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Critical collapse of the massless scalar field in axisymmetry
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We present the results from a numerical study of critical gravitational collapse of axisymmetric distributions
of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric
critical solution with axisymmetric perturbations. However, we see indications of a growing, nonspherical
mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry
present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues
until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric
self-similar solution. The existence of a nonspherical unstable mode is in conflict with previous perturbative
results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead
seeing a marginally stable mode that is rendered unstable by numerical approximation.

DOI: 10.1103/PhysRevD.68.044007 PACS nuni§er04.25.Dm, 04.40-b

[. INTRODUCTION Note that the particular behavior observed in the threshold
solution depends upon the matter model and spacetime di-
In this paper we present the results from a numericamensionality.
study of the critical collapse of the massless scalar field in To date, the only nonperturbative calculation of critical
axisymmetry. In spherical symmetry, the threshold of blackgravitational collapse away from spherical symmetry was
hole formation was first systematically explored [it],  carried out by Abrahams and Evaf4], who studied the
which described intriguing behavior, calledtical phenom- Co||apse of pure gravitationa| waves in axisymmeWte
ena in solutions approaching the threshold. This bEhaViOF[hat axisymmetry is the “minimal” Symmetry one can im-
includespower-law scalingf the massv of black holes that  pose on gravitational waves and retain the possibility of
form in the supercritical regime: black hole formation In addition, the threshold of singular-
ity formation in a nonlinear sigma model in three dimensions
was considered if5], and found to exhibit features similar
Me(p—p*)7, (1) to critical gravitational collapse. These studies provide evi-
dence that critical phenomerns observed beyond spherical
symmetry at the respective thresholds of these two distinct
wherey is auniversalconstant(i.e., independent of the ini- physical systems.
tial datg called thescaling exponentHere,p is a parameter An explanation for critical phenomena, in particular the
describing some aspect of the initial distribution of scalarobserved universality of the solution and departures from it
field energy such that fop>p* black holes form during in near-critical collapse, is offered by positing that the criti-
evolution, while forp<p* all of the scalar field disperses to cal solution, when perturbed, hagactly one unstable mode
infinity. Thus p* denotes the threshold of black hole forma-[6]. That there is only one unstable mode allows the thresh-
tion for the particular family of initial data under consider- old solution to be found in a numerical collapse “experi-
ation. The solution approached in the limit> p*, called the  ment” whereby we fine-tune a single parameter of a generic
critical solution, was also conjectured to be universal, in thatamily of initial data. Furthermore, the nature of the unstable
all one-parametep) families of initial data having a thresh- mode eventually dominates the properties of near-critical so-
old parametep™ should exhibit thesamecritical solution in  lutions; for example, the scaling exponentan be shown to
the vicinity of collapse. In addition, the critical solution for be equal to the inverse of the exponential growth fastof
the real scalar field is discretely self-similar, characterized byhe unstable mode.
an echoing exponemA. Since the initial discovery reported The purpose of the present study is to move beyond
in [1], critical phenomena have been observed in numerouspherical symmetry and to explore the threshold of black
systems—seg2,3] for recent review articles on the subject. hole formation from the collapse of axisymmetric distribu-
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tions of the massless scalar field. Linear perturbation studies T,,=20,0,-9,,® .97, 3
of the scalar field critical solution beyond spherical symme-

try were carried out by MamrGarca and Gundlachi7] (a  and the evolution ofP is governed by the wave equation
similar analysis has also been performed by Gund[&¢for

the case of perfect fluid collapseTheir study found no ad- Ue=ao, *=0. 4

ditional growing modes beyond the one seen in Sphenci'?te that Eq(3) differs by a factor of 2 from the convention

collapse, a result that suggests that we should expect to s . . . .
P 99 P of Hawking and Ellig 10], which amounts to rescaling by

the spherical critical solution emerge from our axisymmetric
studies. a factor of /2.

