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Transient structural-acoustic problems can be solved using time stepping procedures with the struc-

ture and fluid modeled using finite elements and equivalent sources, respectively. Limitations on

the time step size for stable solutions have led to the current popularity of iterative coupling to

enforce the boundary conditions at the fluid-structure interface, which also helps to alleviate diffi-

culties caused by the fully populated acoustic coupling matrix. The research presented here exam-

ines a monolithic approach using a stabilized equivalent source formulation where the acoustic

coupling matrix is either fully diagonal or treated as sparse. In theory, the matrix should be sparse

because it relates nodal velocities to nodal acoustic pressure forces during a single time step, and

the pressure waves can only travel a distance equal to the sound speed multiplied by the time step.

The numerical results demonstrate that for the chosen example problems accurate results are

obtained for either diagonal coupling matrices or with a large percentage of the terms set to zero.

It is also demonstrated that the formulation adapts well to parallel processing environments and

that the times associated with the equivalent source computations are proportional to the number of

processors. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4998591]

[JFL] Pages: 1011–1024

I. INTRODUCTION

Transient coupled fluid-structure problems occur in a

number of different disciplines and the available literature on

the subject is quite large. When the fluid is considered to be

infinite, boundary element methods are commonly used to

model the fluid since only the boundary surface of the fluid

has to be meshed, rather than the whole solution volume.

Also, boundary element methods naturally satisfy the farfield

radiation boundary conditions, whereas finite element meth-

ods require some technique, such as infinite elements or per-

fectly matched layers, to prevent spurious reflections at the

outer mesh boundary. A good discussion of the origins of

infinite elements and an assessment of their accuracy is given

by Astley.1 The paper by Zampolli et al.2 gives a good over-

view of perfectly matched layers in the context of structural-

acoustic scattering problems. For very large time-harmonic

problems, these methods are advantageous primarily because

they produce sparse matrices.

In contrast, boundary element and equivalent source

computations for time-harmonic problems produce complex-

valued, fully populated matrices. When coupled with finite

element (FE) solutions for the structure, the combined equa-

tion system becomes very time consuming to solve, restrict-

ing the analyses to modal formulations and relatively low

frequencies. Transient BE or ES solutions have not been con-

sidered because historically they have suffered from long-

time instabilities. A number of researchers have shown that

these instabilities are related to the well-known nonunique-

ness/nonexistence problems in frequency domain boundary

element calculations, and that the CHIEF (Ref. 3) and Burton

and Miller4 formulations can help to eliminate the instabil-

ities. A detailed discussion of nonuniqueness difficulties for

transient equivalent source (ES) computations is given by

Fahnline.5

Even using a stabilized boundary element formulation,

limitations may still exist on the range of time step sizes that

will produce stable and accurate results, as discussed by

Soares.6 It has been widely reported in the literature that

the solutions are stable within a range of values for cDt/L,

where c is the sound speed in the fluid, Dt is the time step

size, and L is the nominal element size of the boundary sur-

face mesh. For large values, the solution remains stable, but

does not produce accurate results. Only a few papers discuss

the source of the instabilities when the small time step size

is small. Yu et al.7 and Frangi8 suggest that the instabilities

are related to the use of noncausal interpolation functions

that instantaneously propagate nodal displacements within

an element. These difficulties are exacerbated when perform-

ing coupled structural-acoustic analyses because structural

analyses also impose restrictions on the time step size for

accurate solutions. Since the wave speeds can differ consid-

erably in the fluid and structure, the two sets of restrictions

often conflict with each other. This has led to the current

popularity of staggered solution formulations over more tra-

ditional direct coupling solutions. In a staggered approach,

the structural and acoustic problems are solved indepen-

dently, with iterative procedures used to derive the coupled

solution. This helps to alleviate stability issues because

appropriate time steps can be used for each solution domain.

However, staggered formulations tend to be more compli-

cated than direct coupling approaches.a)Electronic mail: jbf103@arl.psu.edu
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Aside from stability issues, the other reason often listed

for not using a direct coupling approach is the resulting

densely populated acoustic coupling matrices, as discussed

by Soares6 and Felippa et al.9 This occurs because a matrix

solution is generally required to compute the acoustic pres-

sure field. In contrast to frequency domain computations, the

coefficient matrix in a time domain boundary element solu-

tion using a marching-on-in-time (MOT) solution is sparse

because the active variables only exist for the current time

step. In both frequency and time domain formulations, the

inverse of the coefficient matrix generally becomes fully

populated. After some manipulations, the acoustic analysis

can be used to compute an acoustic coupling matrix relating

input nodal displacements to output nodal pressure forces.

Physical arguments dictate that activating a single nodal

degree-of-freedom will not produce a pressure field over the

entire boundary surface within the time span of a single time

step since sound waves can only travel a distance cDt. Thus,

in theory the acoustic coupling matrix should actually be

sparse, and it becomes fully populated due to small numeri-

cal errors in the coefficient matrix and the process of solving

the matrix equation. A literature review has not revealed any

papers where this fact has been exploited by other research-

ers in the past, although it is difficult to make a definitive

statement due to the vast number of papers on the subject.

Here, a MOT scheme will be derived for structural-

acoustic problems using direct coupling and treating the

acoustic coupling matrix as sparse. The formulation most

closely resembles the coupled finite element/boundary ele-

ment (FE/BE) frequency-domain solutions derived in the

classic paper by Wilton,10 where the acoustic variables are

condensed out of the equations of motion. Ultimately, this

leads to an efficient formulation that adapts well to parallel

processing environments. The primary interest here is in

metal structures in water, for which the formulation is well

suited with reasonable choices for the mesh and time step

sizes. Aside from treating the acoustic coupling matrix as

sparse, the current formulation is novel because it uses a sta-

bilized ES solution for the acoustic field, a detailed discus-

sion of which can be found in the paper by Fahnline.5

II. NUMERICAL FORMULATION

The main challenge in solving transient coupled

structural-acoustic problems is computing the pressure field

due to the structural vibrations. Here, the ES formulation dis-

cussed by Fahnline5 will be used to calculate the pressure

field. The ES formulation uses average pressures and elemen-

tal volume velocities as variables, and these quantities must

be converted to forces and velocities for the nodal degrees-

of-freedom. Given a vector of nodal velocities at time t, the

resulting volume velocity distribution can be computed by

taking the dot product of the nodal velocity with the surface

normal and integrating over each of the surface elements as

u�ðtÞ ¼
ð ð

S

vðx; tÞ � n dS�ðxÞ; (1)

where �¼ 1, 2,…,NA and NA is the number of acoustic ele-

ments on the boundary surface. For linear elements, the vol-

ume velocity for an element is the average of the normal

component of its nodal velocities multiplied by its area. The

translation from nodal velocity to elemental volume velocity

is noncausal because any nonzero nodal velocity is instanta-

neously translated into a nonzero volume velocity for the

element as a whole.

A similar procedure can be used to translate an elemen-

tal pressure distribution on the exterior boundary surface in

contact with the fluid to nodal forces. Knowing the pressure

averaged over the surface of an element, the force vector for

the nodal degrees-of-freedom can be computed by assigning

the direction using the element normal, and dividing the

resulting force amongst the nodes as

f nodal tð Þ ¼ 1

N
S�p� tð Þn�; (2)

where N is the number of nodes for element �. The translation

from elemental pressures to nodal forces is also noncausal

because any nonzero pressure over an element is instanta-

neously translated to nodal forces for all the associated nodes.

