
1curtislgarner@gmail.com 
2 pianomanty@gmail.com 
3 scott_sommerfeldt@byu.edu 
4 jblotter@byu.edu 

 

A multi-stage filter for separating speech from background noise 
 

Curtis L. Garner1  

Brigham Young University 

Department of Mechanical Engineering, 350 Eng. Bldg., Provo, UT 84602 
 

Tyler Sanders2 

Brigham Young University 

Department of Mathematics, 275 TMCB, Provo, UT 84602 

 

Scott D. Sommerfeldt3 

Brigham Young University 

Department of Physics and Astronomy, N283 ESC, Provo, UT 84602 

 

Jonathan D. Blotter4 

Brigham Young University 

Department of Mechanical Engineering, 350 Eng. Bldg., Provo, UT 84602 
 

ABSTRACT 

This paper proposes a multi-stage method for filtering speech signals that contain large-amplitude 

background noise. Many commonly encountered noise sources such as engines, propellers, or turbines 

produce noise fields that are too spatially incoherent to be effectively filtered using traditional methods. 

The proposed filtering method uses two filter stages to separate speech from background noise: one to 

remove the coherent components of the noise, and the other to reduce the incoherent components of the 

noise. The first stage uses the LMS algorithm. In this stage, strategically placed reference microphones 

are used to eliminate coherent noise from an array of error microphones. The second stage uses a 

beamforming algorithm to reduce the remaining incoherent noise.  Results are presented that 

demonstrate the effectiveness of the multi-stage filter. 

1. INTRODUCTION 

Digital filtering of acoustic signals to reduce noise has been employed in many applications over the past 

several decades. The filtering algorithms are extremely diverse, ranging from computationally expensive 

processes used to improve music recordings to the rapid filters used to enhance telecommunications. The 

method presented herein focuses on developing an acoustic filtering method specifically for detecting 

and enhancing speech signals in the presence of high-amplitude complex noise. Noise sources such as 

engines, propellers, and turbines typically have both coherent and incoherent components. The mixed 

nature of these noise signals makes them difficult to filter effectively using traditional methods. These 

difficulties can greatly hinder verbal communication when complex noise sources are present. 



2. BACKGROUND 

Speech filtering has been applied in many situations across multiple fields. Some of the earliest efforts 

to filter speech are passive methods, such as absorption or isolation [1] [2]. These methods rely on 

physical structures to alter noise propagation. As digital signal processors (DSPs) have become less 

expensive and more powerful, various digital methods have emerged to address the shortcomings of 

passive methods. Digital speech filtering is utilized in many everyday applications such as 

telecommunications and hearing aids. [3] [4] [5]. In recent years, many different specialized algorithms 

have been shown to be well suited for removing certain types of noise from speech signals. [6] [7]. 

 One common digital method for reducing background noise is the LMS algorithm and its variants, 

such as the filtered-X algorithm. The filtered-X algorithm, for example, is generally used to perform 

active noise cancellation and is based on the underlying LMS algorithm. The LMS algorithm essentially 

uses one microphone (called a reference microphone) to track the noise source, then passes this signal 

through an adaptive filter. The filtered signal is then added to the signal from an additional microphone 

called an error microphone. The controller tries to adapt the filter such that the filter output signal is the 

inverse of the unfiltered error signal. If multiple error microphones are included, the controller applies a 

separate filter to the reference signal for each error microphone. Because the reference microphone is 

placed near the noise source, the filter tends to remove noise, while leaving the desired signal largely 

unaltered. An overview of the elements of the LMS algorithm can be seen in Figure 1.  

 
Figure 1: A simplified diagram of the LMS method. The error array and the reference microphone both 

pick up a combination of speech and noise, though the reference signal is dominated by noise. The filter 

controller uses the reference signal to remove noise from the error signal(s), resulting in a clearer speech 

signal. 

 

The method used for updating the filter involves a least-mean-squares (LMS) solution, so the filter is 

typically referred to as the LMS algorithm [8], [9]. The effectiveness of an LMS filter is closely related 

to the coherence between the reference microphone(s) and the error microphone(s) [10]. In real-world 

scenarios, this is often the limiting factor for filter performance. Over the past few decades, the LMS 

algorithm and its variants have been applied to many types of noise control problems [11], [12]. This has 

led to the development of many adaptations of the basic algorithm intended to address specific types of 

problems [13], [14]. While the simplest forms of the LMS filter are based in the time domain, several 

frequency domain methods have also been proposed [15], [16]. A multiple reference approach is needed 

when the noise is produced by multiple sources. The basic procedure is to assign a reference microphone 

to each source, then remove them sequentially from the error microphone signal until only the desired 

signal remains [17]. 

