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Decay of trapped-particle asymmetry modes in non-neutral plasmas
in a Malmberg—Penning trap

Grant W. Mason?
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 4 December 2002; accepted 19 February)2003

The mechanism for the strong damping of diocotron-like azimuthal trapped-particle asymmetry
modes in a Malmberg—Penning trap is investigated with a detailed three-dimensional particle-in-cell
computer simulation. Then=1k,# 0 modes are created by a voltage squeeze from a mid-detector
ring followed by a displacement of trapped particles in opposite directions on either side of the ring.
The voltage squeeze creates a population of particles confined to half the trap(tesygpled and

a population of particles that move longitudinally along the full length of the cylidetrapped

The damping of the modes is found to be the result of radial transport relative to=tHe mode
(charge center caused by transitions of particles from untrapped-to-trapped states induced by
diffusion of the particles in velocity space. The transport is the immediate consequence of a
difference in dynamical orbits for trapped and untrapped particles. The random walk in velocity
space results in particles repeatedly changing state from trapped to untrapped and back. The
dependence of the mode frequency and the exponential decay constant are explored as a function of
squeeze voltage, magnetic field, and temperature in order to establish scaling behava®03©
American Institute of Physics[DOI: 10.1063/1.1566959

I. INTRODUCTION Here we consider a modification of the diocotron mode
when an applied “squeeze voltage” is applied to an addi-
Non-neutral plasmas, typically ions or electrons, can bgjonal ring installed at the longitudinal center of the trap and
confined for long periods of time in a cylindrical Malmberg— the plasma is offset from the symmetry axis in opposite di-
Penning trap similar to that shown in Fig. 1. A stiff axial rections on each side of the center ring such that the parity of
magnetic field confines the particles radially and chargeq(zio is odd. The squeeze voltage creates an energy barrier
rings at the ends of the otherwise grounded cylinder provide e ongitudinal median plane that gives rise to a popula-
elgctrostatlc.Iongltudlr.1al confmemgnt. Diocotron modes Aqion of trapped particles on either side of the divide as well as
a_mmuthal d”.ft waves in the cyhndn_cal plasma that vary spa-y population of untrapped particles with sufficient energy to
tially as exp(mé). The theory of diocotron modes in non- traverse the entire length of the trap. The result is a new

g(raiutrzl ggzmhfrtha;:gs Loer\'%lgi dlrlhsee(r:r;nmal rgﬁgig’v?;riz\t/_}/’mode revolving at a frequency different from the wall value
998, ghery, P of the rotation frequency profile. These “trapped-particle

ment of non-neutral plasmas by DavidsbfExperimental ‘ des” h b X tallv ob d and
work at the University of California San Diego for more than asymmetry modes: have been experimentally observed an

5,6 H
a decade has also contributed particularly to the foundatioFFPOrted by Kabantsest al.>” In particular, the modes were
of understanding of these modks. strongly damped by a mechanism that the authors originally

Of particular interest in this paper is te=1 mode in described as “not yet understood.Spatial Landau damping
which the plasma is offset from the symmetry axis of the@nd diffusive velocity mixing of trapped and untrapped par-
trap. In this configuration the plasma does BXB drift  ficles were suggested as possible mechanisms. The depen-
around its own symmetry axis in the electric field arisingdence of the decay constant on magnetic field has been par-
from its own space charge. The rotation has a radial deperiicularly problematic. The earliest published data for the
dence referred to as the plasma’s “rotation frequency promOdeg showed the decay constants increasing with magnetic
file.” The offset plasma as a whole also revolves about thdield strength. Later the decay of the modes was reported to
symmetry axis of the trap. The latter motion can itself behave no dependence on the strength of the magnetic field
thought of as afEXB drift in the electric field generated by over a range 0.5 k& B=<10.0 kG® More recently these two
induced charge in the grounded wall of the cylinder. Theearlier claims have been retractetihoting that the magnetic
latter motion is the so-callech=1 “wall mode” and has as field dependence was missed earlier due to concurrent
its revolution frequencyfor infinite length the value of the  plasma temperature changes. The most recent data are di-
rotation frequency profile taken at the radius of the cylinderyided into two regimes, one at lower magnetic fields varying
For a symmetric plasma with longitudinal wave number  roughly asB~* eventually giving way to a less steep depen-

=0, the mode is stable. dence B~ %% at higher magnetic field$.Hilsabeck and
O’Neil have ascribed the damping mechanism to velocity
dElectronic mail: masong@einstein.byu.edu scattering of marginally trapped particles. They have devel-
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mode decay and for determining scaling behavior if the phe-
Ring, V. Grounded Cylinder  Ring, V nomenon is essentially a consequence of longitudinal colli-
—_— sions.

