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The wavenumber transform for rectangular, simply supported, isotropic thin plates has been reder-

ived to correct a technical error found in the text Sound and Structural Vibration (Academic Press,

1985/2007) by Fahy/Fahy and Gardonio. The text states that the modal wavenumber corresponds to

the peak of the wavenumber spectrum. While this is approximately true for higher-order modes, it

does not hold for lower-order modes due to coupling between positive and negative wavenumber

energy. The modal wavenumber is shown to be related to the zeros in the wavenumber spectrum by

an integer multiple of 2p normalized by the plate length.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4747012]

PACS number(s): 43.40.Dx [SFW] Pages: 2155–2157

I. INTRODUCTION

Wavenumber analysis is used in a wide range of

structural-acoustic problems. However, there exists a miscon-

ception that the wavenumber transform of a simply sup-

ported, rectangular, thin plate mode shape peaks at the modal

wavenumber. This misconception originates from the para-

graph following Eq. (3.101) (pp. 181) of the Fahy and Gardo-

nio text Sound and Structural Vibration1 [Eq. (2.54), pp. 77

in the 1st Edition]. The figures corresponding to this discus-

sion (Figs. 3.20–3.22, 3.27/36–38,44) therefore have incor-

rect x-axis labels. The misinterpretation of Eq. 3.101, though

mostly of academic interest, has been cited by researchers

to provide insight into more complex problems (see e.g.

Graham,2 Torres and Boullosa,3 and Clark and Fuller4). This

letter reexamines the wavenumber spectrum to correctly

interpret its physical meaning. The modal wavenumber is

thereby shown to be related to the zeros in the spectrum by

an integer multiple of 2p normalized by the plate length.

II. WAVENUMBER SPECTRUM DERIVATION

A simply supported thin rectangular plate of dimensions

Lx� Ly has flexural mode shapes described by

Wmnðx; yÞ ¼ sin
mpx

Lx

� �
sin

npy

Ly

� �
; (1)

where m and n are positive, non-zero integers representing

the mode order in the x and y directions, respectively. The

wavenumber representation of the normal modes is a result

of a two-dimensional Fourier transform in the spatial coordi-

nates x and y:

Smnðkx; kyÞ ¼
ð1
�1

ð1
�1

Wmnðx; yÞe�jkxxe�jkyydxdy; (2)

where kx; ky are the wavenumbers in the x and y directions.

The solution to Eq. (2) is separable in x and y, and for

the x direction alone is

SmðkxÞ ¼
km½ð�1Þme�jkxLx � 1�

k2
x � k2

m

; (3)

where km ¼ mp=Lx is the modal wavenumber.1 The energy

spectrum or wavenumber sensitivity function can be found

by squaring the magnitude of Eq. (3):

jSmðkxÞj2 ¼
2ðkmÞ2ð1� ð�1ÞmcosðkxLxÞÞ

ðk2
x � k2

mÞ
2

: (4)

The wavenumber spectrum in the y direction is derived in a

similar fashion. Using a series of trigonometric identities, an

alternative formulation of Eq. (4) is given as1

jSmðkxÞj2 ¼
2km

k2
x � k2

m

� �2

sin2 kxLx � kmLx

2

� �
: (5)

Examination of Eq. (5) reveals a numerator term that oscil-

lates and a denominator term that resembles the denominator

term of an undamped simple harmonic oscillator. The de-

nominator then suggests that there will be an infinite peak in

the spectrum at the modal wavenumber (kx ¼ km). However,

analysis of the numerator reveals a zero when the argument

of the squared sine function equals pp, where p is an integer

(positive or negative). Thus when p ¼ 0, which occurs at the

modal wavenumber, L’Hopitals rule must be used to deter-

mine the value of jSmðkmÞj2. The sine term dominates in the

limit that kx ! km such that S2
mðkmÞ ¼ L2

x=4 for all values of

m. Equation (5) and the value of the its peak are derived and

interpreted correctly in Sound and Structural Vibration.

However, further investigation of Eq. (5) reveals that

the zeros in the sensitivity function occur when

kx ¼ pð2pþ mÞ=Lx; (6)
a)Author to whom correspondence should be addressed. Electronic mail:
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where again, p is a positive or negative integer with p ¼ 0

case corresponding to the modal wavenumber. This illus-

trates that there are multiple zeros centered about the modal

wavenumber for each mode and that all even-ordered modes

have zeros at even multiples of p=Lx and all odd-ordered

modes have zeros at odd multiples of p=Lx. Thus, the x axis

label of the Fig. 3.22/38 in Sound and Structural Vibration is

incorrect.

The values of all extrema may be located by setting the

derivative of Eq. (5) to zero to obtain the transcendental

equation

2p2L3
xm2½ððkxLxÞ2 � ðmpÞ2Þ sinðkxLx � mpÞ þ 4kxLxðcosðkxLx � mpÞ � 1Þ�

ððkxLxÞ2 � ðmpÞ2Þ3
¼ 0: (7)

Table I displays the first three maxima for the m ¼ 1� 6

modes, showing that the peak (i.e., global maximum) does

not occur at the modal wavenumbers for low wavenumbers.