 Another common method for separating a desired signal from background noise is beamforming. A 

beamformer utilizes a microphone array of known dimensions. In many cases, this is a uniform linear 

array, which means that all the microphones are placed in a line with equal spacing between each 

microphone, [18], though other array shapes have been studied as well [19]. The physical separation of 

the microphones results in each microphone receiving a slightly different version of the same signal. In 



the simplest case, the received signals will simply be time-shifted. The beamformer uses information 

about the direction of arrival (DOA) of the incoming signal to alter and sum the received signals to 

maximize the signal coming from the desired direction, also called the “look” direction. 

 The simplest beamformers use the delay-and-sum method, which simply time-shifts the received 

signals to align the sound coming from the look direction. Another consideration in beamformer design 

is bandwidth. Many beamforming algorithms are designed for narrow-band signals [20]. Others, such as 

a sub-array beamformer, analyze broadband signals by first dividing them into several, narrower bands, 

then recombining the output signals [21]. 

   

3. PROPOSED METHOD 

This paper presents an acoustic filtering method for detecting and enhancing speech signals in the 

presence of high amplitude background noise. The filtered speech signal can then be played back to the 

listener in real time. This method can be divided into three major steps. First, sound is recorded by several 

microphones. Next, these recorded signals are then processed to remove unwanted noise. This filtering 

process includes an LMS stage and a beamforming stage. All of this filtering is accomplished by a digital 

signal processor (DSP) in real-time. Finally, the filtered signal is played back to the listener either through 

headphones or speakers. These steps are described in greater detail below. 

 

3.1. Sound Acquisition 

Sound is captured by two sets of microphones placed in the environment. The first set of microphones is 

arranged in an array of known dimensions. These microphones are referred to as error microphones, or 

collectively as the error array, and are placed away from dominant noise sources. The purpose of the 

error array is to capture the voice signal with minimal background noise, although the level of 

background noise is still expected to be substantial. One or more microphones are also placed in close 

proximity to major noise sources. These are referred to as reference microphones. Unlike the error 

microphones, these microphones are intended to capture as much noise as possible, with minimal voice 

content. Signals from both the error microphones and reference microphones are sent to the DSP for 

processing. 

 

3.2. LMS Stage 

The signals received by the error microphones are comprised of three major components: coherent noise, 

incoherent noise, and coherent speech. Coherence in this case specifically refers to the mean-squared 

coherence of the signal received at an error microphone and the signal received at a reference 

microphone. The LMS algorithm is applied in the first filter stage to remove the coherent component of 

the noise received by each microphone in the error array. 

 This algorithm performs the calculations and updates every time new data are available from the 

microphones. Each incoming reference signal is stored in a circular buffer of length 𝐿1. The value of 𝐿1 

is set arbitrarily, and must be larger than the delay time, measured in number of samples, between the 

reference microphones and the error microphones. To simplify the calculations, these circular buffers are 

concatenated into a single vector 𝑅𝑏𝑓 with length 𝑁𝑟 ∙ 𝐿1, with 𝑁𝑟 being the number of reference 

microphones. 

𝑅𝑏𝑓 = [𝑅1 𝑅2 … 𝑅𝑁𝑟] (1) 

where 

𝑅𝑖 = [𝑅𝑖,𝑡 𝑅𝑖,𝑡−1 … 𝑅𝑖,𝑡−𝐿1+1] (2) 



Similarly, the concatenation of the control filters from each reference microphone to each error signal 

can be written as 

𝑊𝑖 = [𝑊1𝑖     𝑊2𝑖      𝑊3𝑖      …   𝑊𝑁𝑟𝑖] 
 

At each time step, the filtered error signals are calculated by multiplying 𝑅𝑏𝑓 by 𝑊𝑖, which is also of 

length 𝑁𝑟 ∙ 𝐿1 

 

𝐸𝑖,𝑡 = 𝑑𝑖,𝑡 − 𝑅𝑏𝑓 ⋅ 𝑊𝑖
𝑇 (3) 

where 𝐸𝑖,𝑡 is the current value in the 𝑖𝑡ℎ filtered error signal, 𝑑𝑖,𝑡 is the current data value from the 𝑖𝑡ℎ 

error microphone, and 𝑊𝑖
𝑇 is the transpose of 𝑊𝑖. After each value in each filtered error signal is 

calculated, the respective filter vector 𝑊𝑖 is updated: 

𝑊𝑖 = 𝑊𝑖 + 𝜇𝑅𝑏𝑓𝐸𝑖,𝑡 (4) 

𝜇 is an arbitrary value that controls how fast the filter converges. This value can either be fixed, or be 

dynamically allocated based on the values in 𝑅𝑏𝑓. In the cases presented in the validation section, 𝜇 is 

calculated as follows: 

𝜇 = 0.1/(𝑅𝑏𝑓 ⋅ 𝑅𝑏𝑓
𝑇 ) (5) 

As the filtered error signals are calculated, they are stored in circular buffers similar to the reference 

microphone signals, albeit with length 𝐿2 instead of 𝐿1. 