To begin the simulations azimuthally symmetric equilib-
ria are computed separately using a two-dimensiomal (
—Z) nonlinear Poisson solvéf. The two-dimensional den-
sity array is passed from the equilibrium code to the simula-
tion code and interpolated onto a three-dimensional Carte-
sian grid. The three-dimensional density is then represented
by particles-in-cell{PIC).

FIG. 1. A Malmberg—Penning trap. The axial magnetic fi@lcconfines In the present work, the plasma is typically represented

charged particles radially and voltagésn the rings confine the non-neutral Y about 1.5¢10° computational “particles” that, in turn, _
plasma longitudinally in the cavity space between the rings. each represent about 450 plasma electrons. The computation

is done in three-dimensional Cartesian geometry into which
is embedded the confining cylinder. The grid used Mgs
) ) _ XNy X N,=65X65x129. Short-legged differential opera-
oped a theory based on this mechanism for which they repogh s for the Laplacian operator are used at the cylindrical
good agreement with measuremehts. . boundary so that the cylindrical shape is treated realistically.
In this paper we report the results of detailed three jyewise, boundary conditions are implemented realistically,
dimensional computer simulations of the trapped-particleyith 5 grounded cylinder sandwiched between confinement
asymmetry mode¥’ The decay mechanism is demonstratedyings at each end held at sufficient potential to confine the
to be a consequence of the orbital dynamics of particleg|asma.(See Fig. 1. In this particular application, an addi-
moving back and forth between the trapped and untrappeflona| “squeeze” ring is placed symmetrically at the longitu-
populations. The interchange between the two populations iina| center of the cylinder. Squeeze voltages of various
a result of slow modulation&iffusion) of the longitudinal magnitudes are applied to this ring. Beyond the end-rings
velocities of the particles. We also demonstrate that the de(10ngitudinally) and away from the plasma on each end is a
cay of the mode does, in fact, depend on th(? strength of thenort puffer zone of grounded cylinder at the end of which
magnetic fieldvarying in the simulations &8~ 9. We also periodic boundary conditions?¢/9z=0) are maintained to

demonstrate the dependence of the decay constant on tegsmplete the boundary conditions for the computation re-
perature in the simulations for a narrow range of temperagion_

tures. _ , The azimuthal symmetry of the distribution of particles
~In Sec. Il we describe the model and computer simulajs proken by displacing particles a small amount from their
tlons_. In Sec. Il we Con5|d_er the results (_)f the S'mmat'onsequilibrium positions to seed am=1 mode. This is done
and in Sec. IV we summarize our conclusions. during an initial 500 time steps of 3 ns each in which the
particles are incrementally displaced in opposite directions
on each side of the median plane by 0.0802 in each time
IIl. SIMULATIONS step. By making the displacements in small increments over
several bounce cycles of the particle motion, trapped par-
We take a numerical approach by doing particle-in-cellticles experience a systematic displacement in a single direc-
(PIC) simulations using a code described previodslyhe  tion from the axigoppositely directed on the two sides of the
method has the advantage of incorporating realistic boundanmnedian plang while for untrapped particles the total dis-
and end conditions in detail as well as the full three-placement is essentially nulled.
dimensional nature of the trapped-particle asymmetry modes. Poisson’s equation is solved by distributing density to
We perform numerical experiments in which, if necessarythe computational grid and using a three-dimensional multi-
we can follow the orbits of individual particles with the in- grid algorithm to solve Poisson’s equatibhParticles are
tent of helping to understand the mechanism driving the demoved in the X,y) plane assumindeXB drift motion and
cay of the modes. The disadvantage of the PIC approach issing a predictor-corrector algorithm. In the longitudirzal
that the code uses strictly drift motion in the plane perpendirection we use Newton’s second law and a leap-frog algo-
dicular to the length of the cylinder while using Newton'’s rithm. Densities are distributed to the grid, fields are com-
second law in the longitudinal direction. The result is thatputed from Poisson’s equation, particles are moved in re-
“collisions” of particles in the model only affect longitudinal sponse to the fields, and new densities are computed to begin
motion. Moreover, the simulation particles followed in the the cycle anew.
PIC simulations each represent some larger number of real The Courant condition¢,At<1) is monitored to en-
particles and hence carry a larger charge and larger mass thaare that the code is numerically stable. The code was found
real particles. The consequence of this fact is that fluctuato be very stable and once a somewhat optimized set of con-
tions in longitudinal velocity are exaggerated and this exagvergence parameters for the multigrid algorithm were cho-
geration must be removed before actual comparison with exsen, the basic stepping code performed without further atten-
periments is possible. However, the PIC simulations shouldion. For the test cases we describe in this pap& nstime
be adequate for exploring the mechanism for transport andtep was typically used to follow about 5-10 cycles of the