Having looked at a variety of initial configurations of the e restrict our attention to axisymmetric spacetimes with-
scalar field, some deviating significantly from spherical sym-CUt @hgular momentum, and choose the following cylindrical

metry, we find that in all cases during the early phases ofPordinate system, adapted to the symmetry:

near-critical evolution, wedo see a discretely self-similar __ 242 4 o4 2 2402
solution unfold that can be described as the spherically sym- ds’ a”dt+ il (dp+ A"+ (dz+ f5dY)
metric critical solution plus perturbations. However, in con- +p282p;d¢2]. (5)

trast to the perturbation theory calculations[if], we find
some evidence for a second, slowly growing unstable modethe axial Killing vector is §/d¢)* and hence all the metric

with an angular dependence described by#ke? spherical  ¢,nctions o B°, B ando. and scalar fieldp depend

harmonic. The simulations suggest that this mode will eVeNgnly on p,z, andt.

tually cause a near-critical solution, with some asymmetries, e use the (21)+1 formalism[11] to arrive at the

FO f‘bjfurcate” into two distinct echoing _solutions, WhiCh’_ system of partial differential equatiotBDES9 that we need
individually, would subsequently be subject to the same iny] solve, which in the absence of angular momentum is the

stability. In principle then, if we could fine tune to arbitrary same set of PDEs that the ADM decomposition provides.
precision, this bifurcate behavior would be repeated indefipg amiltonian constraint yields an elliptic PDE for the
nitely. conformal factory, and thep andz momentum constraints

. . . . :(@[ive elliptic PDEs for thep and z components of the shift
with the above-mentioned perturbative results. One pOSS|b|I\-/ector B” and 3, respectively. We choose maximal slicing

ity is thgt the_ nqnspherical modg that appears unst'abile in o4k particular K,2=0, whereK," is the extrinsic curvature
simulations IS I fact damped in the 'contmuum "”?"' andtensor oft=const slices; this condition gives an elliptic
only grows within the context of our discrete numerical ap'equation for the lapse functian. We convert the hyperbolic

proximation. Our current cod@unning on the computer sys- ) i — i
tems to which we have accéssannot provide the accuracy evolution equations forr and ® to first order form by de-

needed taonclusivelydetermine that the growth rate of the fining “conjugate” variables() andIl by

suspect mode is positive in the continuum limit, and not ,

dominated by truncation error effects. 0= —2K," K, 6)
The remainder of this paper is organized as follows. In P

Sec. Il we briefly describe the relevant system of equations,

the numerical code used to solve them, and various propefmd

ties of the solution that we will analyze. Details of the for- 5

malism and numerical technique can be foungidh In Sec. M= ﬂ(q) —BPD + D) @

[l we describe several of the families of initial data that we a ’ ’

have studied, and present the results from correspondin

near-critical collapse simulations. We conclude in Sec. IV b spect;]vely. g th & mixed hvoerbolic-ellinti ¢
summarizing the results and possible future directions of Ve thus end up with a mixed hyperbolic-elliptic system o

study. PDES for the eight variables, ¢, o, B*, g% Q, ®, andIl
that we approximately solve using second-order accurate fi-
nite difference(FD) techniques. The hyperbolic FD equa-
tions are solved using an iterative Crank-Nicholson scheme
with adaptive mesh refinemefMR), and the elliptic FD
We are interested in solving the Einstein field equations equations are solvebn the adaptive grid hierarchysing

the FAS multigrid algorithm. At=0, we freely specifyo,

2 Q, ®, andIl, then solve the three constraint equations and

pe slicing condition for the remaining variables. After 0, we

continue to use the momentum constraints to solvegor
whereR,,, is the Ricci tensorR=R*, is the Ricci scalar, and8* and the slicing condition for, but in lieu of the
and we use geometric units with Newton’s const@iand  Hamiltonian constraint, we updaig using the first order in
the speed of light set to 1. We adopt a massless scalar fieldime evolution equation that follows from the definition of
@ as the matter source, with corresponding stress-energfe extrinsic curvature(Thus we employ goartially con-
tensorT ,, given by strainedevolution) We add Kreiss-Oliger dissipation to the

II. PHYSICAL SYSTEM AND ANALYSIS
OF SOLUTION PROPERTIES

1
Ry~ 5RO, =87T
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differenced form of the hyperbolic equations, to reduce unsuch null hypersurface, we evolve a family of null geodesics,
wanted(and unphysicalhigh-frequency components in their with affine parametex and initial tangent vectors equally
solutions. For outer boundary conditions, we apply outgoingspaced in 6=tan ‘[p/(z—2)], outward from ,2)
radiation (or Sommerfeld conditions ond®, T, o, and, =~ (0Z0). The geodesics are synchronized by settingdr
and appropriate asymptotic fall-off behavior for the remain-— 1 at the start .Of Integration, where.|s the_ proper time
ing variables, assuming an asymptotically flat coordinatd€@sured by a timelike observer that is stationary relative to
system the center of symmetry: is the time of relevance to critical
More details on the boundary conditions, system of equa(_:ollapse, for in coordinates I(—7), where7” is theaccu-

fons and h numeria chercluing varous esan  Taienonof h cricalsolutorue, o cenva proper
be found in[9]; a detailed description of the AMR imple- 9 y y

mentation is given if12] critical solution down to infinitesimally small_ sca)esghe

