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Simulations of the instability of the mÄ1 self-shielding diocotron mode
in finite-length non-neutral plasmas

Grant W. Mason and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 26 March 2002; accepted 29 April 2002!

The ‘‘self-shielding’’ m51 diocotron mode in Malmberg–Penning traps has been known for over
a decade to be unstable for finite length non-neutral plasmas with hollow density profiles. Early
theoretical efforts were unsuccessful in accounting for the exponential growth and/or the magnitude
of the growth rate. Recent theoretical work has sought to resolve the discrepancy either as a
consequence of the shape of the plasma ends or as a kinetic effect resulting from a modified
distribution function as a consequence of the protocol used to form the hollow profiles in
experiments. Both of these finite length mechanisms have been investigated in selected test cases
using a three-dimensional particle-in-cell code that allows realistic treatment of shape and kinetic
effects. A persistent discrepancy of a factor of 2–3 remains between simulation and experimental
values of the growth rate. Simulations reported here are more in agreement with theoretical
predictions and fail to explain the discrepancy. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1488600#
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I. INTRODUCTION

Non-neutral plasmas, typically ions or electrons, can
confined for long periods of time in a cylindrical Malmberg
Penning trap similar to that shown in Fig. 1. A stiff axi
magnetic field confines the particles radially, and charg
rings at the ends of the otherwise grounded cylinder prov
electrostatic longitudinal confinement. Diocotron modes
azimuthal drift waves in the cylindrical plasma that vary sp
tially as exp(imu). The theory of diocotron modes in non
neutral plasmas has its origins in seminal papers by Le1

Briggs, Daugherty and Levy,2 and the comprehensive trea
ment of non-neutral plasmas by Davidson.3

Of these modes, them51 mode occurs in two manifes
tations for nonmonotonic density profiles. The simple
~‘‘wall mode’’ ! occurs when the plasma is offset radia
from the center and revolves around the center of the cy
der as a result ofE3B drift from the electric field of the
induced charge on the walls and the longitudinal magn
field. For hollow density profiles the azimuthal flow of th
plasma exhibits shear and a rotation frequency profilev0(r )
that rises with increasing radius from the center, peaks, t
decreases to the wall. The mode frequency of the first kin
m51 diocotron mode is the value of this frequency profile
the wall. A second kind ofm51 mode~‘‘self-shielded’’! has
a frequency near the peak of the frequency profile.

In the infinite length approximation, both modes are p
dicted not to be exponentially unstable for all radial dens
profiles of the plasma column. In contrast, when the plas
column is of finite length, the first kind ofm51 mode re-
mains stable for all radial density profiles, but the second
been experimentally shown to be exponentially unstable
hollow density profiles.4–6

Several theoretical attempts have been made to un
stand the origin of the instability. Smith and Rosenblut7

Smith,8 Rasbandet al.,9 Rasband,10 and Finn11 have consid-
3211070-664X/2002/9(8)/3217/8/$19.00
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ered various mechanisms that might account for the insta
ity but have failed to account for the exponential characte
the stability and/or the size of the growth rate. In particul
Smith8 has drawn attention to finite length effects and Fi
et al.11 have drawn attention to the importance of the sha
of the ends of the plasma based on an analogy to vo
stretching from topography variations in shallow fluid d
namics for geophysical flows. The theory of Finnet al.when
adapted to vortex dynamics in non-neutral plasmas, dem
strates that the radial variation of the equilibrium plasm
length causes compression of the plasma parallel to the m
netic field while conserving the line integrated density. Th
theory predicts the observed exponential growth of the in
bility, but predicts a growth rate that is still somewhat mo
than a factor of 2 less than a test case taken by Finnet al.11

from data of Driscoll.5

Coppaet al.12 have refined the theory of Finnet al. by
using a more rigorous definition of the length of the plas
column, by introducing an effective electrostatic potential
calculate theE3B drift on a string of variable axial density
and by calculating the perturbation of the plasma length
duced by density variations using a Green’s function. Th
are able to separate various effects from one another
comparison, but their ‘‘complete model’’ predicts a slight
lower value than that of Finnet al. for the ratio of growth
rate to real frequency for the test case, thus failing to rem
the discrepancy between theory and experiment.

