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Critical collapse of the massless scalar field in axisymmetry
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We present the results from a numerical study of critical gravitational collapse of axisymmetric distributions
of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric
critical solution with axisymmetric perturbations. However, we see indications of a growing, nonspherical
mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry
present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues
until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric
self-similar solution. The existence of a nonspherical unstable mode is in conflict with previous perturbative
results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead
seeing a marginally stable mode that is rendered unstable by numerical approximation.
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I. INTRODUCTION

In this paper we present the results from a numer
study of the critical collapse of the massless scalar field
axisymmetry. In spherical symmetry, the threshold of bla
hole formation was first systematically explored in@1#,
which described intriguing behavior, calledcritical phenom-
ena, in solutions approaching the threshold. This behav
includespower-law scalingof the massM of black holes that
form in the supercritical regime:

M}~p2p!!g, ~1!

whereg is a universalconstant~i.e., independent of the ini
tial data! called thescaling exponent. Here,p is a parameter
describing some aspect of the initial distribution of sca
field energy such that forp.p! black holes form during
evolution, while forp,p! all of the scalar field disperses t
infinity. Thus p! denotes the threshold of black hole form
tion for the particular family of initial data under conside
ation. The solution approached in the limitp→p!, called the
critical solution, was also conjectured to be universal, in t
all one-parameter~p! families of initial data having a thresh
old parameterp! should exhibit thesamecritical solution in
the vicinity of collapse. In addition, the critical solution fo
the real scalar field is discretely self-similar, characterized
an echoing exponentD. Since the initial discovery reporte
in @1#, critical phenomena have been observed in numer
systems—see@2,3# for recent review articles on the subjec
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Note that the particular behavior observed in the thresh
solution depends upon the matter model and spacetime
mensionality.

To date, the only nonperturbative calculation of critic
gravitational collapse away from spherical symmetry w
carried out by Abrahams and Evans@4#, who studied the
collapse of pure gravitational waves in axisymmetry~note
that axisymmetry is the ‘‘minimal’’ symmetry one can im
pose on gravitational waves and retain the possibility
black hole formation!. In addition, the threshold of singular
ity formation in a nonlinear sigma model in three dimensio
was considered in@5#, and found to exhibit features simila
to critical gravitational collapse. These studies provide e
dence that critical phenomenais observed beyond spherica
symmetry at the respective thresholds of these two dist
physical systems.

An explanation for critical phenomena, in particular th
observed universality of the solution and departures from
in near-critical collapse, is offered by positing that the cri
cal solution, when perturbed, hasexactly one unstable mod
@6#. That there is only one unstable mode allows the thre
old solution to be found in a numerical collapse ‘‘expe
ment’’ whereby we fine-tune a single parameter of a gene
family of initial data. Furthermore, the nature of the unsta
mode eventually dominates the properties of near-critical
lutions; for example, the scaling exponentg can be shown to
be equal to the inverse of the exponential growth factorl of
the unstable mode.

The purpose of the present study is to move beyo
spherical symmetry and to explore the threshold of bla
hole formation from the collapse of axisymmetric distrib
©2003 The American Physical Society07-1
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tions of the massless scalar field. Linear perturbation stu
of the scalar field critical solution beyond spherical symm
try were carried out by Martı´n-Garcı´a and Gundlach@7# ~a
similar analysis has also been performed by Gundlach@8# for
the case of perfect fluid collapse!. Their study found no ad-
ditional growing modes beyond the one seen in spher
collapse, a result that suggests that we should expect to
the spherical critical solution emerge from our axisymme
studies.

Having looked at a variety of initial configurations of th
scalar field, some deviating significantly from spherical sy
metry, we find that in all cases during the early phases
near-critical evolution, wedo see a discretely self-simila
solution unfold that can be described as the spherically s
metric critical solution plus perturbations. However, in co
trast to the perturbation theory calculations in@7#, we find
some evidence for a second, slowly growing unstable mo
with an angular dependence described by the,52 spherical
harmonic. The simulations suggest that this mode will ev
tually cause a near-critical solution, with some asymmetr
to ‘‘bifurcate’’ into two distinct echoing solutions, which
individually, would subsequently be subject to the same
stability. In principle then, if we could fine tune to arbitra
precision, this bifurcate behavior would be repeated ind
nitely.

