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Critical behavior of gravitating sphalerons
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We examine the gravitational collapse of sphaleron type configurations in the Einstein-Yang-Mills-Higgs
theory. Working in spherical symmetry, we investigate the critical behavior in this model. We provide evidence
that for various initial configurations, there can be three different critical transitions between possible end states
with different critical solutions sitting on the threshold between these outcomes. In addition, we show that
within the dispersive and black hole regimes there are new possible end states: namely, a stable, regular
sphaleron and a stable, hairy black hole.
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[. INTRODUCTION is a candidate for being a critical solution in the gravitational
collapse of a pure Yang-Mills field. Indeed, this is exactly the
Over the past two decades, substantial effort has beeresult found in[4] where the full evolution equations for the
brought to bear on the study of the gravitating Yang-Mills model were solved. The=1 Bartnik-McKinnon solution is
fields. This research has resulted in the discovery of numethe critical solution that sits on the threshold between the
ous solutions to the coupled Einstein-Yang-MiKiggs  complete dispersal of the collapsing field and the formation
and/or -dilaton equations. These solutions include both of a finite size black holétype | collaps¢& The value of the
black hole and regular or particlelike solutions. In addition tounstable mode for this solution then correctly predicts the
confirming the richness of these nonlinear systems, this workcaling relation for the lifetime of near-critical solutions.
has also been helpful in clarifying the standing of the black In addition to these regular solutions, the Einstein-Yang-
hole uniqueness theorems and various “no-hair” ideas.  Mills equations also admit another countably infinite family
While many of these solutions have been found by solvof solutions, but with a horizon. These black hole solutions
ing the appropriate static equations, it was realized early ORave non-trivial hair outside their horizons and are again
that 'understandlng .the staplllty 'of _these solutions is imporcharacterized by the numbes,, of zero crossings of the
tant in order to ascribe relative S|gn|f|canqe to these solutlonaauge potential. They too are unstable in linear perturbation
within the context of some of the no-hair conjectures. They,q oy vyith ng,, unstable modes from the gravitational sec-
primary means for evaluating stability have been linear Pe%or In agreement with expectations, it has been shown that
turbation analyses of various static solutions. As a resulth —1 solution is also a criticai solutiofs]. But this
many of these static, gravitating Yang-Millscalaj configu- the gy, - sou : '
rations have been found to be unstable to small time_nop-Abghan or colored black hole 50'”“‘”." rather than sepa-
dependent perturbations. rating dispersion and black hole formation as does rihe

That many of these solutions appear unstable in linear” 1 Bartnik-McKinnon solution, sits on the threshold be-

perturbation theory does not necessarily mean that such sBveen two different kinds of dynamical collapse.

lutions are without significance. Indeed, it is now widely — Given this behavior, it is natural to conjecture that other
accepted within the context of gravitational critical phenom-configurations of gravitating Yang-Mills fields should like-
ena that some of these solutions will have relevance as awise exhibit critical phenomena. With that in mind, we con-
tractors in the critical collapse of gravitating fields at thesider here the nonlinear evolution of gravitatir®(2)
threshold of black hole formatiofi,2]. As an example, the sphalerons in the Einstein-Yang-Mills-Higgs theory. We pro-
Bartnik-McKinnon solutions of the spherically symmetric, vide evidence that there can be three critical transitions in the
static Einstein-Yang-Mills equations are a countably infiniteinitial data space. These include the now standard type | and
family of regular solutions characterized by the integer numype Il transitions as well as the transition mentioned above
ber n of zero crossings of the gauge potential. These solubetween different kinds of dynamical collapse on which sits
tions are unstable in linear perturbation theory with tife  a colored or hairy black hole as the intermediate attractor. In
member of the family having unstable modesThus, the the process of examining critical gravitational collapse

n=1 member of this family has a single unstable mode andvithin this system and the formation of such “hairy” black
holes as attractors in the black hole regime, we have also

confirmed the stability of two additional end states of col-
*Electronic address: rsm52@email.byu.edu lapse. One is a regular, gravitationally bound configuration
"Electronic address: ehirsch@kepler.byu.edu of the Yang-Mills-Higgs field forming a stable “sphaleron
IStrictly, this is true if only the radial, gravitational perturbations Star.” The second is a family of stable, hairy black holes
are excited. If additional components of the gauge potential are als@ifferent from those that serve as the critical solutions in the
perturbed(i.e., the sphaleron seciothe nth solution will have & black hole regime. The existence of such stable solutions
unstable modes, the sphaleron sector contributing an additional appears to have been first predicted by Maiggin
unstable modes to those from the gravitational sgf@br The outline of the remainder of the paper is then as fol-

0556-2821/2003/62)/02401712)/$20.00 68 024017-1 ©2003 The American Physical Society



R. S. MILLWARD AND E. W. HIRSCHMANN PHYSICAL REVIEW D68, 024017 (2003

lows. Section Il summarizes the equations which constitute 1T T T
the full evolution problem and our numerical approach to

their solution. Section Il describes the numerical results, in-

cluding results of our parameter space searches, the critical 0.9
solutions and the nature of the stable solutions. Section IV
offers some conclusions and thoughts for future directions.