By setting the numerator of Eq. (7) to zero and neglecting

the denominator going to zero when kx ¼ km, one comes to

the incorrect conclusion that a maximum exists at the modal

wavenumber.

Figure 1 shows the wavenumber spectrum with the nu-

merator and denominator terms of Eq. (5) overlaid on a loga-

rithmic scale for the first four modes of a unit length plate.

The denominator peaks at the positive and negative modal

wavenumbers as expected and the numerator has zeros at

odd/even multiples of p depending on the mode order. The

peak of the wavenumber spectrum for each mode is boxed,

and the peak wavenumber approaches the modal wavenum-

ber as the mode order increases.

Upon inspection of the m ¼ 1 mode in Fig. 1, it can

be seen that the denominator term does not exhibit

symmetry around the modal wavenumbers. This suggests

that wavenumber energy from the positive and negative

modal wavenumbers interact. This positive/negative wave-

number coupling at low wavenumber effectively boosts the

wavenumber spectrum between �km < kx < km, the effect

being strongest for the m ¼ 1 mode. At low wavenumbers,

the locations of the peaks in the wavenumber spectrum can

be explained as being slightly lower than the modal wave-

numbers due to the coupling of the negative modal wave-

numbers with the positive wavenumbers and vice versa. As

the mode order increases, the peak wavenumbers approach

the modal wavenumbers since the coupling between positive

and negative wavenumber becomes more negligible (<2%

when m ¼ 6).

The m ¼ 1 mode is described in Sound and Structural
Vibration1 as being an “exception” because the peak in the

sensitivity function (located at kx ¼ 0) is not at the modal

wavenumber (see Table I). However, correct interpretation

of the spectrum shows that the m ¼ 1 mode is not an anom-

aly but rather has the highest coupling between positive and

negative wavenumbers and therefore the greatest error

between the modal wavenumber and the peak in the sensitiv-

ity function. The percent difference between the peak

wavenumber and the modal wavenumber is shown for the

first 6 modes in Table I.

Further analysis of Eq. (5) reveals that the modal wave-

number can be recovered by exploiting the regularity of the

spacing between zeros. Using Eq. (6), the spacing between

zeros can be shown to be a constant, 2p=Lx, for all mode

orders. Since the modal wavenumber occurs when p ¼ 0,

the modal wavenumber can be computed once the location

TABLE I. The modal wavenumber and the first three maxima for modes

m ¼ 1� 6 with the global maximum in bold. The percent error between the

modal wavenumber and the location of the global peak is also shown. The

error is greatest at m ¼ 1 and decreases with increasing mode order.

Mode order (m) km kp1 kp2 kp3 % Difference

1 p=L 0 11.87/L 18.41/L 100.0

2 2p=L 5.26/L 15.09/L 21.59/L 16.3

3 3p=L 0 8.76/L 18.27/L 7.1

4 4p=L 3.32/L 12.08/L 21.44/L 3.9

5 5p=L 0 6.54/L 15.32/L 2.5

6 6p=L 3.22/L 9.72/L 18.53/L 1.7

FIG. 1. (Color online) The wavenumber transform (solid) for the m
¼ 1� 4 modes with the numerator (dash) and denominator (dot-dash)

terms plotted separately on a log-scale for a unit length plate. The peak in

the wavenumber sensitivity function is indicated with a box. The coupling

between the positive and negative wavenumbers in the denominator term

accounts for the downward shift in the peak of the spectrum. As the mode

order increases, the peak in the spectrum approximates the modal wave-

number (mp).
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of the p ¼ 1 zero is found (the location of the first zero after

the maximum wavenumber). Mathematically, this can be

written as

km ¼ kz1 � 2p=Lx; (8)

where kz1 is the wavenumber of the p ¼ 1 zero. This relation-

ship is shown graphically in Fig. 2 for mode orders 1� 4.

The modal wavenumber can equivalently be determined by

adding 2p=Lx to the wavenumber at the first zero preceding

the peak (p ¼ �1).

III. CONCLUSIONS

Wavenumber analysis of simply supported isotropic,

thin plate flexural modes have been reexamined to correct a

technical error concerning the location of the modal wave-

number in the wavenumber spectrum. The modal wavenum-

ber has been shown to be related to the zeros in the spectrum

and not equal to the peaks as explained in Sound and Struc-
tural Vibration1 on pp. 181 (pp. 77). However, at high wave-

numbers (m > 5), the percent error between the peak

wavenumber and the modal wavenumber becomes small so

that they are approximately equal.

It should be noted that the correction of this error has

only minor implications for conceptual explanations relating

to sound radiation of plates in wavenumber space (i.e., the

radiation circle) and no relation to most other mathematical

derivations found in Sec. 3.8/2.7.
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FIG. 2. (Color online) The wavenumber energy spectrum for the m ¼ 1� 4

modes with the peak in the wavenumber sensitivity function indicated with

a box. The spacing between zeros (2p=L) can be used to determine the

modal wavenumber by finding the first zero after the peak wavenumber and

subtracting 2p=L.
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