Taking all the nodes and elements into account, Eqs. (1)

and (2) can be written in matrix form as

uðtÞ ¼ VvðtÞ (3)

and

f acsðtÞ ¼ FpðtÞ; (4)

respectively, where both V and F are sparsely populated. The

matrix V has dimensions NA�NDOF and F has dimensions

NDOF�NA, with NDOF being the number of degrees-of-

freedom in the FE model.

A. Equivalent source formulation

For a specified nodal velocity vector, the nodal acoustic

pressure forces can be computed once a matrix relating pðtÞ
to uðtÞ is supplied by the equivalent source analysis. Here,

only acoustic radiation problems will be considered. To

derive the equivalent source solution, the boundary surface

is input by the user as a collection of linear triangular and

quadrilateral elements, and a discrete source is placed at the

center of each element to represent the acoustic field. As a

precursor to the time-stepping analysis, a triangular pulse of

unit amplitude and length 2Dt is input to each source indi-

vidually and the average pressure and volume velocity is

computed over each element as a function of time, where Dt
is the time step size. Because of the finite length of time for

the triangular pulses, the resulting average pressures and vol-

ume velocities are only nonzero for a finite number of time

steps. The data are stored as a three-dimensional matrix with

indices time step, source number, and receiver number. In

the equations, matrix notation is used with a single index for

time step, and the rows and columns of the matrices corre-

spond to receiver and source number, respectively. Also, a

subscript is used to indicate the source type. Thus, PsðnÞ and
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UsðnÞ are the matrices of average pressure and volume

velocities over the boundary surface elements at time step n
due to triangular pulses of length 2Dt starting at t¼ 0 from

simple sources (subscripts d and t indicate dipole and tripole

sources, respectively). The Appendix gives equations to

define the matrix terms.

A full discussion of the process of integrating the pres-

sure and acoustic particle velocity over the surface elements

was given in the previous paper by Fahnline,5 and the discus-

sion here will be limited to an illustration of the functional

forms. In general, the integrations are difficult to perform

accurately due to the singularities in pressure and velocity

fields at the source locations. These difficulties can be allevi-

ated by transforming to cylindrical coordinates with the ori-

gin located at the projection of the source in the plane of the

element. In most cases, the radial integral can be performed

analytically, leaving an integration over the azimuthal angle

in the cylindrical coordinate system to be performed numeri-

cally using Gauss quadrature. The integration algorithm is

limited to planar elements, and nonplanar quadrilateral ele-

ments are treated as being made up on an interior planar

quadrilateral element using the midpoints of the element

edges and four triangles using two midpoints and one of the

corner nodes. The integration routines have been carefully

validated, both with comparisons to analytical formulas for

simple geometries and to very high order Gaussian integra-

tion over quadrilateral elements.

To illustrate the functions, a few terms of the matrices

PsðtÞ; UsðtÞ; PtðtÞ; and UtðtÞ will be shown. Figure 1 shows

Ps(t) and Us(t) for a simple source at the center of element 1

over several nearby receiver elements, the locations for

which are illustrated in the inset diagram. The surface normal

for element 1 is assumed to point upwards, in the direction

opposite element 4. The acoustic medium for the analysis is

water with sound speed 1500 m/s and density 1000 kg/m3.

Also, the element size is 0.019 m, and the time step size is

taken to be 1� 10�6 s, so that cDt/L¼ 0.079, which is typical

for the subsequent computations. The curves in the figure are

shown with resolution t/Dt¼ 0.1 to fully define the functional

variations. In an actual computation, the curves would be

sampled at integer values of t/Dt. To help check the integra-

tions, it is often useful to calculate the times when the pulses

should begin and end. For example, the element edges should

begin to contribute to the average pressure over element 1

when t=Dt ¼ ðL=2Þ=cDt ¼ 6:35, and they should end when

t=Dt ¼ ð
ffiffiffi
2
p

L=2Þ=cDtþ 2Dt=t ¼ 10:98, as confirmed in the

figure. The differences in the times for the waves to travel

across the elements and the differences in the magnitudes of

the average pressures and volume velocities help to explain

why the interior acoustic field causes numerical difficulties.

Because the spherical wavefront first reaches the center of

receiver element 4 and the source is aligned perpendicular to

the element surface, it passes much more quickly has larger

peak magnitude than elements 1 and 2.

The large magnitude for the acoustic quantities in the

direction opposite the surface normal results in a large inte-

rior acoustic field, and, ultimately, instabilities. The tripole

source formulation addresses this difficulty by creating a

cardioid source, where the acoustic quantities go to zero in

the direction opposite the surface normal as the distance from

the source increases. Figure 2 shows Pt(t) and Ut(t) for a tri-

pole source at the center of element 1 over several nearby

receiver elements. Comparing to Fig. 1, the main difference

is the reduction in the magnitude in the average pressure and

FIG. 1. (Color online) The normalized matrix coefficients for a simple

source at the centroid of element 1 over elements 1–4, the locations for

which are illustrated in the inset diagram. The definitions of Ps(t) and Us(t)
are given in the Appendix.

FIG. 2. (Color online) The normalized matrix coefficients for a tripole

source at the centroid of element 1 over elements 1–4, the locations for

which are illustrated in the inset diagram. The definitions of Pt(t) and Ut(t)
are given in the Appendix.
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volume velocity for receiver element 4. With that as a brief

synopsis of the equivalent source formulation, the coupled

FE/ES computations will now be addressed. For the purposes

of this paper, all that is required from the equivalent source

analysis are the matrices relating source amplitudes to the

average pressures and volume velocities over the surface ele-

ments and it is assumed that they are computed accurately.

B. Simple source formulation

The equivalent source formulation is derived by assum-

ing a linear interpolation of the sources amplitudes as a func-

tion of time, where the time step size remains constant. Since

linear interpolation can also be interpreted as a summation of

triangular pulses, the volume velocity distribution over the

boundary surface for time step n can be written for the simple

source formulation in the form

uðnÞ ¼
Xn

l¼1

UsðbÞqðlÞ; (5)

where the number in parentheses indicates the time step, qðnÞ
is the vector of source amplitudes, and b¼ n þ 1 – l. Also,

UsðbÞ refers to the discrete matrix after it has been sampled

at times t¼ nDt. The letter b was chosen because it counts

backwards as l increases. Assuming qðlÞ; l ¼ 1;…; n� 1

are known and qðnÞ is unknown, the known quantities can be

moved to the right-hand-side of the equation to yield

Usð1ÞqðnÞ ¼ uðnÞ �
Xn�1

l¼1

UsðbÞqðlÞ: (6)

The summation on the right-hand-side accounts for sound

radiated in the past that creates a volume velocity over the

boundary surface elements at the current time step. Solving

for qðnÞ in terms of uðnÞ gives

qðnÞ ¼ Usð1Þ½ ��1 uðnÞ �
Xn�1

l¼1

UsðbÞqðlÞ

2
4

3
5: (7)

The matrix Usð1Þ represents the volume velocities created

by the sources during the current time step.