The appearance of this second unstable mode is in con
with the above-mentioned perturbative results. One poss
ity is that the nonspherical mode that appears unstable in
simulations is in fact damped in the continuum limit, a
only grows within the context of our discrete numerical a
proximation. Our current code~running on the computer sys
tems to which we have access! cannot provide the accurac
needed toconclusivelydetermine that the growth rate of th
suspect mode is positive in the continuum limit, and n
dominated by truncation error effects.

The remainder of this paper is organized as follows.
Sec. II we briefly describe the relevant system of equatio
the numerical code used to solve them, and various pro
ties of the solution that we will analyze. Details of the fo
malism and numerical technique can be found in@9#. In Sec.
III we describe several of the families of initial data that w
have studied, and present the results from correspon
near-critical collapse simulations. We conclude in Sec. IV
summarizing the results and possible future directions
study.

II. PHYSICAL SYSTEM AND ANALYSIS
OF SOLUTION PROPERTIES

We are interested in solving the Einstein field equation

Rmn2
1

2
Rgmn58pTmn , ~2!

whereRmn is the Ricci tensor,R[Rm
m is the Ricci scalar,

and we use geometric units with Newton’s constantG and
the speed of lightc set to 1. We adopt a massless scalar fi
F as the matter source, with corresponding stress-en
tensorTmn given by
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Tmn52F ,mF ,n2gmnF ,gF ,g, ~3!

and the evolution ofF is governed by the wave equation

hF[F ;m
m50. ~4!

Note that Eq.~3! differs by a factor of 2 from the conventio
of Hawking and Ellis@10#, which amounts to rescalingF by
a factor ofA2.

We restrict our attention to axisymmetric spacetimes wi
out angular momentum, and choose the following cylindri
coordinate system, adapted to the symmetry:

ds252a2dt21c4@~dr1brdt!21~dz1bzdt!2

1r2e2rs̄df2#. ~5!

The axial Killing vector is (]/]f)m and hence all the metric
functions a,br, bz, c, and s̄, and scalar fieldF depend
only on r,z, andt.

We use the (211)11 formalism @11# to arrive at the
system of partial differential equations~PDEs! that we need
to solve, which in the absence of angular momentum is
same set of PDEs that the ADM decomposition provid
The Hamiltonian constraint yields an elliptic PDE for th
conformal factorc, and ther andz momentum constraints
give elliptic PDEs for ther and z components of the shif
vector,br andbz, respectively. We choose maximal slicin
in particular Ka

a50, whereKa
b is the extrinsic curvature

tensor of t5const slices; this condition gives an ellipt
equation for the lapse functiona. We convert the hyperbolic
evolution equations fors̄ and F to first order form by de-
fining ‘‘conjugate’’ variablesV̄ andP by

V̄[
22Kr

r2Kz
z

r
~6!

and

P[
c2

a
~F ,t2brF ,r1bzF ,z! ~7!

respectively.
We thus end up with a mixed hyperbolic-elliptic system

PDES for the eight variablesa, c, s̄, br, bz, V̄, F, andP
that we approximately solve using second-order accurat
nite difference~FD! techniques. The hyperbolic FD equa
tions are solved using an iterative Crank-Nicholson sche
with adaptive mesh refinement~AMR!, and the elliptic FD
equations are solved~on the adaptive grid hierarchy! using
the FAS multigrid algorithm. Att50, we freely specifys̄,
V̄, F, andP, then solve the three constraint equations a
slicing condition for the remaining variables. Aftert50, we
continue to use the momentum constraints to solve forbr

and bz, and the slicing condition fora, but in lieu of the
Hamiltonian constraint, we updatec using the first order in
time evolution equation that follows from the definition o
the extrinsic curvature.~Thus we employ apartially con-
strainedevolution.! We add Kreiss-Oliger dissipation to th
7-2
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differenced form of the hyperbolic equations, to reduce
wanted~and unphysical! high-frequency components in the
solutions. For outer boundary conditions, we apply outgo
radiation ~or Sommerfeld! conditions onF, P, s̄, and V̄,
and appropriate asymptotic fall-off behavior for the rema
ing variables, assuming an asymptotically flat coordin
system.

More details on the boundary conditions, system of eq
tions, and the numerical scheme~including various tests! can
be found in@9#; a detailed description of the AMR imple
mentation is given in@12#.