𝐸𝑖 = [𝐸𝑖,𝑡 𝐸𝑖,𝑡−1 … 𝐸𝑖,𝑡−𝐿2+1] (6) 

The amount of noise removed by the primary filter stage is heavily dependent on the coherence between 

the error microphones and the reference microphones [10]. Regardless of the overall noise reduction, this 

stage will reduce the coherence between the error signals and the reference signals, such that 

𝐶𝑥𝑦(𝐸𝑖, 𝑅𝑗) < 𝐶𝑥𝑦(𝑑𝑖, 𝑅𝑗) for all 𝑖 and 𝑗. 

 

3.3. Beamforming Stage 

Unlike the LMS algorithm, which can only filter coherent noise, beamforming reduces noise based solely 

on its direction of arrival. Thus, the beamforming filter stage can reduce the incoherent noise that remains 

in the filtered error signals, provided the direction of arrival of the speech signal does not align with that 

of the noise signal. In this work, it is assumed that the DOA of the speech signal is known. 

 To minimize computational expense, the beamforming filter stage uses a standard delay-and-sum 

algorithm. The beamforming algorithm requires one of the error microphones to be selected to be the 

“center microphone”, to which all other microphone signals will be aligned. The filtered error signal 

associated with the center microphone is left unaltered. Each of the other filtered error signals is time 

shifted such that the speech signals are all aligned. The time shift for each filtered error signal is found 

using the relative position of the microphone, as well as the direction of arrival of the speech signal. 

𝛥𝑠𝑖 =
𝐹𝑠

𝑐
𝑑 𝑐𝑜𝑠(∠𝐷𝑂𝐴 + 𝜋 − 𝛼) (7) 

As before, 𝑑 is the distance between the 𝑖𝑡ℎ microphone and the center microphone, and 𝛼 is the physical 

angle between the same. Δ𝑠𝑖 is the delay (in samples) applied to the 𝑖𝑡ℎ filtered error signal, and is 

rounded to the nearest integer. 𝐹𝑠 is the sampling frequency. In many cases, the delay time Δ𝑠𝑖 is 

negative. In order to accommodate this, all of the filtered signals are delayed by a static number of 

samples. This delay can be found as follows: 



𝛥𝑠𝑚𝑖𝑛 =
𝑑𝑚𝑎𝑥𝐹𝑠

𝑐
(8) 

where 𝑑𝑚𝑎𝑥 is the largest distance between the center microphone and any other error microphone and 

Δ𝑠𝑚𝑖𝑛 is the minimum static delay that will work for all possible directions of arrival. 

After the delay times have been determined, the appropriate data points from the filtered error signal 

buffers are added together, which gives the final output at the current time step. 

𝑆𝑡 = ∑
𝐸𝑖,𝛥𝑠𝑚𝑖𝑛+𝛥𝑠𝑖

𝑁𝑒

𝑁𝑒

𝑖=1

(9) 

Here 𝑆 is the output of the beamforming filter stage, and 𝑁𝑒 is the number of error microphones in the 

array. This is the signal sent to the headphones or speakers to be played back to the listener. An overall 

schematic of the proposed filter can be seen in Figure 2. 

 

Figure 2: An overview of the proposed filter structure. The incoming signal contains coherent speech, 

coherent noise, and incoherent noise. Coherent noise is removed by the  LMS filter. Incoherent noise is 

reduced by the beamforming filter using the provided DOA. This results in a much more comprehensible 

speech signal. 

4. VALIDATION 

Validation of the proposed method has been performed both virtually and experimentally. Virtual 

validation was accomplished entirely in a MATLAB simulation, using pre-recorded speech and noise 

data and virtual microphones. This type of validation was chosen for its simplicity, and also because 

virtually constructed microphone signals allowed for greater control over experimental variables, such 

as signal to noise ratio, coherent to incoherent noise ratio, etc.). Another advantage of the virtual 

simulation was that it eliminated several possible confounding factors such as ground/wall reflections 

and additional noise sources in the environment. 