Sphaleron Star
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Our starting point in studying the gravitational collapse of 0.7 - o R
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WhereFZV is the Yang_Mi”S field strength tensor gi\/en by FIG. 1. This p|0t is of the initial data Space and illustrates the
end states of collapse as the widthand centerx of the initial

Fiy: %Ai_ aVA"Z+ éabCAzA‘;, (2) Yang-Mills field are varied. The Higgs field is in the “bland” con-
figuration, i.e.,6=10 andAy=0. The filled hexagons give the

D, is the gauge covariant derivative whose action on thédoundary between the formation of the sphaleron star solutions and

Higgs doubletd is the Schwarszchild black holes. The filled triangles represent the
boundary between the formation of the sphaleron stars and the hairy

D, o=V, P+A,P, 3 black holes. The open hexagons depict the hairy critical solutions

on the boundary between the Schwarszchild and hairy black holes.

and the potential/ is taken to be Near these critical solutions, the type is depicted not only by the

existence of the stable hair, but also by the transient hair either
dispersing or falling down the horizon. Note the similarity between
this and Fig. 4 of5]. Each point depicted on the plot represents an
evolution in which|p—p*|<1075. For each evolution we used
Varying the action with respect to the metric, the field 10401 mesh points and a Courant factor of 0.5 along wyith0.1
strength and the Higgs field result in the Einstein equationgnd\=0.5.

and the curved space Yang-Mills and Higgs equations, re- i , )
spectively. These are to related work of others in the field. For the coordinate

system, we will work in maximal, areal coordinates. If the

A
V(|03 = Z(TD—7?)2 @

1 i . ., 1 . : general form of the spherically symmetric metric is written
— aa,
_SWGGMV_EZ F/.L)\FV _Zg:‘“’FaBF B +(DM(D) DV(I) as
—(_ .2 202 2 2 2A4 2 2,24 2
_%QW(DACD)TD}\(D_QWV(@F) (5) dSZ—( a“+a“Bo)dt +2apdtdr+adro+br-deo
+ b2?r?sir? 6d ¢ (8)

V FaY 4 NP Feu 1 tr([ 79, 78] FOHY
where the metric components depend onlytaandr, the

1 v\ T —_HT v R . . .
=:[(D"®)'r*d - & D D] (6) choice of areal coordinates amountsbte 1 while choosing
u _ N 5 maximal time slices corresponds to the vanishing of the trace
DD, P =\ D (P D= 7). (M) of the extrinsic curvatureK =0.

With these general forms for the equations of motion, we For the Yang-Mills field, the most general form for a
genera € €q ) ' 'spherically symmetric gauge potential is the Witten ansatz
make some simplifying assumptions. In particular, we WI||[8]_

restrict ourselves to spherically symmetric gravitational col-

lapse and work exclusively with @U(2) gauge group. We _ ~

also make the assumption that the Higgs field lives in the A=undttordrtwryt(w=1)7,]d0
fundamental representation &U(2). The corresponding +[(1-W) 7o+ W7,]sin6de 9
flat space version of this theory includes the so-called sphale-

ron solutiong 7]. We also seg=1. where 7; (i e{r,0,¢}) are the spherical projection of the

Our intent is to solve the full set of nonlinear, evolution Pauli spin matrices and form an anti-Hermitian basis for the
equations representing gravitational collapse. In order to dgroupSU(2) satisfying] 7;, 7j]= €jj 7. With this ansatz for
this numerically we must fix both the coordinate freedomthe gauge potential there is some gauge freedom that allows
and the gauge freedom in our model. There are, of coursais to simplify its form: namely, the potential is invariant
numerous possibilities, but we will try to hew fairly closely under a transformation of the fortd=e?(t" " We can fix
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FIG. 2. This plot shows a sequence of snapshots of a typical “sphaleron star” evolution. The majority of the fields disperse within the
first few frames after which the regular solution emerges and begins to settle down. Notice that times 700—1400, 2100-2800, and 3400—
4100 show the maximum, median, and minimum values of three different oscillations. As can be seen, the first oscillation is quite
pronounced, whereas by the third the amplitude of oscillation is negligible and we are approaching a static, stable solution. The solution
would appear to be the same to within a few percent for any values of the initial data that do not produce a black hole. The mass of the final
sphaleron star solution is-(10—20)% of the mass of the initial configuration. Note that in setting the scale of the vertical axis, the top
portions of the fields in the first two frames have been cut off. This has been done to emphasize the damped oscillations in subsequent frames
showing the stable solution. For this evolution, we used 10401 mesh points and a Courant factor of 0.5 alongOMttand\ =0.5.

some of that gauge freedom by choosing0. This choice and though not strictly spherically symmetric, results in a
effectively eliminates the dependence in the above gauge spherically symmetric energy densit§]. We will consider
transformation. If we choose to work within the so-calledin this work only the case in whicli=0. This is not a gauge
“magnetic ansatz” we can fix the remaining freedom in the choice but an additional assumption made merely to simplify
following way. It can be shown that in this ansatz, the com-the resulting equations and dynamics. A similar thing is
ponentu is a function only ot, i.e., it is now pure gauge and done, for instance, if9,10].

can be set to zero as part of our gauge fixing. The remaining With these assumptions, the evolution equations for the

fieldsw andw under the remaining constant gauge transfor-Yang-Mills field become
mations are merely sent into linear combinations of each
other and hence we can fix the last bit of gauge freedom by

~ o
settingw=0. This leavesv as the sole non-zero component w=ZP+8Q (11)
of the gauge potential, the same form a$driL0].2 Our form
for the Higgs field, taken from9], is

!