Analysis of solution properties

In Sec. III we will quantitatively describe the near-critic
solution for any given family of initial data by measuring i
associated scaling exponent (g), echoing parameter (D), the
local minima/maxima attained by the scalar field during ea
half-echo, and deviations of the scalar field from a sph
cally symmetric profile. That wecan define such propertie
for all the solutions is an indication that they are simi
enough that a comparison is meaningful. However, it isnot a
trivial task to compute some of these quantities, because
need to make sure that we are calculating them in a coo
nate independent fashion. Our coordinate system is
‘‘symmetry-seeking’’@13#, and the initial data is sufficiently
different among the various families that we can expect,
in some cases clearly see, ‘‘gauge’’ differences between
lutions that are apparently quite similar.

The simplest quantity to calculate is the scaling expon
g. We use the method proposed by Garfinkle and Dun
@14#, whereby we measure the maximum valueRm attained
by the absolute value of the Ricci scalar,uRu, in a set of
subcritical evolutions;g can then be obtained from the fo
lowing property of near-critical solutions:

lnuRmu'22g ln p̄1w~ ln p̄!1const. ~8!

Here p̄[p!2p andw is a periodic function of its argumen
with period D/(2g) that describes a small ‘‘wiggle’’ super
imposed on an otherwise linear relationship. As a result,
can also use Eq.~8! to obtain an estimate forD. We note that
the effectiveness of our use of Eq.~8! to computeg andD is
predicated on the degree to which our computed near-cri
solutionsare well approximated by a discretely self-simila
solution with a single unstable mode. In addition, althou
Eq. ~8! provides the only method we use to estimateg, we
also measureD using a more direct procedure outlined b
low.

The direct comparison of results from our axisymmet
code to those from a spherically symmetric computation p
sents more of a challenge. In order to compare ‘‘local s
similar solutions’’—portions of the computed spacetime th
appear to be approximately self-similar about some cente
symmetry—we need an invariant way of slicing the spa
time in the region of interest. To accomplish this, we us
sequence of outgoing null hypersurfaces, starting from
local center of symmetry (r,z)5(0,z0), to generate the com
mon slices along which we compareF. To construct each
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such null hypersurface, we evolve a family of null geodesi
with affine parameterx and initial tangent vectors equall
spaced in u[tan21@r/(z2z0)#, outward from (r,z)
5(0,z0). The geodesics are synchronized by settingdx/dt
51 at the start of integration, wheret is the proper time
measured by a timelike observer that is stationary relative
the center of symmetry.t is the time of relevance to critica
collapse, for in coordinates ln(t!2t), wheret! is theaccu-
mulationpoint of the critical solution~i.e., the central proper
time of the central singularity formed by the cascade of
critical solution down to infinitesimally small scales!, the
central value of the scalar field is a periodic function
ln(t!2t), with period D. Estimation of the period of the
profile of F along the local center of symmetry, with respe
to t, thus gives us the alternate method for computingD.

During a simulation, we integratex as a function oft for
each null geodesic labeled byu0[u(x50), and record
F(x,u0) ~we typically use 50 geodesics per slice, linea
spaced inu0). If two solutions from different families of
initial data do locally tend to the same discretely self-simi
solution, thenF(x,u0) ~synchronized so that the null inte
gration is started at the same time within the periodic os
lation! will tend to the same function, regardless of diffe
ences in the (r,z,t) coordinate systems between the tw
solutions.

As a final comment in regards to our analysis, we n
that to calculatet we integrate a central timelike geodesi
and measure proper time along it. We can do this for fami
of initial data that are symmetric aboutz50, for then we
know that the center of symmetry will, at least initially, be
(0,0). An interesting aspect of the numerical solution is t
truncation error effects cause a small drift to occur in thz
location of the local center of symmetry, during a ne
critical evolution. This drift is quite small~and does appea
to converge away with increasing resolution!, typically being
less than 1 part in 106 of the size of the computational do
main. However, because of the exponentially decreas
length scales that arise in a critical collapse, this is ahuge
drift relative to the size of the local self-similar region at la
times. Hence if we simply measured central proper time
(r,z)5(0,0), and correspondingly integrated null geodes
from this location, we would entirely miss the relevant pa
of the solution. Fortunately, the timelike observer initial
placed at (0,0) experiences an identical drift, and so we
use its location and proper time to do the desired meas
ments. For initial data that is not plane-symmetric~the only
such family described in the next section is the ‘‘an
symmetric’’ example! we have not yet been able to devise
method to accurately track the local center of symmetry
long periods of time, and hence have not been able to ca
late t for these families. However, at least at key mome
during the evolution, we are able to accurately determine
center of symmetry~by looking at local minima or maxima
of F, for instance!, to use as the starting point for the nu
integration.

