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We report a new critical solution found at the threshold of axisymmetric gravitational collapse of a
complex scalar field with angular momentum. To carry angular momentum the scalar field cannot be
axisymmetric; however, its azimuthal dependence is defined so that the resulting stress-energy tensor
and spacetime metric are axisymmetric. The critical solution found is nonspherical, discretely self-
similar with an echoing exponent A = 0.42(*4%), and exhibits a scaling exponent y = 0.11(*10%) in
near-critical collapse. Our simulations suggest that the solution is universal (within the imposed
symmetry class), modulo a family-dependent constant, complex phase.
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Introduction.—The main purpose of this work is to
study the effect of angular momentum in axisymmetric
critical collapse of massless scalar fields. Critical collapse
refers to the threshold of black hole formation, where
interesting effects known as critical phenomena [1] have
been observed in the gravitational collapse of a wide
variety of types of matter, as well as vacuum gravitational
waves [2]. For spherically symmetric massless scalar
collapse, this behavior includes universality, scale invari-
ance, and power law scaling of length scales that arise
near criticality. In supercritical collapse, the character-
istic length is the mass, M, of black holes that form. In the
case of rotating collapse, since angular momentum has
dimension length?, one might naively expect the angular
momentum, J, of the black holes formed to scale as J
M?. A more refined analysis carried out using perturba-
tion theory [3] suggests that J o« M2 "RelA'D ' yhere Re[A]
is the real part of the exponent A’ of the dominant
perturbative mode that carries angular momentum. In
[4], Re[A’] was found to be roughly —0.017, implying
an approximate scaling J « M?>%. Thus, the Kerr pa-
rameter a = J/M? is expected to scale to zero (albeit
slowly) as the black hole threshold is approached.

In general, numerical exploration of angular momen-
tum in the collapse of a single real scalar field would
require a 3D code, for axisymmetric distributions of such
matter cannot carry angular momentum. Constructing a
general relativistic 3D simulation capable of resolving the
range of length scales that unfold in scalar field critical
collapse is a daunting project, and may require computa-
tional capacity not currently available. A “cheaper’ alter-
native is to consider a set of distinct scalar fields, each
with azimuthal dependence and hence angular momen-
tum, and then add the different fields coherently such that
the net stress-energy tensor is axisymmetric. A natural
way to achieve such a coherent sum is via a single com-
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plex field, as will be explained later (see [5] for an alter-
native approach). One drawback to this method is that
imposing such an ansatz for the complex field forces a
nonspherical energy distribution. This means that the
class of solutions we can study occupies a region of phase
space distinct from that of spherical spacetimes, and so
we cannot explore the role of angular momentum as a
perturbation in spherical critical collapse [1,6]. On a
positive note, the fact that we do find a new (axisymmet-
ric) critical solution is interesting aside from questions of
angular momentum, because it suggests that phase space
has a more intricate structure than one might have naively
imagined, probably containing an infinite set of distinct
intermediate attractors characterized by their behavior
near the center of symmetry (the results of [S] are also
in accord with this conjecture). Regarding the question of
how net angular momentum affects threshold behavior in
this model: It appears to be irrelevant, with the angular
momentum of black holes formed in supercritical col-
lapse decaying significantly faster than J « M?. Below
we briefly describe the physical system and code we use,
and then present our results.
Physical system.—We consider the Einstein equations

R = 87T, (1)

2 ERg;ux
where g,,, is the spacetime metric, R, is the Ricci tensor,
and R = R/, is the Ricci scalar; we use geometric units
with Newton’s constant G and the speed of light c set to 1.
We also use a massless, minimally coupled, complex
scalar field ¥ (with complex conjugate W) as the matter
source. ¥ satisfies a wave equation \If’; =0, and has a
stress-energy tensor T, given by

Tyy = \P;,uqf;v + \P;M\II;V - glw\If;y\iﬁV, )