Hilsabeck and O’Neil13 treat finite length diocotron
modes by relating perturbed charge density to perturbed
tential using a Green’s function analysis. Like Finnet al.,
they find that finite column length makes exponential grow
possible. They also observe that experimental procedure
produce plasmas with hollow profiles involve lowering th
confining ring potentials and dumping preferentially the p
ticles in the tail of the original Maxwellian velocity distribu
7 © 2002 American Institute of Physics
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 This a
tion, thus effectively truncating the velocity distribution ne
the center of the plasma. For certain distributions of ax
energies, the instability can be substantially affected. T
conclude that the instability cannot be understood in term
plasma shape alone, but kinetic effects associated with n
Maxwellian velocity distributions created in the formation
the hollow profile plasmas might be sufficient to close t
gap with experiment.

In this paper we report the results of three-dimensio
particle-in-cell simulations that also attempt to account
the remaining quantitative disagreement. We simulate
test case considered by Finnet al.We also consider the effec
of modifying the velocity distribution as suggested by Hils
beck and O’Neil by simulating the experimental meth
used to produce hollow profiles. The simulations pred
growth rates in rough agreement with the theory of F
et al.Kinetic corrections increase the growth rates, but fai
lift the growth rate sufficiently to agree with the experime
tal test case.

In Sec. II we briefly review the theory of the diocotro
modes. In Sec. III we describe the model and numer
methods used in our study. In Sec. IV we apply our meth
to test cases of interest to the theory of Finnet al. and to the
theory of Hilsabeck and O’Neil. Finally, in Sec. V, we dra
conclusions from our work.

II. THEORY

We first consider electrons confined in cylindrical geo
etry by an axial magnetic field and an electrostatic poten
The equations describing the motion are isomorphic to th
of two-dimensional fluid flow1,2 in the limit that the length of
the plasma is much greater than its radius. In the case o
non-neutral plasma, the particles are considered to bou
longitudinally while drifting azimuthally. Assuming a longi
tudinal wave numberkz50, the fundamental equations o
the Drift–Poisson Model then become~in the infinite length
approximation!,

]r

]t
1¹•~ru!50, ~1!

u52
¹f3 ẑ

B
, ~2!

¹2f52
r

e0
. ~3!

FIG. 1. A Malmberg–Penning trap. The axial magnetic fieldB confines
charged particles radially and voltagesV on the rings confine the non-neutra
plasma longitudinally in the cavity space between the rings.
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The equations can be linearized assuming

r5r01r1ei (mu2vt), ~4!

f5f01f1ei (mu2vt), ~5!

u5u01u1ei (mu2vt), ~6!

leading to the diocotron mode equation,

~v2mv0~r !!F1

r

d

dr S r
d

dr
f1D2

m2f1

r 2 G
2

mq

e0Br
n08~r !f150. ~7!

For m51 this equation has the remarkably simple d
crete mode solution,

f15r ~v2v0~r !!, ~8!

with corresponding eigenfrequencyv5v0(r wall) obtained
from the boundary condition,f1(r wall)50. This is the ‘‘wall
mode.’’ For hollow profiles a second mode~‘‘self-shielded
mode’’! also exists with frequencyv5v0(r max) for which

f15r ~v2v0~r !!, r<r max, ~9!

f150,r .r max, ~10!

where v0(r ) is the equilibrium rotation frequency profil
and r max is the radius at which the profile peaks. In bo
modes, the eigenfrequencies are real and both modes
neutrally stable in this infinite length approximation.