' central value of the scalar field is a periodic function of
In(7*—7), with period A. Estimation of the period of the
Analysis of solution properties profile of ® along the local center of symmetry, with respect

In Sec. IIl we will quantitatively describe the near-critical t0 7, thus gives us the alternate method for computing
solution for any given family of initial data by measuring its ~ During a simulation, we integrateas a function ot for
associated scaling exponent)( echoing parameter\), the  €ach null geodesic labeled bg,=6(x=0), and record
local minima/maxima attained by the scalar field during eachP (X, 6p) (we typically use 50 geodesics per slice, linearly
half-echo, and deviations of the scalar field from a spherispaced in6p). If two solutions from different families of
cally symmetric profile. That wean define such properties initial data do locally tend to the same discretely self-similar
for all the solutions is an indication that they are similar solution, then®(x, ) (synchronized so that the null inte-
enough that a comparison is meaningful. However, itdsa ~ gration is started at the same time within the periodic oscil-
trivial task to compute some of these quantities, because wiétion) will tend to the same function, regardless of differ-
need to make sure that we are calculating them in a coordences in the 4,z,t) coordinate systems between the two
nate independent fashion. Our coordinate system is ngolutions.

“symmetry-seeking”[13], and the initial data is sufficiently ~ As a final comment in regards to our analysis, we note
different among the various families that we can expect, andhat to calculater we integrate a central timelike geodesic,
in some cases clearly see, “gauge” differences between s@nd measure proper time along it. We can do this for families
lutions that are apparently quite similar. of initial data that are symmetric abomt=0, for then we

The simplest quantity to calculate is the scaling exponenknow that the center of symmetry will, at least initially, be at
7. We use the method proposed by Garfinkle and Duncaf0,0). An interesting aspect of the numerical solution is that
[14], whereby we measure the maximum vaRg attained  truncation error effects cause a small drift to occur in zhe
by the absolute value of the Ricci scaléR|, in a set of location of the local center of symmetry, during a near-
subcritical evolutions;y can then be obtained from the fol- critical evolution. This drift is quite smalland does appear

lowing property of near-critical solutions: to converge away with increasing resolutiptypically being
o . less than 1 part in f0of the size of the computational do-
IN|Ry/~—27yInp+w(Inp)+const. (8) main. However, because of the exponentially decreasing

length scales that arise in a critical collapse, this isuge
drift relative to the size of the local self-similar region at late

with period A/(2y) that describes a small “wiggle” super- times. Hence if we simply measured central proper time at

imposed on an otherwise linear relationship. As a result, wéP:2) = (0.,0), and correspondingly integrated null geodesics
can also use Eq8) to obtain an estimate fak. We note that 7oM this location, we would entirely miss the relevant part
the effectiveness of our use of E@) to computey andA is of the solution. Fortgnately, thPT t|m¢I|ke qbserver initially
predicated on the degree to which our computed near-criticdll2c€d at (0,0) experiences an identical drift, and so we can
solutionsare well approximated by a discretely self-similar US€ its location and proper time to do the desired measure-
solution with a single unstable mode. In addition, althoughments' For initial data that is not plane-symmetttee only

Eq. (8) provides the only method we use to estimatewe such family described in the next section is the “anti-
also measuré using a more direct procedure outlined be- symmetric” examplg we have not yet been able to devise a
low. method to accurately track the local center of symmetry for

The direct comparison of results from our axisymmetric/O"9 Periods of time, and hence have not been able to calcu-

code to those from a spherically symmetric computation prel-ate. 7 for these fgmmes. However, at least at key moments
sents more of a challenge. In order to compare *local selfduring the evolution, we are able to accurately determine the

similar solutions’—portions of the computed spacetime thateNter of symmetryby looking at local minima or maxima
f @, for instance, to use as the starting point for the null

appear to be approximately self-similar about some center il ;
symmetry—we need an invariant way of slicing the space!ntegration.
time in the region of interest. To accomplish this, we use a
sequence of outgoing null hypersurfaces, starting from the
local center of symmetryd,z) =(0,z;), to generate the com- Here we present results from the critical collapse of sev-

mon slices along which we compase. To construct each eral families of initial data. These families consist of a time-