© 2004 The American Physical Society 131101-1



VOLUME 93, NUMBER 13

PHYSICAL REVIEW

week ending

LETTERS 24 SEPTEMBER 2004

We solve (1) and the wave equation (hereafter the field
equations) in axisymmetry, using coordinates [, p, z, @],
where ¢ is adapted to the azimuthal symmetry, ¢ is time-
like, and (p, z) reduce to standard cylindrical coordinates
in the flat-space limit. The axial Killing vector is then

14 a v 3

= (aa) o

The existence of this Killing vector allows us to define
the conserved angular momentum, J, of the spacetime

J=- [E T, n’Vhdx, )

where the integration is over the ¢t = const spacelike
hypersurface, 3, h is the determinant of the intrinsic
metric on 2, and n* is the hypersurface normal vector.
Using (2) and (3), (4) evaluates to

J=- f [V 4P, + T,V In"Vhdx. (5)
p

Thus, for a configuration of the scalar field to have non-
zero angular momentum, ¥ must have some azimuthal
dependence. We thus adopt the following ansatz:

Y(p,z 1, ) = D(p, z, t)e™?, (6)

where ®(p, z, 1) is complex, and m must be an integer for
the scalar field to be regular. It is straightforward to check
that this form of W gives a stress-energy tensor that is ¢
independent, yet can yield net angular momentum. Note
that the on-axis (p = 0) regularity condition for ® de-
pends upon the value of m; specifically, we must have
lim, ., ®(p, z, t) = p™ f(z, t). For simplicity and specific-
ity, we hereafter restrict attention to the case m = 1. As
stated above, we expect that additional, distinct critical
solutions exist form = 2,3, ....

To keep our discussion concise, we state only the metric
and set of variables we use [all functions of (p, z, £)], and
briefly describe the solution procedure; more details can
be found in [7-10]. The line element is

ds?> = —a?d® + Y*(dp + BPdr)? + (dz + Bid1)?
PRI+ (Eydp + £.d0) (200

L Epdp + £odz
l//462p6'p2

)

The lapse function, «, is fixed by maximal slicing, and (7)
reflects the additional coordinate conditions we have
imposed: conformal flatness of the two dimensional p —
z subspace, and &, = 0. The Einstein equations are writ-
ten in first-order-in-time form by introducing

Wy = 6aBy5§B§5;7r (8)

where Kg is the extrinsic curvature tensor and w, is the
“twist” of the Killing vector. We separately evolve the

QO = (—2K5 — K9)/p,
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real and imaginary components of the scalar field by
defining real functions ®, and ®; via

® = p(®, + iD,), ©)
and their dynamical conjugates II, and II; by
I, = Re[®,nl/p, I, =Im[®n]/p. (10)

The factors of p appearing in the above definitions are
included so that ®,, ®;, II,, and II; satisfy Neumann
conditions on axis. Similarly, the variables corresponding
to w, and &, that are evolved in the code have appro-
priate powers of p factored out so that they satisfy
Dirichlet conditions on axis (see [10] for the specific
definitions).
We use the following initial data for the scalar field:

(I)r|i(p’ Z O) = Ar|i exp[_(\/pz + Zz - eri)z/EZ:l: (11)
Hr|i(p» < O) = 6r|i®r|i(pJ < 0):

where A,, A;, R,, R;, 2, €,, and €; are parameters fixing
the shape of the initial scalar field profiles. All other
freely specifiable variables are set to zero at t = 0, while
the constrained variables «, , and {B8”, B%, w,} are ob-
tained by solving the maximal slicing condition,
Hamiltonian, and momentum constraints, respectively.
We use a partially constrained finite-difference scheme
with adaptive mesh refinement (AMR) to evolve the
system of equations with time. In particular, the slicing
condition and momentum constraints are used to fix «
and {B”, B%}, respectively, while the remainder of the
variables are updated using their evolution equations.
Results.—We now present results from a preliminary
study of the black hole threshold of the complex scalar
field system introduced in the previous section. We focus
on four sets of initial data, summarized in Table I
Family A consists of identical pulses of ®,(p, z,0) and
®,(p, z, 0) that are initially approximately outgoing (€, =
1) and ingoing (e; = —1), respectively. This choice for
(€,, €;) in a sense maximizes the net angular momentum
(5), given the initial profiles for ®, and ®,. Conversely,
family B is time symmetric, and hence has zero net
angular momentum. Families A and B can be written as