Finn et al. identify two instability mechanisms when fi
nite length plasma columns are considered. The first occ
when the shape of the end of the plasma is such that the
a radial variation of the equilibrium plasma length. In th
case during motion there can be a compression of the pla
by the confining potential that conserves the line integra
density parallel to the magnetic field. The second mechan
is a perturbation of the plasma length when particles inte
with the confining potential at the ends. Finnet al. demon-
strate that both mechanisms give instability with compara
growth rates. The mode equation becomes11

~v2mv0~r !!F1

r

d

dr S r
d

dr
f1D2

m2f1

r 2 G2m
n08

r
f1

51
mq

e0B

n0

r

L08~r !

L0~r !
f1

1
q

e0
~v2mv0~r !!n0

L@f#

L0
f1 , ~11!

whereL0(r ) andL08(r ) are, respectively, the equilibrium ra
dial profile of the plasma length and its radial derivative. T
functional L@f# is the first order correction to the plasm
length caused by perturbations in the potential.11 To make the
analysis tractable, Finnet al. approximate the equilibrium
length of the plasma by a quadratic function. However, p
turbations in the plasma length (L) were implemented ignor-
ing curvature of the ends as a simple approximation. In S
IV we describe results from our own code~driftk! that solves
Eq. ~11! if L@f#50. See Appendix.
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 This a
The work of Hilsabeck and O’Neil and of Coppaet al.
include refinements to the theory and implementation of F
et al. Both accept an arbitrary plasma shape, use real
axial boundary conditions, and incorporate perturbations
the plasma length self-consistently using a Green’s funct
Solutions are by numerical methods. Both efforts find sim
growth rates for the self-shielded mode that are several ti
smaller than the comparable test case taken from experim
Calculated real frequencies of the mode are slightly sma
than the maximum of the rotation profile in contrast to e
perimental values that are reported to be as much as
lower than the maximum of the profile.6,13

Hilsabeck and O’Neil conclude that quantitative agre
ment with the measured growth rates and frequencies
quires the inclusion of a kinetic effect which arises from t
experimental method used to load the hollow density p
files. The experimental protocol is assumed to truncate
high-velocity tails of the longitudinal velocity distribution i
a radially dependent way. This can be important because
fast particles penetrate into a region in the ends of the pla
where theirv0(r ) is reduced compared to slower particl
that do penetrate so deeply. If the longitudinal velocity d
tributions have radial dependence, the dynamics of the m
can be altered. Hilsabeck and O’Neil introduce the kine
correction by linearizing the Hamiltonian for the system a
keeping a term of orderlD

2 in the Debye length. They con
clude that plasma shape and kinetic effects together c
explain the discrepancy with experiment.

III. SIMULATIONS

In this paper we take a numerical approach by do
particle-in-cell simulations. The method has the advantag
incorporating realistic boundary and end conditions in de
while also providing diagnostic information about the pla
mas that are otherwise unknown in the experiments or in
methods of Finnet al. and of Hilsabeck and O’Neil. We
perform numerical experiments with the intent of helping
understand whether plasma shape and/or kinetic effects
adequate to predict experimentally measured growth rate
the unstablem51 diocotron mode in finite-length plasmas

Azimuthally symmetric equilibria are computed sep
rately using a two-dimensional (r 2z) nonlinear Poisson
solver.16 The two-dimensional density array is passed fro
the equilibrium code to the simulation code and interpola
onto a three-dimensional Cartesian grid. The thr
dimensional density is then represented by particles-in-c
~PIC!. The azimuthal symmetry of the distribution of pa
ticles is broken by density corrections or by small init
displacements of each particle chosen to seed a partic
azimuthal mode using the infinite-length theory as guide
the mode shapes.

In the present work, the plasma is typically represen
by about 106 computational ‘‘particles’’ that, in turn, eac
represent several thousand plasma electrons. The com
tion is done in three-dimensional Cartesian geometry i
which is embedded the confining cylinder. The grid used w
Nx3Ny3Nz5653653129 for plasmas that were typicall
0.30 m in length with a Debye length of>0.003 m. Short-
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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legged differential operators for the Laplacian operator
used at the cylindrical boundary so that the cylindrical sha
is treated realistically. Likewise, boundary conditions a
implemented realistically, with a grounded cylinder san
wiched between confinement rings at each end held at s
cient potential to confine the plasma~see Fig. 1!. Beyond the
rings ~longitudinally! and away from the plasma on each e
is a short buffer zone of grounded cylinder at the end
which periodic boundary conditions (]f/]z50) are main-
tained to complete the boundary conditions for the compu
tion region.