Magnetic Field, B



Phys. Plasmas, Vol. 10, No. 5, May 2003 Decay of trapped-particle asymmetry modes . . . 1233

m=1 mode of interest. Over the course of a typical #%& ¥ 10° Asymmetry Modes
run, the average kinetic energy of the particles rises abou ) i " i
1% (the perturbation displaces the plasma from equilibrium

. _ ) S12f
and this may be related to the slight heajiagd the angular 'g Te10ev
momentum is conserved to within about 0.01%. The conser-3 '
i i : 210f o B=004T
vation of angular momentum is checked by comparing theg . BoosT
angular momentum at the end of the run with the angulare o
8F * Diocotron Mode (0.04 T)

momentum at the beginning of the run, but after the pertur-&
bation has been applied. Each simulation to determine &£
growth rate typically took several days of computer time.
The radius of the cylindrical trap used is 0.035 m, with
an overall length of the computing region of 0.40 m. The
confining rings are 0.03 m in width and begin 0.01 m in from
either end of the computing region. The 0.05 m squeeze rin(_:§ 2r
is centered symmetrically at the longitudinal middle of the
cylinder. With a temperature of 1 eV, magnetic field of 0.04 ¢ - . . v v
S 0 5 10 15 20 25 30
T, a voltage of—100 V on the confining rings, angd 7.5 V Squeeze Voltage (Volts)
on the squeeze ring, the simulated plasma has a length of
0.26 m, a radius of 0.012 m, and a central potential of apEIG. 2. Trapped-particle asymmetry mode frequencies as a function of
o ,t V—15 V Th. i ,I d it th idpoint of Sdueeze voltage for two values of magnetic field. Asterisks mark corre-
p_r0X|ma ely - 1he C_en ra ean'_% near the midpoint o spondingm=1 diocotron frequencies taken from the cylinder wall values of
either half of the plasma is 26102 m™~3. The total number the rotation frequency profilegFor electrons, the squeeze potentials are
of particles in the plasma is 6710°. The Debye length is of negative)
the order of 0.002 m and is comparable to the grid resolution

in the longitudinal dimension and about twice the grid reso-

lution in the perpendicular dimensions. The thermal velocityF.)l"jmefWEre markled as “It(rjapped." .Of cgurse, anly rad;)al mo-
of the particles is 4.210° m/s. The gyroradius is of the tion of the particles could cause it subsequently to become

order of 50um or less for plasmas in this regime of param- “untrapped” since the energy barrier is a function of radius.
eter space and is ignored In Fig. 4 we show the potential energy barriéor elec-

For this choice of parameters, the trapped-particle asym'[_rons) as a function of radiugsolid line). The curve is the

metry mode frequency is 7:510° rad/s, a typical bounce pote_ntial energy taken at the midpoint _of the plasma and
frequency is 5 10° rad/s, a trapped particle rotation fre- terminates at the wall at a value determined by the squeeze

quency at a radius of 0.01 m is %40° rad/s, and a com- voltagt_a(in . case,_—7.5 V). Also shown_(das_heai s the
parable untrapped particle rotation frequency isx110P potential energy profile taken near the midpoint of one half

rad/s. The value of the rotation frequency profile taken at thé"c the plasmaat about one-fourth of the plasma lengtm

wall near the middle of one half of the plasma is X B0 order for a particle to surmount the barrier, it must have a
total energy that is greater than the solid curve. This differ-