TABLE 1. Parameters (11) for the initial data families dis-
cussed here, where p denotes the parameter(s) tuned when
searching for the black hole threshold. §, and 6* are the phase
of the initial data (if applicable) and the estimated phase of the
critical solution, respectively. In each case p was tuned to
within (p — p*)/p* = 107* of threshold.

Label P Rr Ri 2 €, €; 50 6*
A A,=A; 06 06 01 1 —1 7/4 091=3%
B A,=A; 06 06 01 0 0 /4 /4
c A,=34; 06 06 01 1 -1 tan'} 0.39+3%
D A, =4; 065 06 01 1 -1 1.34 = 3%
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FIG. 1. A surface plot of the real part (®,p) of the complex
field after several echoes of a near-critical evolution. The origin
is at the bottom center of the figure, the p axis runs vertically
through the middle, and the z axis runs horizontally. Only a
single echo (roughly) at the origin corresponds to the self-
similar part of the spacetime; the other “waves” visible were
radiated during earlier echoes of the field. Note also that the
solution is not spherically symmetric.

®(p, z,0) = A(p, 2)e'®, where A(p, z) is a real amplitude
function and & is a constant phase factor, equal to 7/4 in
both cases. Family C is thus identical to family A except
for the initial phase. For family D, ®, and ®; have
distinct initial profiles and thus cannot be characterized
by a constant phase.

Based upon the collapse simulations we have per-
formed for these four families of initial data, we can
suggest the following about the threshold behavior for
this matter model. There is apparently a discretely self-
similar critical solution that is universal to within a
family-dependent phase. In other words, one can write
the critical solution ®* for the scalar field as
®*(p, 7, 1) = A*(p, z, 1)e'®", where A*(p, z, 1) is a univer-
sal real function and 6* is a family-dependent constant
(see Table I). Note that this phase dependence is a con-
sequence of the U(1) symmetry of the Lagrangian of the
complex field, and has been observed in charged scalar
field critical collapse [11]. Also, note that any self-similar
solution is unique only up to a global rescaling of the
form (7, ') — (kf, k%') when written in suitable coordi-
nates (7, '), with k a constant. Figure 1 shows a snapshot
of the real part of the scalar field (P, p) at late times in a
near-critical collapse simulation. To estimate 8* for a
given family, and the echoing exponent A for the putative
critical solution, we examine the central value of the real
and imaginary parts of the scalar field divided by proper
radius p, = py?e?? (to factor out the leading order ap-
proach to zero of ® in a covariant manner). Figure 2
shows plots of ®,7p/p, and ®;7p/p. versus — InT for
the nearest-to-threshold solutions found, where 7 is cen-
tral proper time (calculated as in [7]), defined such that
the accumulation event of the critical solution corre-
sponds to 7 = 0. We have multiplied the scalar field by
7 to cancel the artificial growth introduced by dividing by
p.. Note that the equations of motion for @, and P, are
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FIG. 2. The real (p®,) and imaginary (p®;) components of
the central value of ® (9) multiplied by proper time 7 and
divided by proper radius p. = piy?eP? versus — In7 for the
near-critical collapse solutions of families A, C, and D (the
phase information for family B is trivial as ®, = ®, then, and
so for brevity we do not show it). The family D solution shown
here is supercritical, and the simulation is stopped soon after an
apparent horizon is detected.