Using the solution for the source amplitudes in Eq. (7),

the pressures over the boundary surface can be computed as

pðnÞ ¼
Xn

l¼1

PsðbÞqðlÞ ¼ Psð1ÞqðnÞþ
Xn�1

l¼1

PsðbÞqðlÞ

¼ Psð1Þ Usð1Þ½ ��1 uðnÞ�
Xn�1

l¼1

UsðbÞqðlÞ

2
4

3
5

þ
Xn�1

l¼1

PsðbÞqðlÞ: (8)

Substituting for pðnÞ and uðnÞ from Equations (3) and (4),

the relationship between the nodal velocities and acoustic

pressure forces can be written as

f acsðnÞ ¼ FPsð1Þ Usð1Þ½ ��1 VvðnÞ �
Xn�1

l¼1

UsðbÞqðlÞ

2
4

3
5

þ F
Xn�1

l¼1

PsðbÞqðlÞ: ð9Þ

Taking the acoustic coupling matrix to be A, it can be identi-

fied as A ¼ �FPsð1Þ½Usð1Þ��1V, where the minus sign is

added so that A is a positive quantity when it is added into

the equations of motion. The acoustic forces then become

f acsðnÞ ¼ �AvðnÞ þ css; (10)

where cs stands for “convolution summations” and is given

for the simple source formulation as

css ¼ �FPsð1Þ Usð1Þ½ ��1
Xn�1

l¼1

UsðbÞqðlÞ

þ F
Xn�1

l¼1

PsðbÞqðlÞ: (11)

In the numerical computations, the matrix becomes fully pop-

ulated due to small errors in evaluating the integrals and finite

precision arithmetic in factoring, solving, and multiplying the

matrices. However, many of these terms should actually be

identically zero since the distance the acoustic waves can

travel during a single time step is limited by the time step

size. Rather than processing the matrix as fully populated, the

small terms in the matrix Psð1Þ½Usð1Þ��1
can be zeroed out,

so that A becomes sparse.

Now that an equation for the acoustic pressure forces

has been derived, the full structural-acoustic problem can be

addressed. The formulation will follow that used in NASTRAN

for direct transient response analyses, as discussed by

Blakely,11 except with extra terms added to represent the

acoustic pressure forces. This form has been found to be

more stable than that discussed by Cook et al.12 The equa-

tions of motion are

KdðnÞ þ CvðnÞ þMaðnÞ ¼ f extðnÞ þ f acsðnÞ; (12)

where K, C, and M are the finite element stiffness, damping,

and mass matrices, respectively, d and a are the nodal dis-

placement and acceleration vectors, respectively, and f ext is

the applied external force vector. Substituting for f acsðnÞ
from Eq. (10) gives

KdðnÞ þ ðAþ CÞvðnÞ þMaðnÞ ¼ f extðnÞ þ css: (13)

This can be converted to a time marching equation by

substituting for the velocity and acceleration using the differ-

ence formulas

v n� 1ð Þ ¼ 1

2Dt
d nð Þ � d n� 2ð Þ
� �

(14)

and

1014 J. Acoust. Soc. Am. 142 (2), August 2017 John B. Fahnline and Micah R. Shepherd



a n� 1ð Þ ¼ 1

Dt2
d nð Þ � d n� 1ð Þ þ d n� 2ð Þ
� �

; (15)

respectively, and placing all the known quantities on the

right-hand-side of the resulting equation. Averaging over

three consecutive time steps, the time-stepping equation then

becomes

Keffd nð Þ ¼ 1

3

X2

l¼0

f ext n� lð Þ þ css

þ M

Dt2
2d n� 1ð Þ � d n� 2ð Þ½ �

þ Aþ Cð Þ
2Dt

d n� 2ð Þ

� K

3
d n� 1ð Þ � d n� 2ð Þ½ �; (16)

where the effective stiffness matrix Keff is given as

Keff ¼
M

Dt2
þ Aþ Cð Þ

2Dt
þ K

3
: (17)

Everything on the right-hand-side of Eq. (16) is known for

time step n since the summations embedded within the css

term for the sources only extend to time step n – 1. After solv-

ing the equation system for the displacement vector at time

step n, the velocity and acceleration vectors can be computed

using Eqs. (14) and (15), respectively. Once the velocity vec-

tor for the current time step is known, the source amplitude

vector can be determined as

qðnÞ ¼ Usð1Þ½ ��1 VvðnÞ �
Xn�1

l¼1

UsðbÞqðlÞ

2
4

3
5: (18)

The source amplitudes are the only data that need to be stored

for each time step. In general, the formulation requires two

matrix solutions at each time step; one to compute the nodal

displacement vector in Eq. (16) and one to compute the

source amplitudes in Eq. (18). Both solutions are fast because

the coefficient matrices do not change as long as the time

step remains constant and thus they only have to be factored

once. The convolution summations in Eqs. (16) and (18) can

be computed in parallel since they are all independent, and

since each source and element only interact over a finite num-

ber of time steps due to the finite duration for the triangular

pulses, the computation time per time step quickly reaches a

static value.

C. Tripole source formulation

The average pressure over the boundary surface for the

tripole source formulation is given as

p nð Þ ¼
Xn

l¼1

1

c
Ps bð Þ þ Pd bð Þ

� �
_f lð Þ ¼

Xn

l¼1

Pt bð Þ _f lð Þ;

(19)

where the subscript d indicates dipole sources. The ampli-

tude for the simple source has been replaced with its time

derivative and a factor of 1/c. In the frequency domain, this

translates to a coupling factor of –ix/c with an assumed e–ixt

time dependence.

The notation for the volume velocity of a dipole source

is slightly different because it depends not only on source

amplitude, but also on the time derivative of the source

amplitude. The terms dependent on the source amplitude

and its time derivative are given subscripts 0 and 1, respec-

tively. Thus, Ud;0ðnÞ and Ud;1ðnÞ are the components of the

volume velocities over the boundary surface elements at

time step n due to triangular pulses of length 2Dt starting

at t¼ 0 for the dipole source amplitude and its time deriva-

tive, respectively. The dipole source amplitude for the cur-

rent time step is then eliminated using second order

backwards differences as f ðnÞ � 2Dt=3ð Þ _f ðnÞ þ 4
3

f ðn� 1Þ
� 1

3
f ðn� 2Þ, so that the volume velocity of a tripole source

can be written as

u nð Þ ¼
Xn

l¼1

1

c
Us bð Þ þ Ud;1 bð Þ

� �
_f lð Þ þ

Xn

l¼1

Ud;0 bð Þf lð Þ

¼
Xn

l¼1

Ut bð Þ _f lð Þ þ
Xn

l¼1

Ud;0 bð Þ

� 4

3
f l� 1ð Þ � 1

3
f l� 2ð Þ

� �
; ð20Þ

where

Ut nð Þ ¼ 1

c
Us nð Þ þ 2Dt

3
Ud;0 nð Þ þ Ud;1 nð Þ; (21)

and the primary variable of interest is _f . Solving Eq. (20)

for _f ðnÞ, substituting the result into Eq. (19), and taking

A ¼ �FPtð1Þ½Utð1Þ��1V, the acoustic force vector becomes

f acsðnÞ ¼ �AvðnÞ þ cst; (22)

where

cst ¼ �FPt 1ð Þ Ut 1ð Þ½ ��1
Xn�1

l¼1

Ut bð Þ _f lð Þ

8<
:

þ
Xn

l¼1

Ud;0 bð Þ 4

3
f l� 1ð Þ � 1

3
f l� 2ð Þ

� �9=
;

þ F
Xn�1

l¼1

Pt bð Þ _f lð Þ: (23)

The time-stepping equations then are the same as given pre-

viously in Eq. (16) with a different version of A and cst

substituted for css. As for the simple source formulation, the

equations of motion are first solved for the displacement vec-

tor, which is used to compute the velocity and acceleration

vectors and the solution for the source amplitudes at the cur-

rent time step.
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D. Computational strategies

Aside from stability issues, which have plagued this

type of computation in the past, the two main difficulties

with the coupled FE/ES formulation are the computation and

storage of the acoustic matrices and the subsequent computa-

tion of the convolution summations on the right-hand side of

the equations. Similar conclusions were drawn by Walker

and Yeung13 and Ergin et al.14 although the computational

resources available have grown enormously since their

papers were published. Both difficulties can be addressed in

a cluster computing environment by distributing the data and

performing the computations on multiple nodes and process-

ors. The data can be stored as full matrices for a finite num-

ber of time steps, along with an integer matrix indicating the

first nonzero time step for each source-receiver combination.