de Frequency
S

rad/s. ence must be made up by the kinetic energy of the particle.
Near R=0 the difference between the dashed and solid
IIl. RESULTS
In Fig. 2 we show the results of computing the asymme- « 10° Asymmetry Modes
try mode frequencies as a function of squeeze voltage ant T T
two values of magnetic field. SinaexB~! and the simula- &t
tions take a long time to run, we work at the low end of the @
field range covered by experiment. §5_ T_10eV
In Fig. 3 we show the corresponding computed decayg o B_O'On

constants for the points in Fig. 2. Qualitatively, the figures &
correspond very well to the experimental results of Kabant-_é4
sev et al>® The decay constants decrease with increasingg
magnetic field as the more recent data show. ,g3'
Our interest here is to shed light on the mechanism of £
the decay of the mode. For that purpose, we sought to iden§2-
tify two initial groups of particles. Trapped particles were >
identified as those particles whose orbits were confined tcg 4}
one side or the other of the median plane, while untrappec
particles were those whose orbits were not limited to one ) . ) .
side or the other. At the beginning of the evolution of the 0 5 10 15 20 25 30
plasma and after the displacements that seed the mode, & Squeeze Voltage (Volts)
particles that would encounter an insurmountable energy bagg. 3. pecay constants as a function of squeeze voltage for two values of
rier if they moved along a magnetic field line to the medianmagnetic field(For electrons, the squeeze potentials are negative.

+ B=0.08T
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FIG. 4. The potential energy barrier seen by an electron at the middle of the
trap (solid curve falls to the energy determined by the squeeze voltage. For
igaﬁggfn;ﬁ?gguatt;higgﬂﬁ t()r:eetlgtlzlrlzt;]e tlﬁfgfhtigd g;ﬂ_h;g?\t?;?e OfFIG. 5. Them=1 mode displaces the charge center of trapped particles
P a 9 p potem relative to the symmetry center of the trap. Trapped particles revolve in
energy(dashed curvefalls to zero as a function of radius. For a particle to . . .
surmount the barrier, it must have sufficient kinetic energy added to itscwcl_es of radius; around the displaced charge cgnter. The orbit ofgtrapped
potential energy. The dashed-dotted line shows 1 eV added to the celectricgﬁm(.:Ie abput the charge genter cregtes a raFjlaI oscﬂlatgry mot|qn whose
potential energy of the particle. The temperature of the plasma is 1 eV, th mplitude is the mode amplitudd, R, s the radius .Of a particle relative to
magnetic field is 0.04 T, and the squeeze voltage 755 V. e symmetry center. Untrapped particles revolve in circles around the sym-
’ ' ' metry center of the trap. Transitions from trapped to untrapped state or from

untrapped to trapped state result in radial transport.

x (meters)