Q

(12)

a
oo tonmn)  w
_E('yl_ ) 1 (10

. a |\’ aw ~ aad , ~
P=(,8P+5Q +— (1—w2)—772(w—1)

2If we had chosen not to work within the restriction of the mag- ' (13)
netic ansatz, our gauge freedom would only have allowed us to set
v =0 leaving us with three Yang-Mills functions which would need
to be evolved9,11]. while the evolution equations for the Higgs field are given as

a
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FIG. 3. This plot shows two near-critical solutions on the boundary between the Schwarszchild collapse and sphaleron star formation.
The critical line between these two possibilities is characterized by the quasi-static regular solution visible betdZandt=138. This
solution acts as an attractor for both near-critical evolutions. The final state is determined by the initial data values and is reflected in the
evolution away from the attractor. In the one césalid line), the majority of the configuration collapses to form a Schwarschild black hole
with a mass gap consistent with type | transitions: {46). In the regular, sphaleron cagkashed ling about (80—90)% of the mass
disperses, leaving a stable, bound state with mass independent of the initial data and location along the critical line. The final, stable
sphaleron star is fundamentally different from the quasi-static solution that acts as the attractor. Note that for visualization purposes, we have
rescaled the vertical axis of the last four frames. In all frames, the horizontal axis remains unchanged and measures logarithmic radial
coordinate. In addition, all fields are plotted so as to be exterior to any horizons. The gap present in the final seven frames for the evolution
indicated by the solid line is intended to denote this together with the fact that the final solution on the black héselgidine) is
Schwarzschild. For this evolution, we again used 10401 mesh points and a Courant factor of 0.5 alayg Ovithand\ =0.5. The width
of the Yang-Mills kink iss=0.8 and the binary search was over the center of the kink,

=26+ 8E 14 B2 2 g 2 Gas-3
’y—a +B () a =«a E—F+T2—a—+T+7Ta’(—p)
(17)
. o !
E=(—G+,8E) (15 1—-a%2 3
a a'=a +zra’kK'?+47Grap (18)
2r 8
.17, a " aay ~ )
G=r2|r7| BGH+E|| —5z(Ww=1) I 1[PQ 1
r a r K" =— K +87G=|—+_-EG (19
r alr 4
- Eaﬁw( y*=27°) (16)
2 ’ B=arK?,. (20)

where, as usual, overdots, and primes denote differentiatiolhe matter stress-energy terms in these equations are given
with respect tot andr, respectively. Both of these sets of by
evolution equations are supplemented with the first order
.. ~, , . P2+Q2 E2+GZ
definitionsQ=w’ andE= vy’ as well as the constraints on +57= " 21)
the metric components coming from the Einstein equations a‘r? 4a°
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FIG. 4. This sequence of snapshots shows a typical evolution of a stable, hairy black hole solution at a generic point in the phase space.

The first several frames show the partial dispersal of the initial fields and the formation of the black hole solution. In particular, times
2970-3090, 5550-5670, and 7885—8005 show the maximum, median, and minimum values of three oscillations. As can be seen the first
oscillation is quite pronounced, while by the third, the solution is obviously settling down, ostensibly to a stable, hairy black hole. As in the
previous figure, all fields are plotted so as to be exterior to any horizons. The gap in the solution in most of the frames for the evolution
indicated by the solid line is intended to denote this. This run was done using 10400 points with a Courant factor of 0.5 and again with
7=0.1 and\=0.5.

4

CWP=1)? HAw—-1)2 N P=-Q (25
pS = T b (2 (@2
. a !
- Q=||=-58]|Q (26)
1 (w?—1)2 a }
S%=£z<ez—E2)+—4r4 — 35 ¥’ 27)?
1 a
3 G=- B;—l)(v—ﬁm (27)
. PQ EG
T 2 T '
E= (ﬁ—g E+;[v—ﬁn]) . (29)

Boundary conditions are implemented by demanding
regularity at the origin and requiring the presence of only
outgoing radiation at large distancésee[5]). The resulting It should be noted that there is only one vacuum value for
constraints on the metric components requise(t,0) both~the Yang-Mills and Higgs fields. That is to say at infin-
=a’(t,0)=B(t,0)=K(t,0)=0. The matter fields may sat- ity, w=1 and y= J27. This can be contrasted with the
isfy one of two possible regular configurations at the origin:-model of[5] in which there are two vacuum states for the
either (t,0)=0 and w(t,0)=—1 or 9'(t,0)=0 and Yang-Mills potential in the absence of the Higgs field. For
he initial pulse, we use a “time-symmetric kink” as [B]

w(t,0)=1. These two choices correspond to the odd an .
or the gauge potential, namely,

tant{ =] (29

“tanf — (29

even node solutions, respectivdl9]. In order to find the
critical solution we choose the former and look for the solu-
tion with a single unstable mode. The outgoing conditions w(0y)=

