6m.
In Fig. 15 we see Lyapunov exponents corresponding to

this orbit. Similar to Fig. 10, spin values greater than those
shown on the graph cause the particle to be captured by the
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FIG. 12 (color online). These Lyapunov exponents correspond
to knife edge orbits. Notice that the S ¼ 0 case is very nonzero.
This is referred to as a ‘‘chaos mimic.’’ The spinless orbit begins
at r ¼ 100m and has three inner loops at small radius for each
large scale orbit. The initial spin orientation of � ¼ 0. In the
spinless case E ¼ 0:997 and L ¼ 3:9246.
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FIG. 13 (color online). These Lyapunov exponents correspond
to the same knife edge orbits as Fig. 12. Notice that zero is
outside the error bars for spins as low as S ¼ 0:03.
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FIG. 14 (color online). This is a plot of the effective potential
corresponding to a knife edge orbit constrained to high curvature
regions. This orbit has L ¼ 3:47 and E ¼ 0:9432. The line E2 ¼
0:8897 is shown by the dotted line and shows that the particle is
constrained to remain near r ¼ 6m.
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black hole. What is more interesting however, is that these
nonzero Lyapunov exponents correspond to physical spin
values and that these values have comparable magnitude to
the larger exponents of Fig. 7.

One concern with these data is that the exponents seem
to converge to the value of the chaos mimic of S ¼ 0. We
can use the KAM tori corresponding to this orbit to resolve
this concern. In Figs. 16 and 17 we compare the Poincaré
sections of this orbit when S ¼ 0 and equal steps between
S ¼ 3:0� 10�5 and S ¼ 3:069� 10�5, respectively.

Notice that when S ¼ 0 the phase space trajectory is
confined to the surface of the 2 torus intersected by the r�
Pr plane. We can see this detail in the upper left of Fig. 17.
In the nonzero spin cases the same figure shows the break-
ing up of the tori surfaces which is indicative of chaos.
Based on the positive indication for chaos given by both
the Lyapunov exponent and the Poincaré sections we con-
clude that this orbit is indeed chaotic for some initial
conditions that correspond to astrophysically realizable
amounts of spin.
As the spin decreases from S ¼ 3:069� 10�5 the break-

ing of the torus becomes less and disappears by 2:8�
10�5. Thus, it would appear that the points of Fig. 15
with smaller spins than this amount are not truly chaotic.
Since these first points seem to converge to the chaos
mimic of the S ¼ 0 case it is likely that the positive
exponents corresponding to unbroken tori are inflated by
the chaos mimic exactly as in the zero spin case. We notice
from the graph that the final point has smaller error bars
than the previous points. Because this orbit is shown to be
chaotic by its Poincaré section, the true chaotic behavior of
the particle may push it above the exponent magnitude
created by the chaos mimic.

VI. CONCLUSION

We find that chaotic orbits with apparently astrophysi-
cally relevant spins do exist in the Schwarszchild space-
time. In particular, we have shown that for spin values
between S ¼ 3:0� 10�5 and S ¼ 3:069� 10�5 both the
Lyapunov exponent and the Poincaré section indicate a
chaotic orbit. Recall that Hartl’s [6] bounds for chaotic
spin values were 10�4 to 10�6. These orbits combine the
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FIG. 15 (color online). Lyapunov exponents for spin values in
the physical range. These orbits have orientation � ¼ � and
constants of the motion for the spinless case are L ¼ 3:47 and
E ¼ 0:9432. Note the chaos mimic when S ¼ 0 and the magni-
tude of the exponent is comparable to the larger values of Fig. 7.
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FIG. 17 (color online). This is a closer look at Fig. 16. The
point r ¼ 5:67 is marked on the axis which spans r ¼ 5:67�
1� 10�6 to r ¼ 5:67þ 3:5� 10�6. This finer line in the upper
left is the part of the section for the spinless case. Notice the
distinct breaking of the tori for the other five orbits. These orbits
increase in spin from top to bottom of the upper left corner.

FIG. 16 (color online). These are Poincaré sections in the r�
Pr plane for S ¼ 0 and five orbits with spin magnitudes spaced
equally from S ¼ 3:0� 10�5 to S ¼ 3:069� 10�5. These orbits
have the orientation � ¼ � and constants of the motion for the
spinless case are L ¼ 3:47 and E ¼ 0:9432. Notice that unlike
Figs. 1 and 3 the initial conditions of the orbits make them
difficult to distinguish at this level.
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dynamics of knife edge orbits with the high curvature close
to the center of the spacetime. While this is a special class
of orbit, decaying orbits may exhibit this behavior before
they are captured by the black hole. Indeed, Levin [23] has
shown that compact binaries pass through a chaotic region
when inspiraling and it is an interesting question as to
whether decaying orbits could pass through these astro-
physical, chaotic orbits.

The results of our analysis also put the cutoff spin value
for chaotic orbits much lower than previously thought even
for more general orbits. Suzuki and Maeda [4] give a cutoff
value of about S ¼ 0:63 when the orbital angular momen-
tum of the particle is L ¼ 4. We have provided strong
numerical evidence that chaotic orbits exist for spin values
less than S ¼ 0:01 for orbits with L ¼ 3:6.

Both [4,6] claim that the spin-spin interaction in the Kerr
metric results in an even greater number of chaotic orbits
with small spin than in the Schwarzschild spacetime con-
sidered here. Indeed, Hartl found a lower bound for spins
that yield chaotic orbits of about S ¼ 0:1. As the knife

edge orbits that we have investigated here also exist in
modified form in the Kerr spacetime, we might expect that
there are even more chaotic orbits with physically relevant
spins in Kerr.
A final important question, which is the subject of [7,8],

is the potential impact of these chaotic orbits on the gravi-
tational wave emission from these systems. Certainly, the
current results are suggestive that there is a chaotic regime
in spin which might be astrophysically accessible to ex-
treme mass-ratio binaries. If so, then gravitational waves
emitted by binary systems with large mass ratios might
contain this chaotic imprint. Thus, analyzing these systems
for gravitational wave emission would be a natural next
step in understanding chaos in these systems.
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