III. RESULTS

Here we present results from the critical collapse of s
eral families of initial data. These families consist of a tim
7-3
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symmetric series of prolate spheroids, with ellipticitye ~de-
fined by looking at surfaces of constantF):

F~0,r,z!5Ae2(r21(12e2)z2),

P~0,r,z!50, ~9!

and an initially ingoing distribution inF that is antisymmet-
ric aboutz50, i.e.,F(t,r,z)52F(t,r,2z):

F~0,r,z!5Aze2(Ar21z22R0)2
,

P~0,r,z!52F~0,r,z!. ~10!

In all cases we sets̄(0,r,z)50 andV̄(0,r,z)50, and vary
the amplitudeA when searching for the threshold solutio
We show results for six families of Eq.~9!, with e250, 1/3,
1/2, 2/3, 3/4, and 5/6. In Eq.~10!, R0 is a parameter describ
ing how far the initial pulse of matter begins from the origi
we have chosenR053. In all cases presented here the ou
boundary of the computational domain is atr5uzu510,
though in other simulations we have varied its position
make sure that the above choice does not significantly im
the results. The base level in the adaptive hierarchy use
resolution of 653129 points, and up to 28 additional 2:1
refined levels were used in the most nearly critical case.
AMR implementation is based on the algorithm of Berg
and Oliger@15#, wherein regridding is determined throug
estimates of the local truncation error~solution error! in the
computed solution. The key control parameter that de
mines placement of refinements is the truncation e
threshold,tm : mesh refinements are introduced in an attem
to keep the magnitude of the local truncation error estim
<tm throughout the solution domain. For each family
initial data studied, we generally tuned to threshold us
three different values oftm , namelytm0 , tm0/2, andtm0/4.
Most of the data presented here are fromtm5tm0/4 runs
~i.e., finest effective resolution!, with the results computed
using the less stringent values oftm then being used to give
some estimate of how close to the continuum solution
may be~though convergence testing with an adaptive cod
not trivial, particularly in the critical limit!.

There are of course, infinitely many different param
etrized families that we could have considered—those u
to generate the results discussed here were chosen fo
following specific reasons. First, the antisymmetric config
ration ~10! provides a more drastic departure from spheri
symmetry than any family of data that can smoothly be
formed into a spherical distribution@such as Eq.~9! by let-
ting e→0]. In this regard we note that one of the charact
istic features of spherical scalar field critical collapse is t
the ‘‘central’’ value ofF oscillates between specific extrem
values6F0; clearly the antisymmetric property of Eq.~10!
allows no such oscillation. One might therefore expect t
evolutions with this type of initial data might produce
qualitatively different critical solution than the spherical
symmetric one. However, as shown in Fig. 1, at thresh
two spherical-like echoing solutions develop off-center az
56zc(t).
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Second, we include the prolate family because the ini
amplitude of the putative second unstable mode seems t
closely related to the prolateness of the initial distributi
~rather, for instance, than asymmetries inF within an im-
ploding spherical shell!. Therefore the parametere in Eq. ~9!