HereHE p*—p andw is a periodic function of its argument

IIl. RESULTS
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symmetric series of prolate spheroids, with ellipticétyde-
fined by looking at surfaces of constah):

q)(o,p,z):Ae—(p2+(1—e2)zz),
I1(0,p,2)=0, )

and an initially ingoing distribution b that is antisymmet-
ric aboutz=0, i.e.,®(t,p,2)=—-P(t,p,—2):

D(0,p,2)=Aze (W’ +77-Ro)?
I1(0,0,2)=—®(0,p,2). (10

In all cases we se#(0,0,2)=0 andQ(0,p,2)=0, and vary
the amplitudeA when searching for the threshold solution.
We show results for six families of E¢Q), with €2=0, 1/3,
1/2, 213, 3/4, and 5/6. In Eq10), R, is a parameter describ-
ing how far the initial pulse of matter begins from the origin;
we have choseRy,=3. In all cases presented here the outer
boundary of the computational domain is at=|z|=10,
though in other simulations we have varied its position to
make sure that the above choice does not significantly impac
the results. The base level in the adaptive hierarchy used !
resolution of 65129 points, and up to 28 additional 2:1-
refined levels were used in the most nearly critical case. Oul
AMR implementation is based on the algorithm of Berger
and Oliger[15], wherein regridding is determined through
estimates of the local truncation err@olution erroy in the
computed solution. The key control parameter that deter
mines placement of refinements is the truncation error
threshold,r,,: mesh refinements are introduced in an attempt
to keep the magnitude of the local truncation error estimate
<7, throughout the solution domain. For each family of
initial data studied, we generally tuned to threshold using
three different values of,,, namely 7,9, Tmo/2, and7o/4.
Most of the data presented here are frem= 70/4 runs
(i.e., finest effective resolutionwith the results computed
using the less stringent values g then being used to give
some estimate of how close to the continuum solution we
may be(though convergence testing with an adaptive code is
not trivial, particularly in the critical limik

There are of course, infinitely many different param-
etrized families that we could have considered—those use(
to generate the results discussed here were chosen for thc
foII_owing specific reasons. First, _the antisymmetric confi_gu- FIG. 1. Several frames 6b(p,z,t) from the evolution of near-
ration (10) provides a more drastic departure from sphericalyitical, antisymmetric initial datiEq. (10)]. The figures span the
symmetry than any family of data that can smoothly be defirst several half-echoes of the local self-similar solutions, and the
formed into a spherical distributiofsuch as Eq(9) by let-  particular times shown correspond to when the scalar field reaches a
ting e—0]. In this regard we note that one of the character{ocal minima/maxima. The height of each surface represents the
istic features of spherical scalar field critical collapse is thainagnitude of®, and the coordinate domain of each figure is
the “central” value of® oscillates between specific extremal [0--.2.5-2.5.-.2.5] in [p,z] (the axisp=0 is the nearest edge
values=®; clearly the antisymmetric property of EGLO)  of each plot, and positive to negatizeuns from left to right.
allows no such oscillation. One might therefore expect that
evolutions with this type of initial data might produce a  Second, we include the prolate family because the initial
qualitatively different critical solution than the spherically amplitude of the putative second unstable mode seems to be
symmetric one. However, as shown in Fig. 1, at thresholclosely related to the prolateness of the initial distribution
two spherical-like echoing solutions develop off-centezat (rather, for instance, than asymmetriesdnwithin an im-
=+z.(t). ploding spherical shell Therefore the parameterin Eq. (9)
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allows us to demonstrate the effect of adding mdaeger€)

or less of the unstable mode. The axisymmetric instability, t=5504 —
once it has grown beyond a certain amplitude, causes a near- 7 :
spherical threshold solution to “bifurcate” into two echoing 4 :

solutions, separated by some distance along the axis. As an
example, Fig. 2 shows several time-instants from the near-
critical evolution of initial data withe?= 3/4, transformed to
logarithmic coordinates in space to better illustrate the self-
similar nature of the initial critical behavior. Note that this
bifurcation is qualitatively different from the two echoing
solutions observed in antisymmetric collapse—there, by con-
struction, no self-similar behavior is seen abautO, and
there are twdout of phasg echoing solutions from the be-
ginning. Furthermore, the initial separation of the t@o
phasg echoing solutions arising from a bifurcation is related
to the smallest length scale that developed in the single,
origin-centered echoer prior to the bifurcation. In contrast,
the separation of the two antisymmetric echoing solutions is
related to a length scale in the initial data. Moreover, if there
really is a second unstable mode, then each of the antisym-
metric echoers should also be subject to that instability and
eventually bifurcate, and we do see some evidence for this.