This format works well in a distributed processing environ-

ment because all the data for any source-receiver combina-

tion will reside on a single processor, thus allowing the

convolution summations for the acoustic field on the right-

hand-side of Eq. (16) to be performed independently. Also,

all the processors can be used to compute the matrices before

entering the time-stepping phase of the computations. Along

with the matrix coefficients, the source amplitudes associ-

ated with each source-receiver combination must be stored

locally on the processors. It is thus beneficial to maximize

the number of receiver locations stored with each source to

reduce the number of copies of the source amplitudes that

must be stored. This is especially important when the num-

ber of time steps grows large. Once the convolution summa-

tions have been computed, it is a simple matter to retrieve

the data from each of the processors.

A number of different packages, including PARDISO,15

MUMPS,16 and SUPERLU,17 can be used to solve sparse matrix

equations, while SCALAPACK (Ref. 18) is appropriate for

dense matrices. PARDISO is embedded within the Intel MKL

libraries, while MUMPS and SUPERLU require separate installa-

tions. Since the data for qðtÞ, P, and U are more easily

stored in SCALAPACK’s block cyclic data distribution, the

acoustic matrices are treated as dense and the Pð1Þ½Uð1Þ��1

computation is performed using SCALAPACK. The situation is

different for the source amplitude solution at each time step

because the number of input right-hand-sides is generally

much smaller. In this case, the sparse matrix solutions gen-

erally outperform SCALAPACK, especially as the sparsity of

Uð1Þ increases. For the sake of robustness and because the

time required to solve the matrix system for a single time

step is typically small, the solution times for the first time

step are tabulated for each of the solvers, with the fastest

one used for the subsequent time steps.

The coupled FE/ES equation system is much larger in

size, and would require too much time to solve and too much

storage to be treated as being densely populated. Timing tests

for the various sparse solvers were then used to choose the

best one for the current application. In most problems of

interest, the coefficient matrix is nearly symmetric (MUMPS

consistently lists the matrix’s “structural symmetry” as 99%)

and diagonally dominant. Ultimately MUMPS was chosen

because it was more easily installed than SUPERLU and it

gave better performance than PARDISO. Counterintuitively,

using more processors can actually increase solution times in

MUMPS, and the fastest solutions were generally achieved

using a single multi-processor node. Timing tests in the paper

by Amestoy et al.19 show similar behavior. For the problems

considered here, all the processors on a single computational

node are used for the MUMPS matrix solution.

III. EXAMPLE PROBLEMS WITH DIAGONAL
COUPLING MATRICES

Two example problems will be solved in this section to

illustrate the calculations and to demonstrate the accuracy of

the formulation, including a flat plate and a thin sphere. The

example problems were chosen because they could reason-

ably be modeled without including any structural damping.

The computations are validated in two ways; first by either

comparisons to experimental measurements or convergence

tests in the time domain and second to transfer function com-

putations and measurements in the frequency domain. In

general, it is difficult to transform transient numerical com-

putations of this type to the frequency domain because a

large number of time steps must be computed to obtain ade-

quate frequency resolution. Even when it is possible to per-

form a large number of time steps in a reasonable amount of

time, the solution must remain stable or the transformed data

will be dominated by the unstable component of the time

series.

For the measurements, a modal impact hammer was

used to excite the structure into vibration. The resulting

acceleration was monitored using accelerometers along with

the measured input force from the hammer. For the problems

discussed here, the hammer produces an input force profile

resembling a squared half sine wave, as discussed by Akay

and Latcha.20 One of the main analysis goals is to demon-

strate that fluid coupling is included correctly, and the meas-

urements are made in water so that fluid coupling effects

are relatively large. The measurements were performed in a

reverberation water tank, with the test articles suspended

using either fishing line or bungee cords. Simultaneous pres-

sure measurements were also made during the measurements,

but the test articles were submerged only slightly below the

air-water interface, and reflections of the waves from the

water surface quickly invalidate the time domain compari-

sons (the numerical computations consider the structure to be

submerged in an infinite fluid). However, the reflections did

not have a significant effect on the acceleration measure-

ments. In the subsequent time domain comparisons between

experimental measurements and numerical computations, the

length and magnitude of the input force is extracted from the

experimental measurements and used as input to the numeri-

cal computations. For the frequency domain comparisons,

both the input force and output acceleration were first trans-

formed to the frequency domain, and then acceleration-to-

force transfer functions are computed for each frequency.

One of the main goals for the examples is to demonstrate

that the acoustic coupling matrix can be treated as sparse.

Generally, this requires nonzero terms of the Pð1Þ½Uð1Þ��1

matrix to be set to zero. However, if the time step is small

1016 J. Acoust. Soc. Am. 142 (2), August 2017 John B. Fahnline and Micah R. Shepherd



enough, waves cannot travel from the source locations at the

element centers to any other element in a single time step and

the matrices Pð1Þ and Uð1Þ become diagonal. In this case,

there is no approximation involved because all of the off-

diagonal terms are identically zero. Knowing the smallest

element side length for the acoustic mesh Lmin, the time step

size required to make the matrices diagonal can be calculated

as Dt<Lmin/2 c. In this limit, the acoustic coupling matrix

adds no extra nonzero terms to the effective stiffness matrix

and the times to solve the coupled equation system are the

same for uncoupled and coupled analyses. Decreasing the

time step size further unnecessarily increases the number of

nonzero terms for the convolution summations because more

time steps are required for triangular pulses of length 2Dt to

travel across the elements. It is also possible for rows and

columns of Pð1Þ and Uð1Þ to be diagonal for some of the sur-

face elements, and nondiagonal for other elements. Since it

involves no approximation, the time step size will be taken

to be small enough to produce diagonal Pð1Þ and Uð1Þ matri-

ces for the examples in this section. In general, the solutions

are most stable with cDt/L¼ 1, as discussed by Stutz and

Ochmann,22 and the time step sizes required to give diagonal

Pð1Þ and Uð1Þ matrices are considerably smaller.

A. Bronze plate

The first example problem is a bronze plate in water.

The plate has width 0.3048 m, length 0.762 m, and thickness

0.04445 m, as illustrated in Fig. 3. The direction for the drive

force is assumed to be positive in the outward normal direc-

tion, as illustrated in the figure. In the numerical analysis, the

material properties for the plate are taken as follows:

Young’s modulus 117 GPa, Poisson’s ratio 0.3, and density

7468 kg/m3. The drive point is at one of the top corners and

the response point is the middle point of the shorter edge, as

illustrated by the accelerometer location in Fig. 3. The peak

measured input force is 500 N and its duration is approxi-

mately 5.5� 10�4 s. The hydrophone is located on the under-

side of the plate a distance 0.0508 m from the plate surface,

0.42863 m from the driven corner along the longer dimension

of the plate, and 0.12383 m from the driven corner along the

shorter dimension. No structural damping is included in the

analysis, but acoustic radiation damping is included in the

matrix A.