1+a] 14 2620197
require that at the edge of our grid, S
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FIG. 5. This plot shows two near-critical evolutions on the border between the Schwarszchild and hairy black hole formation. The critical
line between these two possibilities is characterized by a family of black holes parametrized by their horizon radius and possessing
non-trivial Yang-Mills-Higgs hair outside the horizon. These colored black holes serve as the attractors for these two types of collapse and
can be seen here between4l1 andt=166. The final state of the collapse can be distinguished by the subsequent evolution of the fields
away from the attractor. On the Schwarzschild sithe solid ling, the hair falls into the horizotatt~204), adding to the mass of the black
hole, and resulting finally in a Schwarschild black hole. On the hairy &l dashed ling the majority of the hair disperses to infinity.
However, between 10 and 20% of the initial mass of the syd@epending on where one is along the critical Jimemains behind,
eventually settling down and forming stable, Yang-Mills-Higgs hair outside a black hole. Note that the horizontal axis is the natural logarithm
of the radial coordinate and that in the final four frames, the vertical axis is rescaled to visualize better the remaining hair in the hairy case.
Again, all fields have been plotted so as to be exterior to any horizons. Tk® gegsent in the plotted solutions is intended to denote this.

This evolution used 10401 mesh points, a Courant factor of 0.5 and agaip=h@dL and\ =0.5. The width of the Yang-Mills kink is
=0.7 and the binary search was over the center of the kink,

w(0r)=0 (30) represent the gmplitude, center, and width of the Gaussian
pulse, respectively. These initial data parameters for the
Yang-Mills and Higgs fields will constitute our initial dataset
and will be used when tuning our evolutions to the critical
solutions.
Our numerical approach closely follows that [&]. We
use a uniform grid recognizing that we will not have suffi-
r , cient resolution to investigate type Il collapse in a com-
y(0r)= \/EﬂtanthrAH e (r—ro)*/d (31)  pletely satisfactory way. Nonetheless, we have indications
verifying the existence of type Il behavior in our model. For
this paper, therefore, we focus our primary interest on the

where the parametes and b are chosen so that(0,0)=
—1 andw’(0,0)=0. The parameters ands are the center
and width of the kink, respectively.

The Higgs field is initialized as

¥(0r)=0 (32)  black hole transition and the dynamics occurring within the
black hole regime.
where the parametef is usually set tos=10. This is pri- We use an iterative Crank-Nicholson scheme for the evo-

marily due to the fact that varying does not significantly lution equations while for the constraints, we simply inte-
change the final result of the collapse. As a consequence, wgate outward from the origin. As we want to consider evo-
perturb the Higgs field via a Gaussian pulse. Similar to thdutions that extend to the future of the black hole formation,
initialization for the Yang-Mills field, the parametefs, , r, our use of maximal slicing is crucial. In our coordinates, the
and d which describe the initialization of the Higgs field apparent horizon equation is an algebraic relation
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FIG. 6. This plot is of the initial data space and illustrates the FIG. 7. This plot is of the initial data space and illustrates the
end states of collapse as the widthand centerx of the initial end states of collapse as the widthand centerx of the initial
Yang-Mills field are varied. The Higgs field is in the “pulse” con- Yang-Mills field are varied. The Higgs field is in the “pulse” con-
figuration, i.e.r,=20, d=1.05, andA,,=0.03. The filled triangles  figuration, i.e.r,=20, d=1.05, andA,=0.06. The filled triangles
represent the boundary between the formation of the sphaleron stamspresent the boundary between the formation of the sphaleron stars
and the hairy black holes. The open hexagons depict the coloreand the hairy black holes. The open hexagons depict the colored
critical solutions on the boundary between the Schwarszchild andritical solutions on the boundary between the Schwarszchild and
hairy black holes. Near these critical solutions, the type is depictethairy black holes. Near these critical solutions, the type is depicted
not only by the existence of the stable hair, but also by the transientot only by the existence of the stable hair, but also by the transient
hair either dispersing or falling down the horizon. Note the lack ofhair either dispersing or falling down the horizon. Note the lack of
filled hexagons, existent in Fig. 1, which would represent a type ffilled hexagons, existent in Fig. 1, which would represent a type |
transition from the sphaleron star to the black hole formation. Thugransition from the sphaleron star to the black hole formation. Thus
there is no triple point found in this slice of phase space. Each pointhere is no triple point found in this slice of phase space. It is easy
depicted on the plot represents an evolution in whiph-p*| to see that the seperation of the sphaleron solution from the
<10 °. For each evolution we again used 10401 mesh points and Schwarzschild black holes has increased from Fig. 6. Each point
Courant factor of 0.5 along witlp=0.1 and\ =0.5. depicted on the plot represents an evolution in whiph-p*|

<10 5. For each evolution we again used 10401 mesh points and a
arKab,: 1. (33) Courant factor of 0.5 along witlp=0.1 and\ =0.5.

o _ language written expressly to aid the differencing and solu-
We use the same black hole excision technique developed ibn of partial differential equations.