With double precision arithmetic, we are able to tune the
initial amplitude of a given family to within a part in 19of
threshold 16] corresponding to about three full echoes of the
spherically symmetric critical solution. The growth of the
instability is sufficiently small that after three echoes we do
not yet see a bifurcation foe?<2/3; for €2=3/4 and €?
=5/6 we see a bifurcation after approximately 2 and 1 1/2
echoes, respectively.

Table | summarizes measurements made of the critical
parameters—namely,A, and the amplitude of each echo in
d—from the /4 simulations for each family of initial data
(except for thee?=5/6 case, where the increasing computa-
tional demands, resulting from larger, more elongated grids
that are produced in the hierarchy for higher valueseof
prevented us from computing with anything b= 7).

For the two simulations with the largest valuesepfwe list
parameters obtained before and after the bifurcation, where
possible. As with the antisymmetric case, our method of geo-
desic integration cannot track moving centers, and so we
cannot provide a direct estimate df after a bifurcation.
Also, for the €2=5/6 case, we do not see a very distinctive
periodic oscillation in the IR, vs Inp plot, and thus can
only provide a rough guess fak from that information.
Most of the data in this table was gathered from Figs. 3 and
4, which show IR, vs Inp (with the linear relationship from .
the spherical family subtracted to better differentiate the FIG. 2. Several frames @b(r,6,t) from the evolution of near-
plots) and® ., the central value o, vs logarithmic central ~critical, e=3/4 prolate initial datdEq. (9)]. Here we have trans-
proper time for the prolate families prior to bifurcation, re- formed to coordinatesr =In(yp?+z?+ep)—Ing, (with ey=2
spectively. Also, Fig. 5 shows the same type data displayeck 10 *) and tand=p/z, to give a better view of the initial self-
in Fig. 4, but for the case=0, and with the addition of an similar nature of the solutionfr,d] ranges from[0---~10.8,
overlay of data obtained with a spherically symmetric 1DO-- -], with the axisp=0 being the nearest edge in each figure.
code[1]. The good agreement between the results from th&he height of each surface represents the magnitud®.ofrhe
axisymmetric and spherical computations provides a meaimes shown correspond to the times whén reaches a local

sure of confidence in the correctness and level of accuracy @hinima/maxima, demonstrating the bifurcation that occurs after
our 2D code. about two self-similar echoes of the field.
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TABLE I. Critical parameters of the prolate famili€8) and the antisymmetric familyAS (10). v is
obtained from a least-squares fit to the data shown in FigA3?! is the average value ok measured
between adjacent extremesdn, as shown in Fig. 4only using data from intermediate timegA)? is the
average value oA inferred from the periodic oscillations in Fig. 3, atid|) is the average absolute value
of the extremes ofb. in Fig. 4 (again using data from intermediate timeBor the two prolate cases that
bifurcate—e?=3/4 ande®>=5/6—we list estimates of these paramet@viere possiblebefore(a) and after
(b) the bifurcation. For the antisymmetric case, we do not have dat® fars central proper time|®|) in
that case is calculated as half the averdifierencebetween subsequent local extreme®ifp=0,z,t) about
one of the local self-similar solutions. See the text for a discussion on how the estimated uncertainties were

calculated.
€ % (A (4)? (@)
0 0.382:2% 3.44-1% 3.49+ 3% 0.431%2%
1/3 0.380-2% 341 1% 3.43t3% 0.431%+2%
1/2 0.375-3% 3.3 1% 3.39-4% 0.430-2%
2/3 0.346-3% 3.13+1% 3.08-4% 0.419-3%
3/4(a) 0.313+4% 2.8 4% 3.03:5% 0.396-6%
3/4(b) 0.40=10% ~3 0.40+ 8%
5/6(a) 0.28+10% ~2 ~1 0.36 7%
5/6(b) 0.41+=10% ~3 0.3610%
AS 0.383=2% 3.49+ 3% 0.434+ 3%