FIG. 1. Several frames ofF(r,z,t) from the evolution of near-
critical, antisymmetric initial data@Eq. ~10!#. The figures span the
first several half-echoes of the local self-similar solutions, and
particular times shown correspond to when the scalar field reach
local minima/maxima. The height of each surface represents
magnitude ofF, and the coordinate domain of each figure
@0•••2.5,22.5•••2.5# in @r,z# ~the axisr50 is the nearest edge
of each plot, and positive to negativez runs from left to right!.
7-4
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allows us to demonstrate the effect of adding more~largere)
or less of the unstable mode. The axisymmetric instabi
once it has grown beyond a certain amplitude, causes a n
spherical threshold solution to ‘‘bifurcate’’ into two echoin
solutions, separated by some distance along the axis. A
example, Fig. 2 shows several time-instants from the n
critical evolution of initial data withe253/4, transformed to
logarithmic coordinates in space to better illustrate the s
similar nature of the initial critical behavior. Note that th
bifurcation is qualitatively different from the two echoin
solutions observed in antisymmetric collapse—there, by c
struction, no self-similar behavior is seen aboutz50, and
there are two~out of phase! echoing solutions from the be
ginning. Furthermore, the initial separation of the two~in
phase! echoing solutions arising from a bifurcation is relat
to the smallest length scale that developed in the sin
origin-centered echoer prior to the bifurcation. In contra
the separation of the two antisymmetric echoing solution
related to a length scale in the initial data. Moreover, if th
really is a second unstable mode, then each of the antis
metric echoers should also be subject to that instability
eventually bifurcate, and we do see some evidence for t

With double precision arithmetic, we are able to tune
initial amplitude of a given family to within a part in 1015 of
threshold@16# corresponding to about three full echoes of t
spherically symmetric critical solution. The growth of th
instability is sufficiently small that after three echoes we
not yet see a bifurcation fore2<2/3; for e253/4 ande2

55/6 we see a bifurcation after approximately 2 and 1
echoes, respectively.

Table I summarizes measurements made of the crit
parameters—namelyg,D, and the amplitude of each echo
F—from thetm0/4 simulations for each family of initial data
~except for thee255/6 case, where the increasing compu
tional demands, resulting from larger, more elongated g
that are produced in the hierarchy for higher values ofe,
prevented us from computing with anything buttm5tm0).
For the two simulations with the largest values ofe, we list
parameters obtained before and after the bifurcation, wh
possible. As with the antisymmetric case, our method of g
desic integration cannot track moving centers, and so
cannot provide a direct estimate ofD after a bifurcation.
Also, for thee255/6 case, we do not see a very distincti
periodic oscillation in the lnRm vs ln p̄ plot, and thus can
only provide a rough guess forD from that information.
Most of the data in this table was gathered from Figs. 3 a
4, which show lnRm vs ln p̄ ~with the linear relationship from
the spherical family subtracted to better differentiate
plots! andFc , the central value ofF, vs logarithmic central
proper time for the prolate families prior to bifurcation, r
spectively. Also, Fig. 5 shows the same type data displa
in Fig. 4, but for the casee50, and with the addition of an
overlay of data obtained with a spherically symmetric 1
code@1#. The good agreement between the results from
axisymmetric and spherical computations provides a m
sure of confidence in the correctness and level of accurac
our 2D code.
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FIG. 2. Several frames ofF( r̄ ,u,t) from the evolution of near-
critical, e253/4 prolate initial data@Eq. ~9!#. Here we have trans-

formed to coordinatesr̄ 5 ln(Ar21z21e0)2 ln e0 ~with e052
31024) and tanu5r/z, to give a better view of the initial self-

similar nature of the solution.@ r̄ ,u# ranges from@0•••'10.8,
0•••p#, with the axisr50 being the nearest edge in each figu
The height of each surface represents the magnitude ofF. The
times shown correspond to the times whenF reaches a local
minima/maxima, demonstrating the bifurcation that occurs a
about two self-similar echoes of the field.
7-5
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TABLE I. Critical parameters of the prolate families~9! and the antisymmetric family~AS! ~10!. g is
obtained from a least-squares fit to the data shown in Fig. 3,^D&1 is the average value ofD measured
between adjacent extremes inFc as shown in Fig. 4~only using data from intermediate times!, ^D&2 is the
average value ofD inferred from the periodic oscillations in Fig. 3, and^uFcu& is the average absolute valu
of the extremes ofFc in Fig. 4 ~again using data from intermediate times!. For the two prolate cases tha
bifurcate—e253/4 ande255/6—we list estimates of these parameters~where possible! before~a! and after
~b! the bifurcation. For the antisymmetric case, we do not have data forFc vs central proper time;̂uFcu& in
that case is calculated as half the averagedifferencebetween subsequent local extremes inF(r50,z,t) about
one of the local self-similar solutions. See the text for a discussion on how the estimated uncertaintie
calculated.