curves is so small that even a very small longitudinal veloc-
ity is sufficient to cross the barrier. This zone is labeled asintrapped-to-trapped states. For a given particle in the action
the “untrapped zone.” Particles in this zone are almost allzone, fluctuations cause multiple passes over this separatrix
untrapped and, for the most part, do not make transitionsgluring the evolution of the plasma.
from trapped-to-untrapped or untrapped-to-trapped. As the plasma evolves, the particles initially marked as
On the other hand, particles that find themselves at veryrapped were monitored periodically as a diagnostic to see if
large radius enter a “trapped” zone. For these it is unlikelythey had crossed over the median plane contrary to their
that a particle will acquire enough longitudinal kinetic en- classification. In the case where the squeeze voltageris
ergy from longitudinal velocity fluctuations to cross the bar-V, about two-thirds of the particles were initially classified as
rier. Particles deep enough in the “trapped zone,” for the“trapped.” The simulations show that there is a steady
most part, do not make transitions between trapped and urstreaming of so-called “trapped” particles across the median
trapped states. energy barrier as a function of time. There is no systematic
The “action zone” is the fairly broad region in the dependence on magnetic field to this prodéssfields rang-
middle where particles can relatively easily gain or lose sufing from 0.04 to 1000 T and only a weak dependence on
ficient longitudinal kinetic energy to make trapped-to-temperature for temperatures ranging from 0.5 to 2.0 eV.
untrapped or untrapped-to-trapped transitions. These two It is instructive to plot the radius of individual trapped
types of transitions have separate and distinct consequencasd untrapped particles as a function of time. Figure 5 shows
for the radial transport of particles and decay of the mode. Ashe displaced charge center of the trapped particles in one
we see in the following, these transitions are the essentidialf of the trap relative to the symmetry center of the trap.
“events” that cause particle transport and the decay of thélrapped particles revolve in nearly circular orbits around the
mode. Slow fluctuations in particle velocity, primarily from displaced charge center, while untrapped particles revolve in
diffusion in velocity space, make these essential events posiearly circular orbits around the symmetry center. For
sible. However, the amount of kinetic energy needed by eactrapped particles this means that their orbits relative to the
particle depends strongly on its radial position, and, as isymmetry center oscillate betweegq,, andr ., with an am-
transports inward and outward, on time. plitude equal to the mode amplitude. Figure 6 shows a plot
For each particle there is a “critical velocity” needed to of radius(relative to the symmetry center of the tjagrsus
surmount the barrier. This is a fairly sharp function of radialtime for a trapped particle and an untrapped particle taken
position and, as the mode decays, a function of time as thisom the simulations. The sinusoidal track belongs to a
potential energy curves shift in response to the shiftingrapped particle, i.e., one that bounces back and forth through
plasma. Essentially, each particle has a “separatrix” in ve-the entire evolution of the plasma between an end and the
locity space such that shifts back and forth across this criticaénergy barrier at the median plane. Its motion is roughly
velocity cause changes from trapped-to-untrapped ocircular around the displaced center of thhe=1 mode and,
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FIG. 6. RadiusR; (relative to the symmetry center of the tyafs time for FIG. 7. Radiusy; (relative to mode centgws time for individuals particles.
individual particles. The sinusoidal track at the top is the orbit of a trappedThe relatively flat track at the top is the orbit of a trapped particle. The track
particle. The track at essentially constant radius is an untrapped particle. The essentially constant radius is an untrapped particle. The remaining two
remaining two tracks illustrate how transport occurs relative to the symmetracks illustrate how transport occurs relative to the mode center when par-
try center when particles make transitions from trapped to untrapped statugcles make transitions from untrapped to trapped status and back. These are

and back. These are the same particles shown in Fig. 7. The particle radii atke same particles shown in Fig. 6. The particle radii are repositioned for
repositioned for clarity from their true values near 0.01 m. clarity from their true values near=0.01 m.

h i b . d mini q is no longer possible. For particles that move sufficiently
ence, oscillates between a maximum and minimum radiug,, o4 the center, the barrier diminishes and they become

relative to the symmetry center of the cylinder. The ampli-ggqontiaily untrapped. For these particles, further transport
tude of the swing is just the amplitude of the mode itself andE

2 ) Iso ceases because transitions again are no longer possible.
decreases with time as the mode amplitude decreases. On tRe_ (- i is of abouR=0.01 m. the relative energy barrier to

other hand, the track of nearly constant radius belongs to e surpassed by a particle is a few tenths of an eVRAs
untrapped particle, i.e., one that bounces from end to end gf . o a5e this relative barrier increases toward a limit deter-
the trap. Radial transport relative to the symmetry center OFnined by the squeeze voltageeveral electron volts near the
the trap occurs when a particle makes a transition from vall) and approaches zero as one approadte®. Small
trappec(ij sta_te to dag untrzpped Stﬁte' r;rhe tr?nr?por_t maYd t?Slatively slow fluctuations of several tenths of electron volt
outward or inward depending on the phase of the sinusoi "’t ccurring over multiple bounce times and rotation periods

motion when the particle makes a transition from trapped G, o rajiel particle velocity provide the mechanism to allow a

untrapped statg(See Fig. 6. L rParticle to cross the barrier, particularly in the vicinity [Rf
The canonical angular momentum of the system is give

i =0.01 m.
approximately by’ Since the mode amplitude decreases, the conservation
N N of angular momentum also requires that the net effect must
eB , €B ,, 1 5 ! >
Py~ 7 & Ry~ 7N D+ N _21 il (1)  Dbe for the particles to expand relative to the charge center,
1= 1=