For the numerical computations, the minimum element

size is 0.0148 m, so that Dt must be less than 4.9� 10�6 s for

Pð1Þ and Uð1Þ to be diagonal. Taking Dt¼ 4� 10�6, and

with the maximum element size equal to 0.019 m, then cDt/
L¼ 0.32. Figure 4 shows experimental measurements and

numerical simulations of the transient acceleration of the

plate in water for the drive and response points illustrated in

Fig. 3. The discrepancies between the experimental and

numerical results are likely due to the hammer hit point and

accelerometer location not being exactly at the plate corner

and edge.

In general, it is easier to compare results in the frequency

domain because differences in the resonance frequencies and

damping levels are readily apparent. In transforming the time

domain results to the frequency domain, the frequency resolu-

tion is given as Df¼ 1/NDt, where N is the number of time

steps. Because the solution only includes acoustic radiation

damping, the lowest frequency resonances of the plate have

very little damping, and Df must be small to resolve the peaks.

For this problem, 524 288 time steps of length 4� 10�6 s

were computed, giving a frequency resolution of approxi-

mately 0.5 Hz. Even after this many time steps, the accelera-

tion had only decayed to approximately 6.9% of its peak

value. The numerical results thus show some “windowing”

effects due to cropping the data before it has completely

decayed to zero. Recalling that the drive force is input as a

half period of a squared sine wave, both the input force and

nodal accelerations are transformed to the frequency domain

before computing transfer functions, which mimics the techni-

ques used to process the experimental data. Figure 5 shows

accelerance comparisons for the bronze plate as a function of

frequency, with the drive and response points as illustrated

previously in Fig. 3. The frequency domain FE/ES calcula-

tions are performed using the formulation discussed in the

book chapter by Fahnline.21 The solution is written in terms

of the in vacuo structural modes with residual vectors added

FIG. 3. Illustration of the plate mesh and the drive point, response point,

and hydrophone locations.

FIG. 4. (Color online) Acceleration as a function of time for the bronze

plate.

FIG. 5. (Color online) Acceleration as a function of frequency for the bronze

plate.
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in to represent the contributions from truncated modes. The

resonance peaks at 401, 857, and 2144 Hz in the experimental

measurements are anti-symmetric modes, and are not evident

in the numerical computations due to the response point loca-

tion on plate centerline.

As mentioned previously, reflections from the air-water

interface in the experiments make it difficult to compare pres-

sure measurements to numerical computations in the time

domain. However, for this example the reflections do not

change the frequency content substantially. Figure 6 shows

comparisons of the measured and computed pressure at the

hydrophone location illustrated previously in Fig. 3. The

measurements show some evidence of electrical noise at

60 Hz harmonics. To test the stability limits, the time step

size can be reduced; producing a stable solution for cDt/
L¼ 0.158 and an unstable solution for cDt/L¼ 0.079.

B. Thin steel sphere

The previous problem is not a completely general test of

the numerical formulation because the acoustic resonances

within the boundary surface occur at relatively high frequen-

cies. As a problem where nonuniqueness issues should be

more prevalent, a thin steel sphere is considered next. The

structural model of the sphere is constructed from QUAD4

shell elements in NASTRAN, where the radius and thickness of

the sphere are 1 and 0.05 m, respectively. The material prop-

erties are taken as: Young’s modulus 200 GPa, Poisson’s

ratio 0.3, and density 7860 kg/m3. The peak input force is

taken to be 1 N and its duration is 0.002 s. Due to the

assumption that the input force is half a period of a squared

sine wave, the duration must be small enough for no nulls in

the input force spectrum to occur in the frequency range of

interest. With the duration equal to 0.002 s, the first null

occurs at 2000 Hz. Unlike the previous example, physical

hardware does not exist for the sphere, so convergence stud-

ies and comparisons between frequency and time domain

calculations are used to validate the analysis.

Before choosing the mesh for the full analysis, several dif-

ferent meshes were used to test convergence. In general, coars-

ening a finite element mesh makes the model stiffer, leading

to overestimates of the resonance frequencies. In the time

domain, this causes the response curves for meshes with dif-

ferent resolutions to resemble each other with a change in the

time scale, where overestimates of the resonance frequencies

lead to shorter time scales. To illustrate, Fig. 7 shows compari-

sons of drive point acceleration for the sphere as a function of

time for meshes with NA¼ 3546, 13 824, and 31 104. The

smallest element size for the finest mesh is 0.0137 m, and tak-

ing the time step to be 4� 10�6 s gives fully diagonal coupling

matrices for all three meshes. The results in the figure show

that the meshes with NA¼ 13 824 and 31 104 give nearly the

same solution. In general, refining the mesh incurs a consider-

able computational cost, so the mesh with NA¼ 13 824 is used

for the full analysis, and it is illustrated in Fig. 8. Ultimately,

the process of testing mesh refinement is somewhat more effi-

cient in the time domain than in the frequency domain because

only a relatively small number of time steps is required.

For the mesh with NA¼ 13 824, the maximum element

size is equal to 0.039 m, so that cDt/L¼ 0.154. In transform-

ing the results to the time domain, 131 072 time steps of size

4� 10�6 s were computed, giving a frequency resolution of

approximately 1.9 Hz. Figure 9 shows comparisons of the

numerical computations for the acceleration-to-force transfer

functions at the drive point, where the results for the fre-

quency domain FE/ES analysis are shown for NA¼ 13 824.

FIG. 6. (Color online) Normalized sound pressure level as a function of fre-

quency for the bronze plate.

FIG. 7. (Color online) Acceleration as a function of time for the steel sphere

using the tripole source formulation.

FIG. 8. Illustration of the finite and boundary element meshes for the sphere

and the drive and response point.
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The results confirm that acoustic radiation damping, which

is very strong for the first few resonances, is included cor-

rectly in the analysis. For this particular problem, the tripole

source formulation does not become unstable for small time

step sizes (the smallest value tested was 1� 10�6 s, corre-

sponding to cDt/L¼ 0.015). This may be a consequence of

the large radiation damping for the lowest axisymmetric

modes. The damping levels are higher for the transient solu-

tion, which is a well-known characteristic of time-stepping

procedures.

IV. EXAMPLE WITH TERMS OF THE COUPLING
MATRIX SET TO ZERO

It is not always possible or desirable to choose the time

step small enough to make Pð1Þ and Uð1Þ fully diagonal,

especially if stability is an issue for small step sizes or the

boundary surface mesh contains a few small elements. In

this section, the possibility of making the matrix A sparse by

setting terms of Ptð1Þ½Utð1Þ��1
to zero will be examined. It

is difficult to precisely calculate which matrix terms should

be nonzero due to the noncausal interpolation functions.

Rather than trying to determine which terms should theoreti-

cally be zero based on the boundary surface mesh geometry,

the time step size, and sound speed, a simple ratio of the

matrix terms can be used instead, as defined as

Ratio ¼ jAl�j=kAkmax: (24)

If this ratio is less than a specified value, xfilter, the matrix

element is set zero. Varying xfilter gives a trade-off between

accuracy and solution time, where the number of terms set to

zero decreases as xfilter decreases. The time step size also

influences solution accuracy, so time step variations will be

considered first.

A thin circular steel cylinder, the mesh for which

is shown in Fig. 10, will be used as an example to test the

algorithm when terms of Pð1Þ and Uð1Þ are set to zero. The

cylinder has outer diameter 0.169 m, length 0.427 m, and

thickness 0.0064 m. The material properties for the cylinder

are taken as Young’s modulus 190 GPa, Poisson’s ratio 0.3,

and density 7830 kg/m3. The drive and response points are in

the radial direction on the outside of the cylinder a distance

0.0427 m from the closest edge. The peak measured input

force is 2.5 N and its duration is approximately 2.73� 10�4 s.