e2 g ^D&1 ^D&2 ^uFcu&

0 0.38262% 3.4461% 3.4963% 0.43162%
1/3 0.38062% 3.4161% 3.4363% 0.43162%
1/2 0.37563% 3.3761% 3.3964% 0.43062%
2/3 0.34663% 3.1361% 3.0864% 0.41963%
3/4~a! 0.31364% 2.8764% 3.0365% 0.39666%
3/4~b! 0.40610% '3 0.4068%
5/6~a! 0.28610% '2 '1 0.3667%
5/6~b! 0.41610% '3 0.36610%

AS 0.38362% 3.4963% 0.43463%
lue
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FIG. 3. Plots of the logarithm of the maximum absolute va
uRmu attained by the Ricci scalar, during subcritical evolution, vs

logarithm of the distance in parameter spacep̄5p!2p from the
~estimated! critical parameterp!, for all families of initial data
considered~using the lowesttm data!. To avoid clutter in the figure,
we have placed the data from each family on one of two ident

panels. To facilitate comparison, the line22g0ln p̄ has been sub-
tracted from each curve, withg050.382~the estimated value from
the e50 family!. Also, the intercept of each curve has been se

p̄50. The estimated linear relationships used to calculateg in
Table I are also shown.
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FIG. 4. The central value ofF as a function of logarithmic
central proper time, from the most nearly critical simulations of t
prolate collapse families. The horizontal axis for each family w
shifted so that the first maximum of each curve occurs at2 ln(t
2t!)50. t! is the accumulation point of each family~prior to the
bifurcation for thee253/4 ande255/6 cases!, calculated byassum-
ing that the intermediate time behavior is discretely self-similar, a
then finding thet! for each case that minimizes the variance inD
computed between pairs of adjacent minima/maxima inFc . To aid
in comparison, dashed vertical lines have been drawn at interva
3.44 in t, which is the estimated spherical echoing exponent.
7-6



as
m

ra
e
o
is
r-
l
ty
n
te
e
a
ar

tio

-

un
lly
n

ri-
l,
e
T

ut
f
d

II,

r-

th
a
a

ved
ed
te,

te

re

we

-
t
ical
,

pen-

wth
as

ture
in
t

en
-

ly

to

tri

l
in

rom
ion
e-
mi-
ror
bels

h

CRITICAL COLLAPSE OF THE MASSLESS SCALAR . . . PHYSICAL REVIEW D 68, 044007 ~2003!
The quoted uncertainty of a given value in Table I w
calculated as the sum of the estimated truncation error fro
convergence calculation using the differenttm runs, and the
standard deviation from the relevant averaging/fitting ope
tion ~except fore255/6, where we could not estimate th
truncation error as we only have data from a single value
tm). However, in a sense these uncertainties are ‘‘optim
tic,’’ for we have not accounted for possible systematic e
rors. Chief among these~in particular away from spherica
symmetry! are the assumptions of discrete self-similari
which was used to definet! in Fig. 4, and the assumptio
that the linear and periodic parts of Fig. 3 are directly rela
to g andD, respectively. For several of the simulations w
have checked that the following numerical parameters
not significant sources of systematic error: outer bound
location, Dirichlet vs Neumann conditions ona, br, and
bz at the outer boundary, and free vs constrained evolu
for c.

Note that our coordinate system isnot adapted to spheri
cal symmetry, and during an evolution ofe50 initial data,
spherical symmetry is only preserved to within an amo
proportional to the truncation error, and so will eventua
exhibit the apparent second growing mode. In a certain se
this is a desirable feature, for at late times during ane50
evolution this mode is the only one~apart from the unstable
spherical mode! that should be visible perturbing the sphe
cal solution; ane.0 evolution exhibits a host of additiona
decaying asymmetric modes that prevent us from easily m
suring the properties of the nonspherical growing mode.
this end, in Fig. 6 we show plots of the maximum absol
value of the,52 (m50) spherical harmonic component o
F, denotedF,2, in near-criticale50 collapse, as measure
along outgoing null slices of the spacetime@in other words,
we decomposeF(x,u0), constructed as described in Sec.
into its spectral coefficients for eachx—the,52 component
is F,2]. We show results from simulations with three diffe
ent values of the maximum truncation error estimatetm ,
demonstrating the expected behavior thatF,2→0 in the
limit tm→0.