i.e.,Eri2 must also increas¢See Eq(1).] In Fig. 7 we show
whereR; is the position of theth particle measured from the the radii of orbits of the same particles shown in Fig. 6, but
symmetry axis of the cylinde) is the position of them plotted relative to the mode center. In this figure, a trapped
=1 mode(charge center, and; is the position of the par- particle has a relatively constantand an untrapped particle
ticle relative to the mode center, i.&;=D+r;. has an oscillatory; . Thus, for a transport event to occur, the
Since the angular momentum is conserved in the simuparticle must make an untrapped-to-trapped transition. This
lations, the outward transport of any particles must be comis just the opposite from the trapped-to-untrapped transition
pensated by an inward transport of other particles relative tthat creates a transport event relative to the symmetry center
the symmetry center of the trap. However, the relative energps measured big; .
barrier that a particle must surmount to be or become un- If the kinetic and electrical potential energies of an indi-
trapped is greater as the particle moves outward and lessenifdual particle are plottedFig. 8), the crossing of the energy
the particle moves inwardfinally approaching zero aR barrier can be seer{The energy history shown is for the
=0). Particles that move outward in radiug;(increases  third particle from the top in both Figs. 6 and There is a
eventually become trapped and are no longer able to acquisdow, fluctuating ebb and flow of the particle kinetic energy
enough kinetic energfthrough fluctuationsto cross the bar- that does not display any obvious frequency dependence.
rier. For these particles, no further transport is possible beWhen the particle is untrapped, there is superimposed on top
cause the essential change from trapped-to-untrapped statosthe slow fluctuations a cyclical modulating pattern that
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« 107 Particle Energy vs. Time % 10° Asymmetry Modes

o
(&)}

Longitudinal Energy Barri{ Height

T
<
Q
5]
o
— 7]
g z
3 o 2F
3 Potential Energy, e¢ 5
> &
GCJ :/1 5k
o £
o 1}
s ! s
5 c
< 1}
2 3
>
0.5 Parallel Kinetic Energy, T g
@
[a]

o
)]

1 2 3 4 5 6 7 8 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
time(seconds) X107 Magnetic Field (Tesla)

FIG. 8. The time dependence of the energy of a particle. The trace at the tdf;'G- 9. Decay constants as a function of magnetic field for constant squeeze
of the graph is the midplane energy barrier height as viewed from the involtage(7.5 V) and temperaturél eV). The curves shown are fore * and
stantaneous position of the particle. The slightly noisy track that is someB™*° dependence normalized to the point at 0.04olr usual operating
times below, sometimes above the barrier trace is the sum of parallel kinetifnagnetic field.

and electrical potential energies of the particle. As this trace crosses the

barrier trace, the particle changes its trapped—untrapped state. Just below the

total energy trace is the electrical potential energy history. Near the bottorrmagnetic field at fixed squeeze voltage Overall. the scaling
of the graph is the parallel kinetic energy history of the particle. The traces ) '

are the energy history of the particle with the third orbit from the top in with magnetic field for the decay constant is probably con-
Fig. 6. sistent with a dependence that goesBasd® over the range
of squeeze voltages used here. The average decrease factor
when the field is doubled for the four squeeze voltages

matches the frequency of the trapped-particle mode. It apshown is 1.52 compared tg2 as it would be for &B~%°
pears as a brief toothed pattern in the kinetic energy in Fig. 8caling. The rigidity(ratio of bounce frequency to drift fre-
lasting during an untrapped episode from about 2.8 to 3.Quency is about 10(if one uses the mode frequency as a
X 10 ° s. From observations of many other individual par-typical drift frequency for the weaker magnetic fieltD.04
ticle orbits we can say that if this particle were to remainT) and twice that for 0.08 T.
untrapped for a longer period of time, this modulation would ~ To further confirm theB~°° behavior of the decay con-
repeat itself. It comes about as the untrapped particle movestants with magnetic field, we fix the squeeze voltage at
from the low electric potential energy side to the high poten-—7.5 V, the temperature at 1 eV and vary the magnetic field
tial energy side of the asymmetrical mode as it crosses th#om 0.02 to 0.32 T. The uppermost magnetic field on this
median plane. The frequency of the modulating patterrrange represents a practical limit for our code because of the
(which actually requires two repetitions of the toothed pat-inordinate computer time required to track the slow revolu-
tern in the figure to completalecreases with radius and in tion of the plasma at high magnetic field. In Fig. 9 the de-
all of the cases we have observed, is eitherpendence of the decay constant as a function of magnetic
34w, 4140, 5140, , OF 6/4w,,. A particle crosses the me- field is shown. For comparison, curves representirly a
dian if it reaches the median plane with enough energy talependence andB %° dependence are shown. Both curves
surmount the energy barrier. Its radial position, the sloware normalized at our “standard” magnetic field of 0.04 T.
modulations of the particle’s kinetic energy, and the toothedrhis time, the fit toB~ %% out to 0.16 T is unmistakable. As
modulating pattern all combine to make this possible. noted earlier, the decay constants emerging from the simula-