Poisson’s equation is solved by distributing density
the computational grid and using a three-dimensional mu
grid algorithm15 to solve Poisson’s equation. Particles a
moved in the (x,y)-plane assumingE3B drift motion and
using a predictor-corrector algorithm. In the longitudin
z-direction we use Newton’s Second Law and a leapfrog
gorithm. Densities are distributed to the grid, fields are co
puted from Poisson’s equation, particles are moved in
sponse to the fields, and new densities are computed to b
the cycle anew.

The total kinetic energy of the particles is monitored
ensure that the algorithm conserves energy throughout
computation and the Courant condition (vpDt,1) is moni-
tored to ensure that the code is numerically stable. The c
was found to be very stable and once a somewhat optim
set of convergence parameters for the multigrid algorit
were chosen, the basic stepping code performed without
ther attention. For the test cases we describe in this pap
3 ns time step was typically used to follow about 10–
cycles of them51 mode of interest. The code was run on
SGI Origin 2000 or IBM SP computer depending on co
puter resources required. Each simulation to determin
growth rate typically took about a week.

IV. RESULTS

In this section we describe results of several simulat
calculations. We first describe a simulation of a test case
Finn et al. We then consider the effect on growth rate
changing the depth of the hollowness in the density profi
Finally, we shift to a second ‘‘family’’ of equilibria and in-
vestigate the effect on growth rate of creating plasmas w
non-Maxwellian distributions of longitudinal velocity as
actually done in the experiments.

We have considered two ‘‘families’’ of equilibria. The
first is based on a test case used by Finnet al.11 The electron
plasma had a radiusr p50.02 m, confined within a cylinde
of radius r w50.038 m. The magnetic field was 375 G an
the confining ring potentials were250 V. The central cylin-
der had a length of 0.32 m. The rings had a width of 0.03
and in this case the length of the buffer zone was zero.

The radial density profile of the plasma in the Fin
theory was given by the parametrization,

n0~r !5n0~0!@12~r /r p!2#2@11~m12!~r /r p!2# ~12!

for r<r p and zero elsewhere. The radial profile of the leng
of the plasma was parametrized by Finnet al. as

L0~r !5L0~0!@12k~r /r w!2#, ~13!
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wherer w is the radius of the cylinder. The hollowness of t
profile was controlled by the parameterm and the curvature
of the ends was described by the parameterk. In the test
case computed by Finnet al., m was chosen to be 3, resultin
in a rationmax/n051.28 and a value fork of 0.25.

We prepared a simulation using the same radial den
profile, plasma radius, cylinder radius, confining ring pote
tials, and magnetic field as the Finnet al. test case. We chos
a plasma temperature of 1.2 eV and a plasma length of
m. Under these conditions the value ofk from our equilib-
rium code was approximately 0.3 and the value ofnmax was
6.2831012m23 corresponding tov0(max)51.443106 s21.
Plasma length profiles for the series of simulations based
the Finnet al. test case are shown in Fig. 2. Observe that
vertical scale is truncated. The radial variation ofL0 is rela-
tively small compared to the overall length of the plasm
The profiles in Fig. 2 do not appear to be strictly parabo
so our value of kappa~0.3! is only a rough approximation to
the Finn value of 0.25.