[12] and used if5]. As discussed there, we set a threshold
value slightly larger than 1 such thatéer“’a exceeds that
value for certain grid points, we discard those points at future
time steps considering them inside the apparent horizon. At In attempting to evolve these equations, it quickly became
the boundary of this region, we need no new boundary conelear that the size of the initial data sets that could be varied
ditions for the evolution equations. For those variabless somewhat unwieldy and we had to make choices in order
solved via constraint equations we either switch to solving ario restrict the possible sets of initial data parameters. Al-
evolution equation subsequent to the formation of a horizothough we have performed numerous evolutions by varying
or we “freeze” the variable(e.g. a) such that it retains the the elements of different sets of initial data parameters, we
value it had when the horizon form¢8]. As a result, though will focus on the evolution of two sets of parameters to high-
we can observe matter falling into the horizon, we cannotight our results. Other sets would appear to give qualita-
comment on any dynamics within the apparent horizon as thtively similar conclusions. When we evolve these equations,
evolution is effectively frozen for values of the radial coor- we confirm many of the same aspects that have come to be
dinate less than the horizon radius. This procedure thus akxpected in similar models. However, there are, at the same
lows us to evolve past the formation of the black hole andime, a number of unexpected surprises.
thereby investigate such things as the final end states as well To begin our examination of the dynamics of this model,
as the critical dynamics in the vicinity of transition regions. we consider varying two parameters describing the initializa-
We have tested the resulting code and shown it to bdion of the gauge potential, namekyands, the center and
second-order convergent and to conserve mass. It also repreidth of the kink, respectively. The amplitude of the perturb-
duces the results ¢6] in the limit where the Higgs field and ing Gaussian pulse for the Higgs field is set to zehg,
its coupling vanish. Finally, we note that we made extensive=0, and the width of the tanh function describing the Higgs
use of RNPL(rapid numerical prototyping languagl3], a field is §=10. We call this configuration the “bland” Higgs

Ill. RESULTS
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FIG. 8. This is another plot of the initial data space and illus- FIG. 9. This is another plot of the initial data space and illus-
trates the end states of collapse as the walti the initial Yang-  trates the end states of collapse as the wldf the initial Yang-
Mills field and the amplitudé\,, of the Higgs pulse are varied, with Mills field and the amplitudé\, of the Higgs pulse are varied, with
ro=20, d=1.05, andx=1.8. This plot intersects Fig. 1 at the line fo=20, d=1.05, andx=2. This plot intersects Fig. 1 at the line
defined byx= 1.8 andA,,=0. It should be noted that the structure defined byx=2 andA,=0. It should be noted that the structure for
for negative values o, is symmetric across theaxis. Again, the  negative values oAy is symmetric across the axis. Again, the
filled hexagons denote the boundary between the sphaleron staided triangles represent the boundary between the sphaleron stars
and the Schwarzschild black holes, the filled triangles represent th@nd the hairy black holes while the open hexagons denote the loca-
boundary between the Sphaleron stars and the hairy black holé@ﬂ Of the Critical Solutions Separating the SChWarSZChild and hail’y
while the open hexagons denote the location of the critical solution§lack holes. Note that the overlap of some of the polygons denotes
separating the Schwarszchild and hairy black holes. In this mixe@nly that the boundaries are near one another, not that they overlap.
phase space, we find a small region in which we have a type In this mixed phase space, we find no region with a type | transi-
transition. As a result, it would appear that this portion of the initial tion. As a result, it would appear that this portion of the initial data
data space contains a triple point. Note the difference in the limit$Pace does not contain a triple point. Note the similarity in the
of the vertical axis in this and Fig. 1. Each point on the respectivdimits of the vertical axis in this and Fig. 1. Each point on the
critical lines represents a critical solution at a leyph p*|/p* respective critical lines represents a critical solution at a I¢pel
<10°5. For each evolution we again used 10401 mesh points and a P*|/p* <10°. For each evolution we again used 10401 mesh
Courant factor of 0.5 along witly=0.1 and\ =0.5. points and a Courant factor of 0.5 along with=0.1 and\ =0.5.