The input force for the cylinder had to be much lower than

for the bronze plate considered previously to keep the accel-

erometer from overloading since the drive and response

points are in close proximity and the cylinder is not nearly as

thick or heavy as the plate.

The cylinder is a good problem to illustrate the sparsity of

A because, depending on the time step size, it is possible for a

triangular pulse of length 2Dt to travel across the thickness in

a single time step. The minimum and maximum element

dimensions for the surface mesh are 0.0021 and 0.0037 m,

respectively. The time step size must be less than 7.1� 10�7 s

for Pð1Þ and Uð1Þ to be fully diagonal, which is impractically

small. A range of values for the time step size will be consid-

ered to illustrate how it affects the solution accuracy and com-

putation time. The stability parameter cDt/L is equal to 2, 1.6,

0.8, and 0.4 for time step sizes 5� 10�6, 4� 10�6, 2� 10�6,

and 1� 10�6 s, respectively. In the following results, the

parameter xfilter is set to 1� 10�6, which corresponds to a dif-

ference in magnitude of 120 dB. Table I lists the percentage of

nonzero terms in K, A, Ptð1Þ; Ptð1Þ½Utð1Þ��1
, and Keff for var-

ious time step sizes along with the maximum number of active

time steps, NATSmax, for any source-receiver combination.

The total number of terms is (NDOF)2 for K, A, and Keff and

(NA)2 for Ptð1Þ and Ptð1Þ½Utð1Þ��1
, where NDOF¼ 209 088

and NA¼ 35 424 for the cylinder. The number of active time

steps grows as the time step size decreases because more time

steps are required for a triangular pulse to travel across the

boundary surface elements. The number of nonzero terms in A
more than doubles in changing the time step from 4� 10�6 s

to 5� 10�6 s because the shell thickness is 0.0064 m and

sound waves travel across the thickness in 4.3� 10�6 s. Also,

FIG. 10. Illustration of the cylinder mesh and the drive point location.

FIG. 9. (Color online) Acceleration as a function of frequency for the steel

sphere.

TABLE I. The sparseness of the matrices as a function of time step size

with xfilter set to 1� 10�6 s. The matrix Utð1Þ has the same sparsity pattern

as Ptð1Þ.

% nonzero

Dt NATSmax K Ptð1Þ Ptð1Þ½Utð1Þ��1 A Keff

5� 10�6 s 3 0.032 0.091 0.962 0.149 0.177

4� 10�6 s 3 0.032 0.060 0.457 0.073 0.102

2� 10�6 s 4 0.032 0.025 0.150 0.030 0.059

1� 10�6 s 6 0.032 0.003 0.003 0.003 0.032
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when the time step is equal to 1� 10�6 s, the sparsity of K
and Keff are nearly the same, indicating that the acoustic anal-

ysis does not add many nonzero terms into Keff .

Changes in the number of active time steps and the spar-

sity of the matrices have large effects on the computation

times. Table II summarizes the computation times for 1000

time steps using the various time step sizes, where the calcu-

lations were performed on a Linux cluster using four nodes,

each with with 48 processors and 256 GB of RAM. The com-

putation of the source amplitude vector and its time deriva-

tive require convolution summations, but these data are

already computed and not included as part of the column

labeled q, _q. Several trends are evident in the table. The times

to compute the ES matrices and the convolution summations

increase with the number of active time steps simply because

there are more nonzero terms to calculate. The times to com-

pute Pð1Þ½Uð1Þ��1
remain essentially constant because the

calculations are performed using subroutines that assume the

matrices are fully populated, without taking advantage of

their sparsity. As discussed previously in the section on com-

putational strategies, the coupled equation system is solved

using only one computational node because inter-node com-

munication can slow MUMPS considerably. The factorization

of the coupled equation system only occurs during the first

time step and occupies a small fraction of the time, especially

as the number of time steps grows. The data in the table indi-

cate that the solution times for the coupled equation system

are a strong function of the number of nonzero terms in the

effective stiffness matrix.

The times required to compute q and _q warrant some

discussion. Reducing the time step size makes the matrix

Uð1Þ sparser, such that the times to compute q and _q should

decrease along with the time step size. However, the MUMPS

solver (version 5.0.0) actually becomes much slower for

very sparse matrices. This issue is discussed on the MUMPS

website as a FAQ topic. The website suggests that this diffi-

culty has to do with retaining very small numbers in the

solution. As a consequence, PARDISO far outperforms MUMPS

for very sparse matrices. In the data listed in the table, the

solver switches from MUMPS to PARDISO for the time step sizes

1� 10�6 s and 2� 10�6 s. Overall, the results show that the

user can trade-off computation times between the convolu-

tion summations and the matrix solution for the coupled sys-

tem somewhat by varying the time step size.

Aside from computation time, the time step size also

influences solution accuracy. Figure 11 shows the drive point

acceleration for the cylinder as a function of time for step

sizes 1� 10�6 and 4� 10�6 s. The results in the figure show

that refining the time step size reduces high frequency oscil-

lations in the response. The best results are achieved with Dt
set to 1� 10�6 s, for which the matrices Pð1Þ and Uð1Þ are

nearly diagonal. Unfortunately, for this time step size, the

solution becomes unstable after approximately 0.011 s. The

subsequent computations are thus performed with Dt set to

2� 10�6 s. Ultimately, since the time required for the convo-

lution summations scales well with number of processors, it

is generally beneficial to reduce the time step size as small

as possible to increase the solution accuracy and to reduce

the number of nonzero terms in Pð1Þ and Uð1Þ.
In varying the time step size, xfilter was set to 1� 10�6,

which corresponds to a difference in magnitude of 120 dB.

The trade-off between solution accuracy and computation

time as a function of xfilter will now be considered with the

time step fixed. Zeroing out more terms of the acoustic cou-

pling matrix reduces the time required to solve the coupled

equation, but may negatively impact the solution accuracy.

The goal will be to determine the maximum acceptable value

that can be used for xfilter without causing significant errors.

Figure 12 shows the drive point acceleration for the cylinder

as a function of time for various values of xfilter with Dt equal

to 2� 10�6 s. The figure shows that accurate results are

obtained for this problem with xfilter< 1� 10�3. The small

shift in the data for xfilter¼ 1� 10�3 slowly accumulates

over time, so that a noticeable shift occurs on the scale of

100 000 time steps. Ultimately, this corresponds to a slight

frequency shift in the resonance peaks. Table III lists the per-

centage of nonzero terms in K, A, Ptð1Þ; Ptð1Þ½Utð1Þ��1
, and

Keff for the various values of xfilter along with the times to

factor the coupled equation system and solve it for 1000

TABLE II. Computation times as a function of the time step size, where

M-V stands for matrix-vector multiplication.

Coupled system

Dt P, U Ptð1Þ½Utð1Þ��1
Factor Solve M-V cst q, _q

5� 10�6 s 1029.5 s 246.6 s 104.6 s 219.9 s 225.9 s 412.8 s 11.8 s

4� 10�6 s 1079.5 s 246.2 s 69.0 s 184.0 s 141.2 s 404.8 s 12.5 s

2� 10�6 s 1297.0 s 246.2 s 32.9 s 123.6 s 97.9 s 384.3 s 19.4 s

1� 10�6 s 1754.5 s 247.6 s 7.2 s 55.3 s 72.6 s 515.6 s 22.3 s

FIG. 11. (Color online) Acceleration for the thin cylinder as a function of

time.