We now argue that Fig. 6 also gives some evidence
the instability we do see in the numerical solution may be
actual feature of the continuum solution, and not
truncation-error-driven phenomenon.

FIG. 5. Comparison between results from our 2D axisymme
code (e50 initial data! and a 1D spherically symmetric code@1#.
Plotted is the central value ofF as a function of logarithmic centra
proper time, for the most nearly critical simulations obtained
either case.
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Assume that the numerical solution has a well-beha
Richardson expansion. Then we expect any well-defin
continuum property of the solution, such as the growth ra
l i , of a perturbative mode to have a similar expansion:

l̂ i5l i1h f~xW !1O~h2!, ~11!

where l̂ i is the numerically measured growth rate,h is the
discretization scale~we have assumed a first order accura
discretization!, and f (xW ) is some function of the continuum
solution variablesxW . Of course, in an adaptive scheme the
is no single scaleh; however, individual grids within the
hierarchy do admit Richardson expansions, and hence
can loosely think of Eq.~11! holding over the hierarchy with
some effectiveh that would be related to the maximum trun
cation error estimatetm . In @7#, the real part of the larges
eigenvalue of any nonspherical mode perturbing the crit
solution was found to bel2'20.02; i.e., a decaying mode
and the corresponding eigenfunction had the angular de
dence of the,52,m50 spherical harmonicYm

, . This mag-
nitude of decay is about 100 times smaller than the gro
rate of the dominant spherically symmetric mode, that h
l51/g'2.7. Thus, looking at Eq.~11!, it is certainly plau-
sible that in a numerical scheme, even ifh were small
enough to reasonably accurately model the dominant fea
of a solution~as we evidently are from the comparison
Fig. 5!, it might still be large enough to significantly affec
subdominant features of the solution, such as a smalll i in
Eq. ~11!.

We should then be able to see a significant effect wh
changingh; however, in Fig. 6, even though the initial am
plitude of the asymmetry decreases astm decreases~as ex-
pected!, the apparent growth rate that we obtain, namelyl2
'0.120.4, does not noticeably change within the relative
large uncertainty of the measurement@17#. On the other
hand, we may still be too far from the convergent regime

c FIG. 6. The maximum absolute value of the,52 (m50)
spherical harmonic component ofF,F,2, in near-criticale50 col-
lapse, measured along outgoing null slices of the spacetime, f
simulations with three different values of the maximum truncat
error estimatetm . The graph indicates similar growth rates ind
pendent of the effective resolution. In order to better show the si
larity of the growth rates, the data for the higher truncation er
thresholds have been shifted along the horizontal axis which la
logarithmic central proper time~about23.4 for thet0/2 case and
25.1 for thet0/4 data!. Thus, at similar unshifted times, the grap
indicates that the amplitude ofF,2 decreases withtm , as expected.
7-7
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measurel2 @so that higher order terms in Eq.~11! are still
important#. Note that we also cannot conclusively say th
the growing mode we see has a pure,52 angular depen-
dence, but it appears that the,52 mode is at least an orde
of magnitude larger than any of the other asymmetric mo
we find in the spectral decomposition. However, it must
noted that for computations with any of the three values
tm adopted we use 50 points inu along which we integrate
null curves, and so do not have good accuracy for determ
ing the higher, modes.

In Fig. 7 below we show a plot of the growth rate ofF,2

from e252/3 near critical solutions. This value ofe is the
smallest,nonzerovalue considered that clearly shows grow
of the asymmetry during the roughly three self-similar ec
oes of evolution; in thee251/3 ande251/2 cases, early-
time evolution of the,52 spectral component is dominate
by decaying modes. For thee252/3 data in Fig. 7 we appar
ently are converging to the growth shown; i.e., as was t
case for the spherically symmetric initial data, the grow
does not appear to be truncation error dominated. Estim
of the growth rate from the simulation with the smalle
value of tm gives l2'0.05–0.15. However, this is quite
rough estimate as we cannot disentangle the supposed g
ing mode from the full spectrum of,52 modes contributing
to the plot shown in Fig. 7.