At each time step of the simulation a longitudinally lin
integrated density function was formed and then Fourier a
lyzed to find the amplitude and phase of them51 mode. The
phase signal as a function of time was used to measure
real frequency of the mode and an exponential function w
fitted to the amplitude signal~as a function of time! to obtain
the growth rate. The amplitude signal rises with an appa
exponential growth, but the signal wobbles slightly with tim
relative to the exponential. We have indicated with error b
an estimate of the uncertainty that this gave to the gro
rate measurements. The wobbles may arise from interfere
in the amplitude signal with them51 continuum which
would be expected to be present if our initial perturbat
seed is not quite right. Figure 3 shows a typical amplitu
signal with a corresponding exponential growth for compa
son as well as the corresponding phase signal.

The results of the simulations are shown in Fig. 4. T
ratio of growth rate to real mode frequency is about 0.0
compared to the Finnet al. result of 0.009, the Coppaet al.

FIG. 2. Radial length profiles for the plasmas identified with asterisks
Fig. 4. A parabolic fit (L(x)5L0(12k(r /r w)2)) to the uppermost curve
yields roughly a valuek50.3. Asnmax/n0 increases, the profiles are less a
less parabolic.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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result of 0.008, and the experimental value of 0.025. Our r
frequency was 1.403106 s21 which is consistent with the
expectation of a real frequency near the maximum of
radial rotation profile of our equilibrium (1.443106 s21). In
each case in Fig. 4, the simulation gives a real frequenc
the mode to within 1%–3% of the maximum of the rotatio
profile v0~max! in contrast to the 25% reduction reported b
Kabantsev.

We completed the first ‘‘family’’ of simulations by main
taining the value ofn0(max) and deepening the profile usin

n
FIG. 3. ~Upper! The phase signal in radians from which the real frequen
v r of the mode is determined. The phase signal from the simulation
remarkably linear.~Lower! An exponential growth curve compared to th
amplitude signal for them51 mode from the particle-in-cell simulations
Error flags on the simulation results plotted in Fig. 4 are estimates of
uncertainty in growth rate determinations based on figures like this one

FIG. 4. Comparisons of growth rates to the theory of Finnet al. and an
experimental test case~open circles!. Asterisks~* ! mark simulation growth
rates using Finn’s density formula withm53.0, 5.66, 8.19, and 15.07. Th
corresponding ratiosnmax/n0 are 1.28, 1.64, 2.00, 3.00. Hyphens~-! mark
simulation points obtained by depleting the tails of the longitudinal veloc
distributions. Corresponding Maxwellian cases are marked by ‘‘x’’ for co
parison. Also included for comparison are predictions from our drift-kine
code calculation~open squares! and results of the ‘‘complete model’’ of
Coppaet al. marked with open diamonds.
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the Finn et al. radial density parameterization withm
55.66, 8.19, 15.07. The corresponding ratiosnmax/n0 are
1.64, 2.00, 3.00. These growth rates are also shown in F
as the points marked with the asterisk~* ! symbol. The point
at nmax/n0(0)52 is coincident with the prediction of ou
drift-kinetic code~see Appendix!.

The second family of simulations was done to addr
the possibility suggested by Hilsabeck and O’Neil that
persistent discrepancy between experiment and theory
be a kinetic effect when particles of differing energies pe
etrate the confining potential at the ends to differing degre
This effect may be enhanced because, experimentally,
hollow profiles are created from a nonhollow profile by te
porarily lowering the end potentials. This procedure allo
more particles to escape nearr 50 than at larger radii, and
also depletes the Maxwellian distribution of velocities in
radially dependent way. The non-Maxwellian distributio
created in this way will depend heavily on the protocol us
to create the plasmas and experimental velocity distribu
data are not available for a specific test case.

For purposes of simulation, we began with a flat-topp
density profile. We again used a magnetic field of 375 G a
a temperature of 1.2 eV. However, the radius of the cylin
was 0.05 m and the plasma length about 0.35 m. The ce
density plateau was 531012 m23. The confining ring poten-
tials were 2200 V. The central cylinder had a length o
0.44 m, rings a width of 0.03 m, and a buffer zone length
0.05 m.