FIG. 12. (Color online) Acceleration for the thin cylinder as a function of

time for various values for xfilter.
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time steps with the time step size set to 2� 10�6 s. The

results again show the strong dependence of the matrix fac-

torization and solution times on the number of nonzero terms

in the effective stiffness matrix. Also, the differences in the

matrix solution times for xfilter equal to 1� 10�3 and 1� 10�4

are fairly small, so that in practice is better to choose the

more accurate solution. Clearly, Ptð1Þ½Utð1Þ��1
should not be

more sparse than Ptð1Þ or Utð1Þ, individually, so that xfilter

should be taken smaller than 1� 10�2. To illustrate the num-

ber of active elements, Fig. 13 shows the elements with non-

zero pressure when one acoustic element on the outer surface

of the cylinder is vibrating for four different choices of xfilter.

The illustration demonstrates that even with xfilter¼ 1� 10�6,

which retains many more terms, the pressure is very nearly

zero over almost all of the boundary surface. In all the prob-

lems considered by the authors to date, choosing xfilter equal

to 1� 10�4 yields accurate results. However, the accuracy

can always be confirmed by reducing xfilter and checking

convergence.

As a final step, the time domain computations will be

compared to frequency domain computations and experimen-

tal measurements. With the time step chosen as 2� 10�6 s

and with xfilter set to 1� 10�4, Fig. 14 shows comparisons of

the drive point acceleration as a function of time computed

using simple sources, tripole sources, along with experimental

measurements. For the full analysis 524 288 time steps were

computed, giving a frequency resolution of approximately

1 Hz. Figure 15 shows comparisons of the experimental meas-

urements and numerical computations for the acceleration-to-

force transfer functions at the drive point as a function of fre-

quency. The experimental measurements exhibit considerably

higher damping than either the time or frequency domain

FE/ES results, which is likely due to friction from contact

between the cylinder edges and the bungee cords used to sus-

pend it. As for the thin sphere, the time domain computations

show some extra algorithmic damping in comparison to the

frequency domain computations.

V. COMPUTATION TIME SCALING

The goal in this section is to test how well the computa-

tion times scale as the number of processors increases for the

cylinder mesh discussed in Sec. IV. Table IV lists the signifi-

cant computation times for 1000 time steps using the tripole

source formulation with xfilter¼ 1� 10�4 and a time step size

of Dt¼ 2� 10�6 s, where the calculations were performed

on a Linux cluster with nodes that each have 36 processors

and 128 GB of RAM. Other jobs were running while the

TABLE III. Computation times for the coupled matrix solutions and sparse-

ness of the matrices as a function of time step size with Dt equal to 2� 10�6

s. The matrix Utð1Þ has the same sparsity pattern as Ptð1Þ.

Solution time % nonzero

xfilter Factor Solve K Ptð1Þ Ptð1Þ½Utð1Þ��1 A Keff

1� 10�6 32.9 s 123.6 s 0.032 0.025 0.150 0.030 0.059

1� 10�5 24.1 s 111.2 s 0.032 0.025 0.105 0.023 0.051

1� 10�4 19.7 s 91.8 s 0.032 0.025 0.062 0.016 0.045

1� 10�3 17.4 s 88.4 s 0.032 0.025 0.037 0.012 0.041

1� 10�2 11.9 s 67.0 s 0.032 0.025 0.014 0.007 0.036

1� 10�1 6.9 s 57.4 s 0.032 0.025 0.003 0.003 0.032

FIG. 13. Illustration of the elements

with nonzero pressure for xfilter¼ 1

� 10�2 (top left), 1� 10�3 (top right),

1� 10�4 (bottom left), and 1� 10�6

(bottom right). The scale is in decibels

relative to the pressure over the driven

element on the outer surface.
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computations were being performed, so that some small vari-

ation exists due to differences in the communication times.

The time required to compute A is not listed because given a

sparse version of Pð1ÞUð1Þ�1
, the subsequent multiplications

by F and V are fast. The results show that, for a problem of

this size, even though the acoustic matrices are processed as

if they are densely populated, the times required to compute

Uð1Þ�1
and Pð1ÞUð1Þ�1

are reasonably short because the

SCALAPACK routines scale well with number of processors and

the 35 424 acoustic elements are far less than the 209 088 total

number of degrees-of-freedom. In general, the expectation is

that the computation times for Pð1ÞUð1Þ�1
will be reduced as

the number of processors increases, but the times actually

increase using 1440 and 1800 processors. This is likely due to

either increases in the amount of inter-node communication

or the processor grids and blocking factors for the SCALAPACK

computations. The sparse matrix computations, including fac-

toring and solving the coupled system and the matrix-vector

multiplications, are performed on a single multiprocessor

node and remain essentially constant. The other steps scale

well with number of processors, such that the computation

time decreases almost in direct proportion. The analysis steps

in the last four columns are repeated for every time step, and

thus their percentage of the total computation time will

increase as the number of time steps increase. The important

conclusion is that given enough processors, the time to com-

pute the convolution summations can be made as small as the

time to compute the solution of the coupled equation system.

For very large problems, the Pð1ÞUð1Þ�1
computations

become much more time consuming due to the cubic depen-

dence on matrix size for densely populated matrix solutions

and multiplications. However, in a practical situation, the

processor count will also have to increase considerably due

to the memory requirements for storing the P and U matrices

in RAM. To illustrate the memory requirements, the tripole

source formulation stores four matrices of size NATS� (NA)2

� 4 bytes, where 4 bytes represents the memory required to

store a single matrix element in single precision and NATS is

the number of active time steps. The largest problem the

authors have solved to date has NA¼ 400 000 and NATS¼ 8,

such that approximately 20 TB of RAM was required to store

the matrices. The analysis was performed on a Linux cluster

using 300 nodes, each with 36 processors and 128 GB RAM,

giving 10 800 processors and 38.4 TB of RAM. For this prob-

lem, the matrix factorization and solutions required 70 and

14 min, respectively. Thus, large problems can be addressed

using the formulation, but only with vast computing resour-

ces. For reference purposes, the analysis was run on the Air

Force Research Laboratory cluster Thunder, and represented

approximately a tenth of the cluster’s total resources. Of

course, this discussion becomes irrelevant when the time step

can be chosen small enough to make Pð1Þ and Uð1Þ fully

diagonal, in which case the computation of Pð1ÞUð1Þ�1
is

trivial. When the time step size is small enough for some, but

not all, of the rows and columns of Pð1Þ and Uð1Þ to be diag-

onal, it is possible to partition the matrices into block diago-

nal form. Matrix inversion and multiplication is then trivial

for the diagonal part of the matrices, and the full calculation

is performed for the rest, potentially reducing the computa-

tion times considerably.

VI. DISCUSSION OF STABILITY

In the previous analyses of the bronze plate and thin steel

cylinder, instabilities occur for small values of cDt/L. These

boundary surfaces can be categorized as “thin shapes,” where

the thickness in one direction is much smaller than the others.

It is likely that the instabilities are due to “thin-shape break-

down” difficulties, as discussed by Hargreaves and Cox23 for

transient boundary element analyses. Since the length-to-

thickness ratio is smaller for the cylinder (0.015) than for

the plate (0.058), numerical solutions for the cylinder are

expected to be less stable than those for the plate, and, indeed,

the cylinder becomes unstable for cDt/L � 0.4 while the plate

becomes unstable for cDt/L � 0.08. Ultimately, these types of

problems are more stable when analyzed using a “dipole

source formulation,” where the thickness direction is repre-

sented as infinitesimally small and it is assumed that plate and

FIG. 14. (Color online) Acceleration as a function of time for the thin

cylinder.