r T | | E 2'— { T i T j _:
1 :— A —— 52— —e-1/2 - 3/4 —-2/3 e _ =0 \:
of FAE 3 3
E_ _' __-__,__ J A.ﬂ‘ *;.:/3‘——\ —;:Sx/ = e2=—1/3= iy —+——+—}— 3
C » Sl E - \_;
-1 - )f ’/; E E
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= o[ ﬁ\/ i S — —
EF AN e Lk s
© R ."M\ LA f‘ ] < E E
>~ -3 e ‘{ 4/ - — E E
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+ 1F e e@=1/3 —a_5/6 —u AS ] - Eoe=2/3 /N /N R
= o A \ ny o~ /}“\x _ 8 E 3
E AL R, S < S Aoy gy e b O E \/ 3
E 0 :n',:, ........ .«'é{ ........ { ...... o g}'/&"@ ..... -0 ¥ n{'ﬁ“%':"a u: 3 . . ‘ . . . | /—. E
= u K : . E e3/4 AN S
— 1k ] E 3
u P 3 E
- = | ] \/ | i
2 C "T‘}:&;j{ 4 j/ E 8%’ §:| €2I=5/6| t t t t I t t t t T t :g
a2 b [ B 0E 3
3 E 1 1 1 1 | 1 1 1 1 | 1 H‘l/‘Y 1 1 | I 3] _82 z_ _z
—u. :_I 1 1 1 1 1 1 | 1 1 1 1 | 1 -

-30 _ —-20 -10 o 5 10

In(p) —In(T—71%)

FIG. 3. Plots of the logarithm of the maximum absolute value
|Rl attained by the Ricci scalar, during subcritical evolution, vs the
logarithm of the distance in parameter spacep*—p from the
(estimatedl critical parameterp®, for all families of initial data  ghitted so that the first maximum of each curve occurs-&i(r
consideredusing the lowest, datg. To avoid clutter in the figure,  _ *)=0. 7* is the accumulation point of each famifprior to the
we have placed the data from each family on one of two identicalyifrcation for thee?= 3/4 ande?=5/6 casek calculated byassum-
panels. To facilitate comparison, the lire2yoln p has been sub-  ing that the intermediate time behavior is discretely self-similar, and
tracted from each curve, witi,=0.382(the estimated value from then finding ther* for each case that minimizes the varianceAin
the e=0 family). Also, the intercept of each curve has been set tocomputed between pairs of adjacent minima/maximé jn To aid
p=0. The estimated linear relationships used to calculats in comparison, dashed vertical lines have been drawn at intervals of
Table | are also shown. 3.44 in 7, which is the estimated spherical echoing exponent.

FIG. 4. The central value o as a function of logarithmic
central proper time, from the most nearly critical simulations of the
prolate collapse families. The horizontal axis for each family was
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FIG. 5. Comparison between results from our 2D axisymmetric
code (=0 initial data and a 1D spherically symmetric cofi&].
Plotted is the central value df as a function of logarithmic central
proper time, for the most nearly critical simulations obtained in
either case.

FIG. 6. The maximum absolute value of tHe=2 (m=0)
spherical harmonic component &f, ®,,, in near-criticale=0 col-
lapse, measured along outgoing null slices of the spacetime, from
simulations with three different values of the maximum truncation
error estimater,,. The graph indicates similar growth rates inde-

The quoted uncertainty of a given value in Table | Waspendent of the effective resolution. In order to better show the simi-
calculated as the sum of the estimated truncation error from %rity of the growth rates, the data for the higher truncation error
convergence calculation using the different runs, and the thresholds have been shifted along the horizontal axis which labels

9 L 9 e logarithmic central proper timébout— 3.4 for the 7o/2 case and
standard deviation from the relevant averaging/fitting opera- 5 1 for ther/4 data. Th imil hifted fi h h
tion (except fore?=5/6, where we could not estimate the —>.1 forther ata'. us, at similar unshifted times, the grap
truncation error as we (,)nly have data from a single value o%n dicates that the amplitude df, decreases withy,, as expected.