The radial swing amplitude of the orbit of a trapped tions have a weak time dependence. To arrive at the numbers
particle depends on the amplitude of the=1 displacement. plotted in Fig. 9, we made an exponential fit to six different
The top trace in Fig. 6 shows that this amplitude decreasetime intervals from zero to each of 50, 55, 60, 65, 70 and 75
with time as the mode decays. The larger the mode displacets and then took the average. This procedure also helped
ment, the greater the swing from,;, to r ,ax @nd the greater average out some jitter in the mode amplitude signal. For
the possible transport step if the particle surmounts the bamagnetic fields out to 0.16 T, the variations with time were
rier. As the mode decays, the simulations show that the exsmall (of the order of 10% so the effect was small. How-
ponential decay constant gradually decreases with time, akver, when the magnetic field was increased to 0.32 T, we did
though the decrease over the length of the simulation runs isot do this, since at 5@.s the plasma had not yet completed
only of the order of 10%. even a single revolution. Hence, for this stronger field we

Returning to Fig. 2, we observe that the mode frequencyook the decay constant from two intervals, one extending to
scales with increasing magnetic field Bs'. However, Fig. the end of the first revolution and the second extending to the
3 shows a weaker dependence for the decay constant wignd of the second. In this instance the decrease of the decay
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FIG. 10. The mode frequency as a function of squeeze voltage for differeng|s 17 The decay constants as a function of squeeze voltage for different
temperatures. Except for the smallest squeeze voltage, the mode frequencigg,neratures. For this limited range of temperatures, the dependence on

increa;el with temperature in a systematic w&pr electrons, the squeeze o herature is small and somewhat ambiguous in scaling behavior for dif-
potentials are negative. ferent squeeze voltage$or electrons, the squeeze potentials are negative.

constant was about 20% according to this protocol. BotlThe amplitude of the radial swings is just the amplitude of
points are shown in Fig. 9 at 0.32 T. the mode. Random walks of the particle in velocity space can
Figure 10 shows the dependence of the mode frequengyive a trapped particle sufficient energy to change from
with temperature in the simulations over a range 0.5-2.0 eMrapped to untrapped state and back. The transport and ac-
Except at the very lowest squeeze, the frequency shows @mpanying decay of the trapped-particle asymmetry mode
clear systematic enhancement with increasing temperatuggbuld be treated theoretically as a collision process, even
for given squeeze voltage. On the other hdsee Fig. 11,  though the mechanism is not a result of immediate individual
the dependence of the decay constant with temperature in tf@ulomb collisions. The transitions from trapped to un-
simulations is much less pronounced and exhibits a “crosstrapped particle states play the role of collisions and the
over” in behavior as a function of squeeze voltage. (time dependentamplitude of the mode gives the scale of
The slow variations in an individual particle’s parallel the step size.
velocity that can be seen in the parallel kinetic energy trace  Transitions from trapped-to-untrapped states give rise to
in Fig. 8 come about because of the random walk of tharansport relative to the symmetry axis of the trap, but tran-
particle in one-dimensional longitudinal velocity space, i.e.sitions from untrapped-to-trapped states give rise to transport
from diffusion. Crudely, the longitudinalv for such a ran-  relative to the mode center. Conservation of angular momen-
dom walk would be proportional to the square root of thetum in the system requires that the mode amplitude decrease
longitudinal collision frequency\/; and square root of the if the plasma expands relative to the mode center.
densityn, so thatAv would depend on the charge, mass, and  Slow modulations of the kinetic energy of the particles
density of the particles as®°q%m. However, a PIC code and velocity “kicks” as the particles move from the high
moves “super particles” that each represent some nurhiger potential energy end to the low potential energy end of the
of real electrons. The super particles have a cha@e asymmetric mode make it possible for particles to make re-

=Ncg, massM=Ngm, and a densitN=n/N.. The colli-  peated transitions from trapped to untrapped and back.
sions of the simulation therefore exaggerate velocity trans-
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