The equilibrium was calculated and loaded into t
simulation code as before. However, when the code be
the ring voltages~boundary conditions! were reduced lin-
early over a 1ms period of time to some fraction of th
original confining value chosen to reduce the potential n
r 50 to a value close to the central potential of the plasm
The rings were then held down at this destination poten
for 4 ms, then linearly raised again to the original value ov
a final microsecond. The resulting density profile was holl
and not unlike the profiles obtained from the Finnet al. for-
mula. The degree of hollowness@nmax/n0(0)# was controlled
by the fraction applied to the2200 V ring potentials when
the confining potentials were lowered. Since the poten
remained down for several bounce times, virtually all p
ticles with longitudinal velocities below a certain critic
value were removed. The velocity distributions resulti
from this protocol had a radial dependence and since eq
bration times were much longer than the time of our simu
tion, the resulting velocity distributions as a function of r
dius were and remained ‘‘non-Maxwellian’’ through th
course of the simulation. The hollowed density profiles c
ated in this way are shown in Fig. 5. Figure 6 shows
corresponding root-mean-square velocity profiles.

The velocity distributions themselves at each rad
were not Maxwellian, but appeared to be approximatel
combination of a core Maxwellian of one temperature, wit
tail of different temperature. In the case of the least holl
plasma, the tail was cooler than the core distribution~i.e.,
‘‘truncated’’!. However, for the most hollow profile, the ta
is warmer for the smallest radii, then crosses over to beco
cooler for a radius about halfway up the slope of the den
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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hole, and finally becomes identical to the core temperatur
the edge of the density hole. Thus, the radial velocity dis
butions can depend sensitively on the protocol that produ
them.

Three plasmas were created using the protocol descr
above withnmax/n051.5, 3.2, 6.2. The corresponding dens
profiles are shown in Fig. 5. The growth rates are shown
Fig. 4 marked with the hyphen~-! symbol. The 6.2 point is
labeled as ‘‘non-Maxwellian.’’ For comparison, we took th
radial density profiles from these three non-Maxwelli
simulations and created distributions differing only in th
the longitudinal velocity distributions were Maxwellian at a
radii ~with temperature 1.2 eV!. These are shown in Fig. 4
marked with the ‘‘3’’ symbol. The non-Maxwellian growth

FIG. 5. Simulated hollow line-integrated density profiles obtained by te
porarily lowering the potentials on the confinement rings according to
protocol described in the text. Absolute line integrated densities atr 50 are
1.1031012 ~bottom!, 5.1231011 ~middle!, and 2.5231011 ~top! particles per
square meter.

FIG. 6. Radial root-mean-square velocity (vz) profiles for the simulated
plasmas of Fig. 5. The corresponding velocity distributions at each ra
are identified as ‘‘non-Maxwellian’’ in Fig. 4.
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rates are enhanced over their Maxwellian counterparts
factors of 1.9, 1.3, and 1.5 fornmax/n0 equal to 1.5, 3.2, and
6.2, respectively.

To complete this second family of numerical expe
ments, we considered an alternative protocol for forming
hollow profile. We began with a markedly peaked equil
rium taken from Fig. 16 in the paper by Hilsabeck a
O’Neil.13 We then lowered the ring potentials for 2.5ms to a
potential about equal to the central potential of the equi
rium. The line-integrated-density profiles~before and after
hollowing! are shown in Fig. 7. The root-mean-square lon
tudinal velocity profile is shown in Fig. 8. The relativ
growth rate for this non-Maxwellian case is shown at a va
of nmax/n051.3 in Fig. 4. Again, kinetic effects, to the degre
that the protocol used corresponds to the experimental

FIG. 7. Original and simulated hollow line-integrated density profile for
alternative formation protocol described in the text. The hollow profile w
obtained from the original shown in the figure by lowering the confinem
potentials to about the central potential of the plasma for about 2.5ms. The
curves are normalized to a line-integrated density of 1.2031012m22 at r
50. This non-Maxwellian case is shown with a hyphen~-! symbol for
nmax/n051.3 in Fig. 4.