field. Note that in this section, all the pictured results are forchange in the dynamics from those similarly exhibite@iSh
values of the Higgs coupling parameterg=0.1 and\  The collapsing matter forms a black hole with finite mass
=0.5. A region of this slice of the phase space is shown inyhich, after the residual fields have dispersed to infinity,
Fig. 1. settles down to the Schwarzschild solution. On the type |
On varying the center and width of the Yang-Mills poten- critical line separating the black hole formation and the
tial, w, one finds three distinct regions of the initial data sphaleron star configuration, we find a regular sphaleron as
space. These correspond, a$5h to two distinct black hole the critical solution analogous to the Bartnik-McKinnon
regions, and a “dispersive” region in which no black hole =1 solution. An example of the critical behavior at this type
forms. On the boundaries between these regions sit appropiii-transition is given in Fig. 3 in which a sub-critical and a
ate critical solutions. It is worth noting, however, that in the super-critical evolution are shown.
region in which no black hole forms, we no longer observe  Within the other black hole region, however, there are
the complete dispersal of all the matter fields. Instead, whilsome new features. As %], this region is again character-
a majority of the fields do escape to infinity, a nontrivial ized by the dynamical formation of a black hole with finite
portion of the fields forms a bound state, or “sphaleron star."mass. As the critical line which separates dispersion
Shortly after formation, this solution oscillates rapidly, but strictly, the sphaleron star formatipfrom the black hole
settles down to what appears to be a static solution. Longegion is approached, the mass of these black holes begins to
evolutions witht~3000M (with M the initial mass of the decrease such that we interpret the critical transition as type
spacetimg confirm the stability of this solution. The mass of II. However, the black holes that form away from the critical
this stable star is, to within a few percent, independent of anjine after the transient hair has dispersed to infinity do not
of the initial field parameters. The solution and its mass dcsettle down to the Schwarzschild black holes. Instead, the
appear to depend on the coupling parametgand \ [6].  final end state would appear to be a stable, colored black
Snapshots of a typical evolution in the dispersive regime aréole with non-trivial Yang-Mills and Higgs fields outside the
shown in Fig. 2. event horizon. This, of course, is analogous to the sphaleron
In one of the black hole regions, we note no significantstar that forms in the no-black-hole region of this system

024017-8



CRITICAL BEHAVIOR OF GRAVITATING SPHALERONS PHYSICAL REVIEW D68, 024017 (2003

1 |_ T T T T T T T T T T IA T T T T 1] I T T T T T T T T T ] T T T ‘_

r ] 2.4 B —

L Sphaleron Star . _ 3 .
0.9 L P - L Sphaleron Star . N
w C Hairy 1 b L N
- . E 22 a —

0.8 — < — L 4
R 4 2 4 a a ] L . Hairy 4
0.7 L o 2 . - o ° a
o ° ° ° o o o o ° © ] le . c‘) ° o °© 4

i ] I Schwarzschild |

C Schwarzschild ] i 7

0.5 I AU S AN AAT N RRNN T W RN RRN L v b v e e b |
0 0.02 0.04 006 008 0.1 0 0.02 0‘042 0.06 0.08

A H

H

FIG. 10. This is another plot of the initial data space and illus-  FIG. 11. This is another plot of the initial data space and illus-
trates the end states of collapse as the wiltt the initial Yang-  trates the end states of collapse as the centérthe initial Yang-
Mills field and the amplitudé\, of the Higgs pulse are varied, with Mills field and the amplitudé\ of the Higgs pulse are varied, with
ro=20, d=1.05, andx=2.4. This plot intersects Fig. 1 at the line fo=20, d=1.05, ands=0.8. This plot intersects Fig. 1 at the line
defined byx=2.4 andA,=0. It should be noted that the structure defined bys=0.8 andA,=0. It should be noted that the structure
for negative values o, is symmetric across theaxis. Again, the ~ for negative values of, is symmetric across theaxis. Again, the
filled triangles represent the boundary between the sphaleron stafided hexagons represent the boundary between the sphaleron stars
and the hairy black ho|es Wh||e the Open hexagons denote the |00§nd the SChW&I’ZSCh”d bIaCk h0|eS W|th type | transitions, the f|"ed
tion of the critical solutions separating the Schwarszchild and hainjriangles represent the boundary between the sphaleron stars and the
black holes. In this mixed phase space, we find no region with dairy black holes while the open hexagons denote the location of
type | transition. As a result, it would appear that this portion of thethe critical solutions separating the Schwarszchild and hairy black
initial data space does not contain a triple point. Note the similaritynoles. In this mixed phase space, we find a small region in which
in the limits of the vertical axis in this and Fig. 1. Also note the type | behavior borders the region of the sphaleron star formation.
increased seperation between the sphaleron solutions and t#¥s a result, it would appear that this portion of the initial data space
Schwarzschild black holes, compared to the previous two figurestontains a triple point. Each point on the respective critical lines
Each point on the respective critical lines represents a critical solutepresents a critical solution at a leypt-p*|/p* <10™°. For each
tion at a level|p—p*|/p*<107°. For each evolution we again evolution we again used 10401 mesh points and a Courant factor of
used 10401 mesh points and a Courant factor of 0.5 along svith 0.5 along with7=0.1 and\=0.5.
=0.1 and\ =0.5.

Polyakov monopoles. For certain values of the coupling, the

rather than the complete dispersal of the fields se€fbin  monopoles can have a black hole form at their center.
The basic dynamics in this case are illustrated in Fig. 4. The For the solutions near the threshold separating the black
collapsing configuration forms a finite mass black hole withhole formation and dispersion, we find hints that these are
a significant portion of the remaining field escaping to infin-indeed type Il critical solutions and that the black hole mass
ity. Nevertheless, some of the hair remains behind and withiscales as expected. However, we stress again that our unigrid
the vicinity of the event horizon. This hair oscillates for code is not able to settle this issue definitively and that it
some time and eventually settles down to a stable configuraawaits additional study.
tion. Evolutions of the order af~3000M show no appre- We are able, though, to consider the transition between
ciable diminution or instability in the fields. the different types of dynamical collapse in the black hole