identical; hence if ®.(p,z 0) = P;(p,z,0) (as with
family B), then the initial phase, 8, = /4, is preserved
during evolution. The echoing exponent A is the period of
the self-similar solution in logarithmic proper time; from
Fig. 2 (and similar data for family B) we estimate A =
(0.42 = 4)%. To estimate the scaling exponent vy, we
measure how the maximum value attained by the Ricci
scalar (on axis), R,,, in subcritical evolutions depends
upon the parameter-space distance from threshold, p* —
p [12]. Representative results are shown in Fig. 3.
Combining such data from all the families, we estimate
v = (0.11 = 10)%. For a discretely self-similar solution,
one expects the linear relationship assumed in Fig. 3 to be
modulated by an oscillation of period 2A [13]; we have
not run a sufficient number of simulations to adequately
resolve such an oscillation. The uncertainties quoted
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FIG. 3 (color online). R,,, the maximum value of the Ricci
scalar on axis (p = 0) attained during subcritical evolution,
versus distance |p| = p* — p from threshold, for family A.
Each point represents a single simulation. The line is a least-
squares fit to the data; R,, has dimension length™2, and hence

the slope of the fit is expected to be —27y. For this case, we
infer y = 0.11.

131101-3



VOLUME 93, NUMBER 13

PHYSICAL REVIEW

week ending

LETTERS 24 SEPTEMBER 2004

InjJagl

In[M,y

FIG. 4 (color online). Estimated black hole mass (M y) ver-
sus angular momentum (J,y) in supercritical collapse of
family A initial data. Points represent individual simulations,
while the two lines are separate linear regression fits to the set
of points to the left and right of the “knee” in the curve at
In(M y) = —3.2, with slopes = 6.0 and =~ 2.2, respectively. In
Inp, the horizontal scale ranges from —22 to —2 (compare to
Fig. 3).

above for v, A, and 6* (in Table I) were estimated from
convergence calculations from simulations using three
different values of the maximum truncation error thresh-
old that controls the AMR algorithm, but do not account
for possible systematic errors (see a discussion of related
issues in [7]).

Regarding the question of how angular momentum
affects critical collapse: For the initial data described
here, net angular momentum seems to be completely
irrelevant. To within the accuracy of our simulations, we
cannot differentiate between the late time, self-similar
regions of the spacetimes obtained from families A and
B, and, in the latter case, there is no angular momentum.
Figure 4 shows a plot of the mass estimate M,y versus
angular momentum J,y, on a logarithmic scale, of black
holes formed in supercritical collapse. My and J,y are
calculated from the area and angular momentum of the
apparent horizon, respectively (using the dynamical ho-
rizon framework [14]), and are computed at the time the
apparent horizon is first detected. For large black holes
(i.e., those with M sy of order the total mass of the space-
time), Fig. 4 suggests that Jay « M3%,. However, this
region of parameter space is ‘“‘maximally” far from
threshold, in that these are almost the largest black holes
that we can form from initial data not already containing
an apparent horizon. For somewhat smaller black holes,
Fig. 4 shows a transition to a relationship closer to Jay *
MgH. However, we are still far from threshold there, and
furthermore are entering the regime where the angular
momentum calculation is dominated by numerical errors;
hence we cannot be certain about the exact value of the
exponent.

In summary, within the context of the class of complex
scalar field configurations subject to an azimuthal depen-
dence given by (6), we have found that in near-threshold
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gravitational collapse net angular momentum scales to
zero significantly faster than the J « M? one expects from
dimensional analysis. However, we do observe critical
behavior at threshold, and this is only the second, non-
spherical critical solution found to date, the other being
that seen in the collapse of gravitational waves [15]. What
is remarkable about the new critical solution is that it
exists within a model permitting spherical critical solu-
tions (which is not the case for gravitational waves). This
suggests that the threshold of scalar field black hole
formation is a much more interesting regime than pre-
viously thought, possibly containing infinitely many dis-
tinct solutions.
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