FIG. 8. Radial root-mean-square velocity (vz) profile for the alternative
formation protocol of Fig. 7.
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tocol, fail to remove the discrepancy with experiment. T
growth rate is shown in Fig. 4 marked with a hyphen~-!, but
lacking a crosspiece on the error bars.

As an approximate check of the results of our simu
tions and to provide an additional comparison to results
Finn et al. and Coppaet al., we have used a separate line
drift-kinetic eigenvalue code~see Appendix! to compute
growth rates. The code, which was originally written for t
infinitely-long plasma approximation, was easily modified
include theL08/L0 term on the right-hand side of Eq.~11! but
not theL term. The eigenvalue code uses equilibria calc
lated separately by the same code used to calculate equil
for the simulations using density profiles from Eq.~12! ~see
Fig. 4!.

This independent calculation reproduces the Finnet al.
growth rate almost exactly atnmax/n051.28, coincides ex-
actly with the simulation point atnmax/n051.64, and meshes
smoothly with the results of Coppaet al. using their ‘‘com-
plete model.’’ The results of our eigenvalue code are sho
as open squares in Fig. 4. The results of Coppaet al. are
shown as open diamonds.

Finally, to further check the performance of the code a
our results, we repeated three simulations of the Finn
case with a doubled magnetic field, then with a more refin
computational grid in thexy-plane, and finally with both the
stable~wall! and unstable~self-shielding! modes seeded si
multaneously.

Doubling the magnetic field gave a valueg/v r50.007,
which is virtually identical to the value of Fig. 4. This sug
gests that the bounce averaging of the longitudinal motio
the lower magnetic field is being done adequately.

Doubling the computational grid resolution in th
xy-plane from 653653129 to 12931293129 increased
g/v r to 0.008 which is just beyond the upper flag limit
Fig. 4. This value does not qualitatively change any of o
results but does put us closer to the Finn and Coppa ca
lations. However, it is presently impractical for us to do e
tensive investigations at this resolution.

Finally, we seeded bothm51 modes simultaneously a
about the 1% level. In this caseg/v r50.008, i.e., no signifi-
cant change in the growth rate of the unstable mode.

V. CONCLUSIONS

We have used particle-in-cell simulations to compu
growth rates for the hollow, finite-lengthm51 self-shielded
diocotron mode. We have investigated test cases where
persistent discrepancy between theory and experiment
be a consequence of the shape of the ends of the plasma
kinetic effects arising from non-Maxwellian velocity distr
butions introduced in the experimental preparation of
plasmas. In none of the test families were we able to achi
growth rates as large as the experimental value. Real
quencies computed in the simulations for the self-shield
mode were typically within about 3% of the maxima of th
respective rotation profiles, in contrast to reported exp
mental reductions of 25%.

Figure 4 summarizes our results. Our simulation of t
growth rates for the experimental test case~UCSD! is a fac-
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tor of 3 lower than the experiment, but slightly less than
theoretical analyses of Finnet al. and Coppaet al. Observe,
however, that the comparisons are made in a region of v
steep dependence onnmax/n0(0).

The simulation growth rates increase by a factor of ab
2 asnmax/n0(0) increases to more than 6, but never reach
experimental value. Thus, we agree with the conclusion
Hilsabeck and O’Neil that the end shape effects we con
ered are alone insufficient to remove the discrepancy w
experiment.

We have also simulated a non-Maxwellian longitudin
velocity distribution effect suggested by Hilsabeck a
O’Neil. The effect increases growth rates by 30%–90% co
pared to Maxwellian control cases. Nevertheless, the sim
tion is still a factor of 2.0 too low to remove the discrepan
with experiment atnmax/n0(0)51.28. However, the two
methods which we used to create the non-Maxwellian dis
butions may not correspond to the actual experimental p
tocols, leaving some room yet for further study.
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APPENDIX: DRIFT-KINETIC CALCULATION

We solve Eq.~11! with the modified density derivative
term of Finn and Castillo by a matrix shooting code~called
driftk!. The code and underlying theory will be briefly di
cussed here.