Tm). However, in a sense these uncertainties are “optimis-

tic,” for we have not accounted for possible systematic er- pi-hardson expansion. Then we expect any well-defined

rors. Chief among thesén particular away from spherical ¢, qtinum property of the solution, such as the growth rate,
symmetry are the assumptions of discrete self-similarity,) =t 5 perturbative mode to have a similar expansion:
which was used to define* in Fig. 4, and the assumption

that the linear and periodic parts of Fig. 3 are directly related
to y and A, respectively. For several of the simulations we

have checked that the following numerical parameters areh % s th icall d wih rateis th
not significant sources of systematic error: outer boundar)y". ereA; 1S tné numerically measured gro rateis the

location, Dirichlet vs Neumann conditions an A°, and d!scretizat?on scaleéwg have assumec_i a first order a_\ccurate
f87 at the outer boundary, and free vs constrained evolutiofiscretization, andf(x) is some function of the continuum
for 4. solution variablex. Of course, in an adaptive scheme there
Note that our coordinate systemrist adapted to spheri- is no single scalén; however, individual grids within the
cal symmetry, and during an evolution ef0 initial data, hierarchy do admit Richardson expansions, and hence we
spherical symmetry is only preserved to within an amounican loosely think of Eq(11) holding over the hierarchy with
proportional to the truncation error, and so will eventually some effectiveh that would be related to the maximum trun-
exhibit the apparent second growing mode. In a certain sensg@tion error estimate,,,. In [7], the real part of the largest
this is a desirable feature, for at late times duringean0 eigenvalue of any nonspherical mode perturbing the critical
evolution this mode is the only orf@part from the unstable solution was found to b ,~—0.02; i.e., a decaying mode,
spherical modgthat should be visible perturbing the spheri- and the corresponding eigenfunction had the angular depen-
cal solution; ane>0 evolution exhibits a host of additional, dence of the =2,m=0 spherical harmonio’fn. This mag-
decaying asymmetric modes that prevent us from easily measitude of decay is about 100 times smaller than the growth
suring the properties of the nonspherical growing mode. Taate of the dominant spherically symmetric mode, that has
this end, in Fig. 6 we show plots of the maximum absolutex =1/y~2.7. Thus, looking at Eq.11), it is certainly plau-
value of thef =2 (m=0) spherical harmonic component of sible that in a numerical scheme, evenhfwere small
&, denotedd,, in near-criticale=0 collapse, as measured enough to reasonably accurately model the dominant feature
along outgoing null slices of the spacetiifie other words, of a solution(as we evidently are from the comparison in
we decompos€@ (X, 6), constructed as described in Sec. I, Fig. 5, it might still be large enough to significantly affect
into its spectral coefficients for eagh—the ¢ =2 component subdominant features of the solution, such as a simaih
is ®,,]. We show results from simulations with three differ- Eq. (12).

Assume that the numerical solution has a well-behaved

N =\ +hf(x)+0(h?), (11)

ent values of the maximum truncation error estimate We should then be able to see a significant effect when
demonstrating the expected behavior tdag,—0 in the changingh; however, in Fig. 6, even though the initial am-
limit 7,—0. plitude of the asymmetry decreasesm@sdecreasesas ex-

We now argue that Fig. 6 also gives some evidence thatected, the apparent growth rate that we obtain, namely
the instability we do see in the numerical solution may be an~=0.1—-0.4, does not noticeably change within the relatively
actual feature of the continuum solution, and not alarge uncertainty of the measuremdii7]. On the other
truncation-error-driven phenomenon. hand, we may still be too far from the convergent regime to
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] FIG. 8. The normalized =2 (m=0) spherical harmonic com-
FIG. 7. The maximum absolute value of the=2 (m=0)  ponent ofd, measured along an outgoing null geodesic starting

spherical harmonic component &f,®,, in near-criticale”=2/3  from similar times within a(chosed self-similar oscillation of the
collapse, measured along outgoing null slices of the spacetime.2_ g 2= 2/3 and antisymmetric near critical solutioffsom 7,
from simulations with three different values of the maximum trun- _ Tmol4 simulationy. To facilitate comparison, we have rescaled

cation error estimate,,. The horizontal axis labels the logarithmic ¢ amplitude of each curve so that the maximum is 1, and rescaled

central proper time when the given outgoing null surface intersectﬁ1e affine paramete(rlabeled;) along the null curves so that the
the origin. Note the different vertical scales when comparing this —

plot to the similar one foe=0 in Fig. 6 (and we havenot shifted first maxima of each is at=1.