 Experimental validation was performed in an anechoic chamber. A real voice signal was used. 

Machine noise was simulated by playing pre-recorded machine noise over a pair of loudspeakers, and 

sound was recorded with several microphones. This validation method allowed the proposed method to 

be tested in an environment much closer to its intended application. 

 

4.1. Evaluation Metrics 

Because the proposed method is intended to remove background noise from speech signals, the most 

informative performance metric is the change in noise level from the signal originally received to the 

final filter output. The mixed nature of these signals (containing both speech and noise) makes this 

measurement somewhat difficult to make. The average sound power of a signal is easy to compute, but 



there isn’t a simple method to determine how much of the sound power comes from speech, and how 

much comes from noise. To address this issue, the equations above have been set up to leave the 

amplitude of the speech signal as unaltered as possible. The input and output signals are then trimmed so 

that only “silent” sections remain (silent meaning no speech content, only background noise). The 

average sound power of the trimmed signals can then be calculated directly, giving a close approximation 

of the overall noise reduction. 

 In addition to noise reduction, successful filtering also requires that the speech signal remains clear 

and distortion-free. The overall comprehensibility of the filtered speech signal is subjective, so qualitative 

observations were made in place of direct calculations. 

4.2. Virtual Validation 

Virtual validation of the proposed method was carried out by simulating the noise environment and all 

of the microphones in MATLAB, then processing the signals as detailed above. Seven error microphones 

were distributed within 1 meter of the origin. The virtual noise source and virtual speech signal were 

placed 4-6 maters from the origin. See Figure 3 for an approximate diagram of this setup. The signal 

received at each microphone was calculated by scaling the voice and noise signals proportional to the 

inverse of distance to the source, and applying the appropriate time delay to each based on the location 

of the virtual microphone. Incoherent noise was included separately in order to make the virtual 

microphone signals more closely match what a real microphone would receive. This was accomplished 

by adding white noise to each microphone, proportional to the noise signal. Thus each virtual microphone 

signal contained voice, coherent noise, and incoherent noise. 

 

Figure 3: A rough visual of the layout used in the MATLAB simulation. Dimensions not to scale. 

 

The results obtained from this simulation can be seen in Figure 4. The original signal (taken from one of 

the error microphones) is clearly dominated by noise. The filtering process reduced the noise level by 

about 15 dB, with 6.5 dB being removed by the LMS algorithm and the other 8.5 dB being removed by 

the beamforming algorithm. Listening to the filtered signal confirms that the voice is much more 

understandable after filtering. 



 

Figure 4: Results of the virtual validation of the proposed method. In the original signal, the voice content 

is entirely obscured by noise. In the filtered signal, noise levels are well below the voice level. 

4.3. Experimental Validation 

Experimental validation of the proposed method was carried out by conducting several tests in an 

anechoic chamber. Between six and fourteen error microphones were arranged in a cross-shaped array 

in the center of the chamber. A person stood a few meters away and read one or more of the Harvard 

sentences [22]. Pre-recorded noise was played over one or two loudspeakers also located a few meters 

away from the error array. A reference microphone was placed about thirty centimeters in front of each 

loudspeaker. 

 Below are some of the results obtained from a representative experimental setup. Figure 5 shows the 

approximate locations of the array, loudspeakers, and talking person. In this experiment, the two 

loudspeakers played separate, but similar, noise recordings. 

 

 
Figure 5: An experimental setup used in validating the proposed method. Dimensions are roughly to 

scale, with each side of the figure representing about 4 meters. The error microphone array contained 14 

microphones (only 9 pictured). 

 

Using the methods described in Section 3, the noise reduction obtained in this experiment was 27.5 dB, 

with the majority of the reduction coming from the first filter stage (LMS algorithm). These results can 

be seen in Figure 6. 



 
Figure 6: Results from experimental validation. In the original signal, the voice content is entirely 

obscured by noise. In the filtered signal, noise levels are well below the voice level. 

 

As was the case with the simulated validation data, listening to the recordings before and after filtering 

confirms that the filtering process greatly reduces the background noise levels with minimal distortion 

of the speech signal.  

5. CONCLUSION / FURTHER RESEARCH 

The results presented above demonstrate that a hybrid filtering approach can effectively extract a speech 

signal from high background noise levels. Existing techniques in sound separation are not able to produce 

real-time results with enough clarity to be useful to a listener. The multi-stage filtering method presented 

above is still being developed, and notably has not yet been implemented in a true real time setting. Even 

so, the results obtained so far demonstrate the viability of the dual-stage approach and its ability to filter 

high-amplitude background noise with a significant incoherent component.  
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