The code solves for linear modes in an infinitely lo
cylinder using the drift-kinetic equation

] f

]t
1vD•¹' f 1v

] f

]z
2

q

mp

]f

]z

] f

]v
50, ~A1!

where mp is the particle mass,v is the velocity in thez
direction, and the drift velocity is

vD5
2¹f3 ẑ

B
. ~A2!

Linearizing this equation according to

f~r ,z,u!5f0~r !1f1~r !exp~ imu1 ikz2 ivt !, ~A3!

f ~r ,z,u,v !5 f 0~r ,v !1 f 1~r !exp~ imu1 ikz2 ivt !, ~A4!

with

f 0~r ,v !5
n0~r !

v thA2p
exp@2~v2vb~r !!2/2v th

2 #, ~A5!

wherevb(r ) is the beam velocity profile of the plasma~if
any! andv th is the thermal velocity, then results in
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

128.187.97.22 On: Mon, 
e

ry

t
e
f
-

h

l

-
a-

i-
o-

.

d

e
e

f 1~r ,v !52F m

rB

] f 0

]r
1

kq

mp

] f 0

]v G
3

f1

~v2mv0~r !2kvb~r !!
. ~A6!

Using this expression forf 1 in Poisson’s equation,

¹2f15
2q

e0
E

2`

`

f 1dv ~A7!

yields the following electrostatic drift-kinetic mode equatio

1

r

d

dr S r
df1

dr D2
m2

r 2 f12k2f1

2
q2n0~r !

e0mpv th
2

WS v2mv0~r !2kvb~r !

kv th
Df1

1
mq

e0Br~v2mv0~r !2kvb~r !!

d

dr
~n0~r !!

3FWS v2mv0~r !2kvb~r !

kv th
D21Gf150, ~A8!

whereW(z) is the plasma dispersion function using the n
tation of Ichimaru,14

W~z!5
1

A2p
E

2`

` xe2x2/2

x2z
dx. ~A9!

Equation~A8! is solved numerically by finite differencing o
a radial grid to obtain a set of linear equations forf1 at the
radial grid points. At the ends of the radial interval we u
the boundary conditions

df1

dr U
0

50 if m50; f1~0!50 if m>1; f1~r wall!50.

~A10!

Since the set of linear equations is homogeneous we m
avoid the trivial solutionf150 and this is done by requiring

f1~r c!51 ~A11!

for some arbitrary choice of critical radiusr c between the
origin and the conducting wall. Equation~A11! replaces the
finite-difference equation at the grid point corresponding
r c and the replaced difference equation is saved for later
to determine the mode frequency. The general result of s
ing the linear system with the replacement equation~A11!
consists of a function with a discontinuous derivative ar
5r c . The mode frequency is determined by adjusting
value until the original finite difference equation atr 5r c is
satisfied, resulting in a smooth eigenmode. This adjustm
is made by refining an initial guess using Powell’s method
implemented inNumerical Recipes.15

For the unstable mode studied in this paper we sek
50, and m51. For k50 the plasma dispersion functio
vanishes. To include at least part of the physics discusse
Finn and Castillo, we make the replacement in Eq.~A8!,
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d

dr
~n0~r !!⇒ 1

L0~r !

d

dr
~n0~r !L0~r !! ~A12!

to obtain

~v2mv0~r !!F1

r

d

dr S r
df1

dr D2
m2

r 2 f1G
2

mq

e0Br

1

L0~r !

d

dr
~n0~r !L0~r !!f150. ~A13!

Thus, although the codedriftk generally solves a much mor
general problem, the drift-kinetic mode equation reduces
Eq. ~11! whenk50 andm51.

For each case that we study we run a separate equ
rium code16 to obtain the plasma length as a function
radiusL0(r ). We then fit a polynomial inr to the numerically
determinedL0(r ) and usedriftk as described above to solv
for v andf1(r ).
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