FIG. 15. (Color online) Acceleration as a function of frequency for the thin

cylinder.

TABLE IV. Computation times as a function of the number of processors,

NP, where M-V stands for matrix-vector multiplication.

Coupled system

NP P, U Ptð1Þ½Utð1Þ��1
Factor Solve M-V cst q, _q

360 305.0 s 52.4 s 11.2 s 53.6 s 45.0 s 156.1 s 7.1 s

720 161.8 s 33.0 s 11.9 s 53.6 s 45.1 s 88.0 s 7.0 s

1080 109.1 s 28.8 s 11.3 s 53.2 s 45.4 s 59.4 s 6.9 s

1440 107.4 s 30.0 s 11.7 s 53.5 s 45.7 s 52.7 s 7.4 s

1800 84.7 s 51.2 s 11.5 s 53.1 s 46.0 s 46.8 s 7.4 s
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shell elements deform only in bending. A discussion of equiv-

alent source calculations using dipole sources alone is given

in the paper by Fahnline,5 and it can be coupled to finite ele-

ment analyses to give a coupled FE/ES formulation using the

same techniques discussed in Sec. II of this paper. It is also

possible to combine mixed regular and thin bodies together in

a single analysis using tripole and dipole sources to represent

the regular and thin bodies, respectively. A detailed discus-

sion of these formulations is not included here due to space

limitations.

VII. CONCLUSIONS

In this paper, a monolithic time-marching scheme for

structural-acoustic problems has been derived where the acous-

tic coupling matrix is either fully diagonal or treated as sparse.

This basic idea originated with the realization that the coupling

matrix should be sparse in theory because it relates nodal

velocities to nodal acoustic pressure forces, and the pressure

waves can only travel a distance cDt during a single time step.

Computationally, the matrix becomes fully populated due to

small errors in the coefficient matrix, the matrix solution, and

the subsequent matrix multiplications. To make the matrix

sparse, terms are set to zero that are smaller than a specified

fraction of the largest term. The numerical results demonstrate

that this is a reasonable approximation, and that for the chosen

example problem accurate results are obtained with the fraction

set to 1� 10�4, which is equivalent to neglecting terms 80 dB

smaller than largest term. It is also demonstrated that the for-

mulation adapts well to parallel processing environments and

that the computation times associated with the equivalent

source computations are proportional to the number of process-

ors. Several numerical examples are solved to illustrate the

computations and validate the formulation.
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APPENDIX

In this appendix, the matrix terms derived from the

equivalent source analysis are explicitly defined. The actual

method for performing the integration is discussed in the

paper by Fahnline.5 The source amplitudes are assumed as

triangular pulses of length two time steps Dt starting at time

t¼ 0 or, in mathematical terms,

T tð Þ ¼ 1� jDt� tj
Dt

� �
H tð Þ � H t� 2Dtð Þ
� �

; (A1)

where H is the Heaviside function. The subsequent equations

are written for a source at point q, and the surface integra-

tions are performed for the field point x located on an ele-

ment with surface area S, which represents one term of a

matrix as a function of time. Other variables include the out-

ward unit normal direction n, the unit direction for the dipole

source nq, the vector distance from the source to the field

point R ¼ x� q, and its magnitude R ¼ jx� qj.

The velocity potential of a simple source can be written as

Uðx; tÞ ¼ �QðsÞ=4pR; (A2)

where Q is the simple source amplitude and s¼ t – R/c.

The pressure field of a simple source can be computed from

Eq. (A2) as

p x; tð Þ ¼ �q
@U
@t
¼ q

4pR

@Q sð Þ
@t
¼ � qc

4pR

@Q sð Þ
@R

; (A3)

where q is the fluid density. Evaluating the average pressure

over surface element a at time t due to a pulse T(t) for source

j gives one element of the matrix PsðtÞ as

Ps tð Þ ¼ � qc

4pSa

ð ð
Sa

1

R

@T sð Þ
@R

	 

R¼Rj

dS xð Þ; (A4)

where the subscript s indicates simple source, the row num-

ber is a, the column number is j, and Rj ¼ jx� qjj is the

distance from source j. The discrete matrices PsðnÞ are com-

puted by sampling Ps(t) at t¼ nDt. The component of the

acoustic particle velocity in the direction n can be computed

from Eq. (A1) using Euler’s equation as

vn x; tð Þ ¼ rR � nð Þ @
@R
�Q sð Þ

4pR

� �
¼ �R � n

4pR

@

@R

Q sð Þ
R

� �
:

(A5)

Evaluating the volume velocity over surface element a at

time t due to a pulse T(t) for source j gives one element of

the matrix UsðtÞ as

Us tð Þ ¼ � 1

4p

ð ð
Sa

R � n
R

@

@R

T sð Þ
R

� �	 

R¼Rj

dS xð Þ: (A6)

The velocity potential of a dipole source can be written as

U x; tð Þ ¼
R � nq

4pR

@

@R

F sð Þ
R

� �
; (A7)

where F is the dipole source amplitude (which has units of

force), and nq is a unit vector indicating the source’s direc-

tion. The pressure field of a dipole source can be computed

from the velocity potential as

p x; tð Þ ¼ �q
R � nq

4pR

@

@R

_F sð Þ
R

� �
; (A8)

where _F is the derivative of F with respect to time. One ele-

ment of the matrix PdðtÞ for element a and source j is given as

Pd tð Þ ¼ � q
4pSa

ð ð
Sa

R � nqj

R

@

@R

T sð Þ
R

� �	 

R¼Rj

dS xð Þ;

(A9)

where nqj is the direction for dipole source j. The compo-

nent of the acoustic particle velocity in the direction n can

be computed as

J. Acoust. Soc. Am. 142 (2), August 2017 John B. Fahnline and Micah R. Shepherd 1023



vn x; tð Þ ¼
n � nq

4pR

@

@R

F sð Þ
R

� �

þ R � nq

4p
R � n

R

@

@R

1

R

@

@R

F sð Þ
R

� �	 


¼ n � nq

4pR

@

@R

F sð Þ
R

� �

� R � nq

4p
R � n

R

@

@R

F sð Þ
R3
þ

_F sð Þ
cR2

� �
: (A10)

The volume velocity of a dipole source depends on both F
and _F, which are given subscripts 0 and 1, respectively. One

element of the matrices Ud;0ðtÞ and Ud;1ðtÞ for element a and

source j is given as

Ud;0 tð Þ ¼ 1

4p

ð ð
Sa

n � nqj

R

@

@R

T sð Þ
R

� �	

� R � nqjð Þ
R � n

R

@

@R

T sð Þ
R3

� �

R¼Rj

dS xð Þ

(A11)

and

Ud;1 tð Þ¼� 1

4pc

ðð
Sa

R �nqjð Þ
R �n

R

@

@R

T sð Þ
R2

� �	 

R¼Rj

dS xð Þ;

(A12)

respectively.

For the tripole source formulation, one element of the

matrix PtðtÞ is given as

Pt tð Þ ¼ 1

c
Ps tð Þ þ Pd tð Þ; (A13)

and one element of the matrix UtðtÞ is given as

Ut tð Þ ¼ 1

c
Us tð Þ þ 2Dt

3
Ud;0 tð Þ þ Ud;1 tð Þ: (A14)
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