Although we appear to be converging to a growth of t
asymmetry in thee252/3 case, and to a bifurcation for th
e253/4 case, this does not necessarily prove that the sph
cally symmetric critical solution has a second unstable mo
These families are sufficiently aspherical that one can im
ine that the bifurcation is due to some artifact of the init
data—in particular a ‘‘focusing’’ effect, as the wave front
an imploding, prolate distribution of the scalar field will ten
to focus to two locations on the axis, above and below
origin. If this is the case though, it is rather surprising th
we see self-similar collapse occur about a single centerprior
to the bifurcation.

FIG. 7. The maximum absolute value of the,52 (m50)
spherical harmonic component ofF,F,2, in near-criticale252/3
collapse, measured along outgoing null slices of the spacet
from simulations with three different values of the maximum tru
cation error estimatetm . The horizontal axis labels the logarithm
central proper time when the given outgoing null surface inters
the origin. Note the different vertical scales when comparing t
plot to the similar one fore50 in Fig. 6 ~and we havenot shifted
the data here!.
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Finally, in Fig. 8, we show comparisons of the ‘‘radia
profile of the ,52 spherical harmonic component ofF,
measured along an outgoing null geodesic at~approximately!
the same time within a self-similar echo@18#, for the e2

50,e252/3 and antisymmetric near-critical solutions~with
tm5tm0/4). In the plot, the overall amplitude and affine di
tance along each null curve is rescaled so that the maxim
amplitude is one, and occurs at one in rescaled affine timx̄.
That the curves from these representative families do
proximately agree provides additional evidence that we
seeing aunique, asymmetric unstable mode.

IV. CONCLUSION

We have presented results from a first study of scalar fi
critical collapse in axisymmetry in the fully nonlinear re
gime. We find that critical phenomena is observed at
threshold of gravitational collapse of several families
asymmetric initial data. The critical solution that unfolds
threshold can~locally! be described as the spherically sym
metric critical solution found in@1#, with asymmetric pertur-
bations. However, in contrast to the results of@7#, we find
some evidence that a single,52 spherical harmonic pertur
bation doesnot decay with time; rather it grows at a rate o
roughly 1/10 the magnitude of the dominant, spherica
symmetric unstable mode. The nature of this second unst
mode is such that it causes a self-similar threshold solut
with some asymmetry in it, to eventually bifurcate into tw
local, self-similar solutions that again resemble the spher
threshold spacetime. If this second instability is indeed
property of the spherically symmetric critical solution, the
presumably one~or both if the initial data has reflection sym
metry! of the new self-similar solutions would bifurcat
again, and so on, resulting in an infinite, ‘‘random walk’’ o
bifurcations on ever decreasing scales. Thus the second
stability would not completely destroy the universal natu
of generic~axisymmetric! critical collapse, but rather would
alter it in an intriguing, family dependent manner.

To conclusively answer~1! whether thereis a second un-
stable mode, and if so~2! how the bifurcation ultimately

e,
-

ts
s

FIG. 8. The normalized,52 (m50) spherical harmonic com
ponent ofF, measured along an outgoing null geodesic start
from similar times within a~chosen! self-similar oscillation of the
e250,e252/3 and antisymmetric near critical solutions~from tm

5tm0/4 simulations!. To facilitate comparison, we have rescale
the amplitude of each curve so that the maximum is 1, and resc

the affine parameter~labeledx̄) along the null curves so that th

first maxima of each is atx̄51.
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affects the threshold solution, is beyond the capabilities
our current code. First, we are using double precision ar
metic, and this prohibits us from tuning closer than 1 par
1015 of the threshold. Because the echoing exponent of
spherically symmetric solution is~relatively speaking! so
large, 1 part in 1015 can only give us about three, comple
self-similar echoes. This is far from ideal when trying
estimate the growth~or decay! rate of a mode that may hav
an e-folding time on the order of 10–20 echoes. Second,
would like to achieve higher accuracy than we have b
able to attain so far. To do this with the current code w
require that we parallelize it because we have alre
reached the practical limits~in terms of memory usage an
runtime! imposed by the hardware to which we have acce
Alternatively, one could write a code adapted to the spher
critical solution ~for instance using spherical polar coord
nates with a logarithmic radial coordinate!. This would allow
one to obtain greater resolution, with a given amount of
at
sic
do
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f
n-

og
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sources, than what we can achieve with our more gen
purpose cylindrical coordinates. Of course, spherical po
coordinates would not be well suited to following a solutio
beyond a bifurcation, but they should be adequate to st
the growth or decay of perturbations.
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