The mass of the hair in these black hole solutions alsgegime. Again, we find a family of critical solutions separat-
seems to be independent of the initial data parameteréng the Schwarszchild and hairy black holes. These critical
Though the radius of the black hole will vary with the initial solutions are themselves sphaleron black holes parametrized
parameters, the exterior mass remains unchanged. This oby their horizon radius such that as one moves away from the
servation is consistent with and similar to that for the sphale“triple point” in Fig. 1, the radius increases. On the hairy
ron stars in which a single stable, regular solution is foundside of this line, near-critical evolutions have dynamics de-
throughout the no-black-hole region. In addition, like their scribed above with the collapsing configuration forming a
regular counterparts, the black hole solutions will depend omlack hole of finite mass with non-trivial hair outside. How-
the parameterg and\. Curiously, the mass of this exterior ever, as the transition between the hairy and Schwarszchild
hair is very nearly the same value as the mass of the sphalblack holes is approached, there is an intermediate
ron star. Thus, in one sense, these hairy black hole solutiorslution—a hairy black hole—which forms and to which the
can be thought of as sphaleron star solutions within whictevolving solution is attracted. This intermediate solution is
the central density increases to the point where a horizonnstable and eventually collapses. For initial configurations
forms. This is similar in turn to gravitating 't Hooft— on the hairy side, the collapse is distinctive in that very little
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FIG. 12. This is another plot of the initial data space and illus- FIG. 13. This plot gives the elapsed tinfes measured by an

trates the end states of collapse as the centdrthe initial Yang- observer at infinity spent by an evolving configuration in the
Mills field and the amplitudé\, of the Higgs pulse are varied, with sphaleron regime as the critical line sepe_lratl_ng the Schwarszchild
ro=20, d=1.05, ands=1.0. This plot intersects Fig. 1 at the line black holes _and the sph_gleron sta_r formatlo_n is app_roached: On the
defined bys=1.0 andA,=0. It should be noted that the structure black hole side of the critical solution, there is a scaling relation for

. . o . ; .
for negative values o\, is symmetric across theaxis. Again, the the time given byT=-—\|p—p*| where \, is the inverse

filled hexagons represent the boundary between the sphaleron Stér)éapuno_v expo_nent of the corresponding unstable mode of the criti-
and the Schwarzschild black holes with type | transitions, the filled“faI solution sitting on the thre;hold between the black holg forma-
triangles represent the boundary between the sphaleron stars and and sphalerqn star formation. In thg current case, we find from
hairy black holes while the open hexagons denote the location of ‘eastsquares fit thag =4.271). Wedefine the elapsed timigas

the critical solutions separating the Schwarszchild and hairy bIacthf time frgmf the ?eglﬂnlng of tlhe_ evolution unéll the pulse crosses
holes. In this mixed phase space, we find a small region in Whicﬁ_40' As before, for these evolutions, we used 10401 mesh points

type | behavior borders the region of the sphaleron star formatio gnd a Courant factor of 0.5 along witp=0.1 andh =0.5.

As a result, it would appear that this portion of the initial data space

contains a triple point. Each point on the respective critical lines  So far, our entire description has been within the context
represents a critical solution at a leypl-p*|/p* <10"°. Foreach  of varying two of the initial data parameters that describe the
evolution we again used 10401 mesh points and a Courant factor Qfang-MiIIs field, while keeping the values of the Higgs pa-

0.5 along withz=0.1 and\ =0.5. rameters fixed. The natural thing to do is to extend our search

L . into phase space regions in which we vary one Yang-Mills
.of.the. exterior f'el.ds.f"?‘"S mtp the black hole. Rather, some .ngarameter and one Higgs parameter. We choose to vary the
it is dispersed to infinity while the remainder reconstitutes in

X . . : amplitude of the Higgs field along with the Yang-Mills pa-
a new and different colored configuration outside the bIaCI(rameters. It should be noted that we could choose to vary the

hole already present. This is shown in Fig. 4 for a generic . . . L
collapse in the hairy regime as well as in the last frames o entgr or width of the Higgs pulse. B.Ut’ n prde;r to minimize
he size of the phase space under investigation, we explore

Fig. 5 for a near-critical evolution. . : )
On the Schwarszchild side of the critical line, similar '€9iONs where the width and center are fixed at the values 20