the data he
% Finally, in Fig. 8, we show comparisons of the “radial”

profile of the =2 spherical harmonic component df,

measure\, [so that higher order terms in E€L1) are still  measured along an outgoing null geodesitagproximately
|mp0rtanj. Note that we also cannot conclusively say thatthe same time within a self-similar ecHa8], for the €?
the growing mode we see has a pure 2 angular depen- =0,62=2/3 and antisymmetric near-critical solutiofsith

dence, but it appears that tiie=2 mode is at least an order r, =7, 4/4). In the plot, the overall amplitude and affine dis-
of magnitude larger than any of the other asymmetric modetance along each null curve is rescaled so that the maximum

we find in the spectral decomposition. However, it must beamplitude is one, and occurs at one in rescaled affine time

noted that for computations with any of the three values ofrhat the curves from these representative families do ap-

T adopted we use 50 points thalong which we integrate proximately agree provides additional evidence that we are

null curves, and so do not have good accuracy for determinseeing aunique asymmetric unstable mode.

ing the higher¢ modes.

In Fig. 7 below we show a plot of the growth rate®f, IV. CONCLUSION

from €?=2/3 near critical solutions. This value efis the ) )

smallestnonzerovalue considered that clearly shows growth Ve have presented results from a first study of scalar field

of the asymmetry during the roughly three self-similar ech-critical collapse in axisymmetry in the fully nonlinear re-

oes of evolution; in thee?=1/3 and e2=1/2 cases, early- 9/Me. We find that critical phenomena is observed at the

time evolution of the =2 spectral component is dominated threshold of gravitational collapse of several families of

by decaying modes. For thé=2/3 data in Fig. 7 we appar- asymmetric initial data. The cr_ltlcal solution that_ unfolds at
) X threshold car(locally) be described as the spherically sym-

ently are converging to the growth shown; i.e., as was the

. AR metric critical solution found if1], with asymmetric pertur-
case for the spherically symmetric initial data, the grOWthbations. However, in contrast to the results[@f, we find

does not appear to be truncatiqn error dominated. Estimates%me evidence that a singfe=2 spherical harmonic pertur-
of the growth rate from the simulation with the smallestyation doegiot decay with time: rather it grows at a rate of
value of 7, gives A,~0.05-0.15. However, this is quite a oughly 1/10 the magnitude of the dominant, spherically
rough estimate as we cannot disentangle the supposed grogymmetric unstable mode. The nature of this second unstable
ing mode from the full spectrum df=2 modes contributing mode is such that it causes a self-similar threshold solution,
to the plot shown in Fig. 7. with some asymmetry in it, to eventually bifurcate into two
Although we appear to be converging to a growth of thelocal, self-similar solutions that again resemble the spherical
asymmetry in thee?=2/3 case, and to a bifurcation for the threshold spacetime. If this second instability is indeed a
€?>=3/4 case, this does not necessarily prove that the sphefproperty of the spherically symmetric critical solution, then
cally symmetric critical solution has a second unstable modgxresumably onéor both if the initial data has reflection sym-
These families are sufficiently aspherical that one can imagmetry) of the new self-similar solutions would bifurcate
ine that the bifurcation is due to some artifact of the initial again, and so on, resulting in an infinite, “random walk” of
data—in particular a “focusing” effect, as the wave front of bifurcations on ever decreasing scales. Thus the second in-
an imploding, prolate distribution of the scalar field will tend stability would not completely destroy the universal nature
to focus to two locations on the axis, above and below thef generic(axisymmetri¢ critical collapse, but rather would
origin. If this is the case though, it is rather surprising thatalter it in an intriguing, family dependent manner.
we see self-similar collapse occur about a single ceprier To conclusively answefl) whether theres a second un-
to the bifurcation. stable mode, and if s¢2) how the bifurcation ultimately
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affects the threshold solution, is beyond the capabilities ofources, than what we can achieve with our more general
our current code. First, we are using double precision arithpurpose cylindrical coordinates. Of course, spherical polar
metic, and this prohibits us from tuning closer than 1 part incoordinates would not be well suited to following a solution
10% of the threshold. Because the echoing exponent of theeyond a bifurcation, but they should be adequate to study
spherically symmetric solution igrelatively speaking so  the growth or decay of perturbations.

large, 1 part in 18 can only give us about three, complete

self-SImllar echoes. This is far from ideal when trying to ACKNOWLEDGMENTS
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