near-critical evolutions exhibit the same early time dynamicd 1.05, respectively. These regions of the phase space are
with the formation of a finite mass black hole and the ap-Shown in Figs. 8-12. Note the existence of the triple pointin
proach to the intermediate hairy black hole. However, as th6°Me regions, and its absence in others. This suggests that, in
critical line is approached, this unstable black hole now col-our three dimensional phase space, this triple “point” is not
lapses and loses most of its hair into the black hole causing /& true point, but is a line of finite extent.
to grow in size. A picture of both collapse dynamics is shown Finally, we note that the critical solutions separating the
in Fig. 5. Schwarszchild black hole formation from the sphaleron star
If we allow the amplitude of the Higgs field to be non- formation and the two types of collapse exhibit time scaling
zero, i.e., explore the “pulse” Higgs configuration, we seeas would be expected. As the single, unstable mode charac-
that a slightly different phase space structure exists. Theeristic of each critical solution is tuned out, near-critical
sphaleron star region of the space is completely bounded bgolutions spend increasing amounts of time as measured by
a type |l critical transition. The Schwarschild black holes noan asymptotic observer on the critical solution. These scaling
longer make a critical transition into the sphaleron stars. Infelations are given by~ — \In|p—p*| where\ is the char-
stead, the hairy black holes exist in a thin shell dividing theacteristic time scale for the collapse of the unstable critical
Schwarschild and sphaleron solutions. Thus, in these slicesolution. It corresponds to the inverse Lyapunov exponent of
of phase space, the triple point is not present. This is showthe unstable mode. Such scaling relations specific to points
in Figs. 6 and 7 for amplitudes of 0.03 and 0.06, respectivelyon the relevant critical lines are shown in Figs. 13 and 14.
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250 T end state in spherical symmetry was always a Schwarzschild
r 1 black hole. Within one region, the end state is always a
r 1 Schwarzschild black hole with the exterior gauge and Higgs
. fields either falling into the existing black hole or dispersing
- to infinity. In the other region, the final black holes are stable,
=00 - ] hairy black holes. It is worth reemphasizing that the colored
" black hole solutions sitting on the critical line separating the
. types of black hole collapse are not the same as the stable,
- colored black holes that are the final end states in one of the
150 - supercritical regions. This can be seen most easily in Fig. 5.
L 4 It is also noteworthy that the existence of all the solutions
L . 4 which we find is contingent on the magnetic ansatz within
L 1 which we have chosen to work. In general, both the regular
L . and colored black hole solutions which we find to be the
oo bl by Lo b b a | stable end states of collapse are expected to be unstable
-3 -30 -5 —20  ~—15 10 based on a linear perturbation analyfsi§]. However, such
Infp-p* an analysis assumes that both the gravitational and sphaleron
FIG. 14. This graph gives the elapsed tifas measured by an sectors in the theory are perturbed. Our evolutions perturb
observer at infinity spent by an evolving configuration in the hairy only the gravitational sector. It is reasonable to assume that
black hole region as the critical line separating the Schwarszchilqhe stable solutions which we find will become unstable on
and hairy black hoIe; is approached. As the critic_al solution is_e_lp- erturbation of the Yang-Mills gauge field away from the
proached, the evolution spends more and more time on the criticgh» g netic ansatz. We hope to address this issue in future
solutllon qnd we expept a Iln.ez.ir relationship between that time an ork.
logarithmic distance in the initial data spack=—._|p—p*|. Another noteworthy issue is the structure of the initial

The slope of this line\,_,, is the inverse Lyapunov exponent of o . .
the corresponding unstable mode of the critical solution. From agata space. A curiosity of our current results is that the triple

least squares fit, we find=5.271). The time on theritical solu- point Is not present In every t\No-dlmens_lor_1aI slice (_)f_the_
tion is defined as the time between the beginning of the evolutioﬂ)hase space, but st_aems to be Prese”t within some finite in-
until the pulse in the type Il case crosses40. As before, for these  (€7vVal. As a result, in some regions of the phase space the
evolutions, we used 10401 mesh points and a Courant factor of 0.8oundary between the regular end states sphaleron star

along with =0.1 and\ =0.5. formation herg¢ and the black hole formation is taken up
entirely by a type Il transition.
IV. DISCUSSION Nonetheless, given the structure of the initial data space,

) N ~one can draw an analogy with the gravitating monopole case

We have presented evidence for critical phenomena in thg, \which a small black hole can form within a 't Hooft—
gravitational collapse 08U(2) sphaleron configurations of polyakov monopole coupled to gravity. This stable object
the Yang-Mills-Higgs fields. In many respects, this collapsecan be rendered unstable above a maximum value of the
is qualitatively similar to that in the Einstein-Yang-Mills sys- horizon radius at which point the exterior Yang-Mills-Higgs
tem but does have some notable suprises. The critical behamair will either fall into the black hole or disperse leaving a
ior is seen again in three possible transitions. On each dfnal Schwarzschild black hole. A similar thing happens in
these transitions sit critical solutions which serve as Intermethe current Spha|eron case. For examp|e, f0||owing a line of
diate attractors for nearby evolutions in the initial data Spacegonstantx in F|g 1 that intersects each region, we see that as
Near the critical line separating the Schwarszchild blacks decreases, one can interpret the process in a similar way. A
holes from the regular solution as well as for the critical lineregular solution develops a small, stable black hole at the
separating the two types of dynamical black hole formationcenter whichwith decreasing width of the initial Yang-Mills
there are time scaling relations as the near-critical solut|on§0tentia|,s) increases in size until the combined sphaleron
approach the critical solutions. In addition, the mass of theand black hole system becomes unstable and is replaced with
black holes formed in the appropriate region will exhibit aa |arger Schwarzschild black hole. As a result, it would be
mass gap in crossing these critical lines. Near the critical “nﬁhteresting to consider the full dynamical evolution of the

separating the hairy black holes from the regular end statgravitating monopole and compare with the sphaleron case
region, we have indications that the mass of the black holeeported here.

scales without a mass gap, but again, due to our unigrid
code, we cannot settle this conclusively although expecta-
tions and indication_s Woyld bear this out. ' ' ACKNOWLEDGMENTS
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