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Simulations of the instability of the m=1 self-shielding diocotron mode
in finite-length non-neutral plasmas

Grant W. Mason and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 26 March 2002; accepted 29 April 2p02

The “self-shielding”m=1 diocotron mode in Malmberg—Penning traps has been known for over

a decade to be unstable for finite length non-neutral plasmas with hollow density profiles. Early
theoretical efforts were unsuccessful in accounting for the exponential growth and/or the magnitude
of the growth rate. Recent theoretical work has sought to resolve the discrepancy either as a
consequence of the shape of the plasma ends or as a kinetic effect resulting from a modified
distribution function as a consequence of the protocol used to form the hollow profiles in
experiments. Both of these finite length mechanisms have been investigated in selected test cases
using a three-dimensional particle-in-cell code that allows realistic treatment of shape and kinetic
effects. A persistent discrepancy of a factor of 2—3 remains between simulation and experimental
values of the growth rate. Simulations reported here are more in agreement with theoretical
predictions and fail to explain the discrepancy. 2002 American Institute of Physics.

[DOI: 10.1063/1.1488600

I. INTRODUCTION ered various mechanisms that might account for the instabil-
ol icallv | | b ity but have failed to account for the exponential character of
Non—neutra plasmas, typically ions or electrons, can bey,q stability and/or the size of the growth rate. In particular,
confined for long periods of time in a cylindrical Malmberg— Smith? has drawn attention to finite length effects and Finn

Penmng “‘f"p S|m|Ia.r to that shoyvn n F'g' 1. A stiff axial t al!* have drawn attention to the importance of the shape
magnetic field confines the particles radially, and charge f the ends of the plasma based on an analogy to vortex

rings at the ends of the otherwise grounded cylinder prOVid%tretchin from topoaraphy variations in shallow fluid dv-
electrostatic longitudinal confinement. Diocotron modes are 9 pograpny y

. . . - namics for geophysical flows. The theory of Fienhal. when
azimuthal drift waves in the cylindrical plasma that vary spa- dapted t tex d L tral bl d
tially as expimé). The theory of diocotron modes in non- acdapted to vortex dynamics In hon-neutral plasmas, demon-

neutral plasmas has its origins in seminal papers by Eevy,StrateS that the radial variation of the equilibrium plasma

Briggs, Daugherty and Levyand the comprehensive treat- length causes compression of the plasma parallel to the mag-
ment of non-neutral plasmas by Davidsbn netic field while conserving the line integrated density. Their

Of these modes, the=1 mode occurs in two manifes- theory predicts the observed exponential growth of the insta-

tations for nonmonotonic density profiles. The simplestbi”ty' but predicts a growth rate that is still somewhat lrPore
(“wall mode”) occurs when the plasma is offset radially than a factor of 2 less than a test case taken by Etrad.

from the center and revolves around the center of the cylinffom data of Drgcolﬁ _ .
der as a result oEXB drift from the electric field of the _ Coppaet al™= have refined the theory of Firet al. by
induced charge on the walls and the longitudinal magneti®!Sing & more rigorous definition of the length of the plasma
field. For hollow density profiles the azimuthal flow of the €olumn, by introducing an effective electrostatic potential to
plasma exhibits shear and a rotation frequency prafijr) calculate thee X B drift on a string of variable axial density,
that rises with increasing radius from the center, peaks, thaind by calculating the perturbation of the plasma length in-
decreases to the wall. The mode frequency of the first kind ofiuced by density variations using a Green's function. They
m= 1 diocotron mode is the value of this frequency profile atare able to separate various effects from one another for
the wall. A second kind ofn=1 mode(“self-shielded”) has ~ comparison, but their “complete model” predicts a slightly
a frequency near the peak of the frequency profile. lower value than that of Finet al. for the ratio of growth

In the infinite length approximation, both modes are pre-ate to real frequency for the test case, thus failing to remove
dicted not to be exponentially unstable for all radial densitythe discrepancy between theory and experiment.
profiles of the plasma column. In contrast, when the plasma Hilsabeck and O'Neif treat finite length diocotron
column is of finite length, the first kind ah=1 mode re- modes by relating perturbed charge density to perturbed po-
mains stable for all radial density profiles, but the second hatential using a Green’s function analysis. Like Fienal,
been experimentally shown to be exponentially unstable fothey find that finite column length makes exponential growth
hollow density profile$® possible. They also observe that experimental procedures to

Several theoretical attempts have been made to undeproduce plasmas with hollow profiles involve lowering the
stand the origin of the instability. Smith and Rosenbllth, confining ring potentials and dumping preferentially the par-
Smith® Rasbancet al.® Rasband® and Finrf* have consid- ticles in the tail of the original Maxwellian velocity distribu-

1070-664X/2002/9(8)/3217/8/$19.00 3217 © 2002 American Institute of Physics



3218 Phys. Plasmas, Vol. 9, No. 8, August 2002 G. W. Mason and R. L. Spencer

Rinsl%V Gfoundﬂ: Cylinder Rinslm v The equations can be linearized assuming
p=po+p.€ ™Y, 4
b= o+ €M7, 5
U= ug+u,e'(mi-eH, (6)
Magnetic Field, B > leading to the diocotron mode equation,

FIG. 1. A Malmberg—Penning trap. The axial magnetic fi@lcconfines 1d d m2¢’1

charged particles radially and voltagésn the rings confine the non-neutral (0= mwO(r)) ? a r a 1) r2

plasma longitudinally in the cavity space between the rings.

mq , B

~ eBr (N #1=0. Y

tion, thus effectively truncating the velocity distribution near
the center of the plasma. For certain distributions of axial For m=1 this equation has the remarkably simple dis-
energies, the instability can be substantially affected. Thegrete mode solution,
conclude that the instability cannot be understood in terms of br=1(0—wo(r)) )
plasma shape alone, but kinetic effects associated with non- " * @™ @t}
Maxwellian velocity distributions created in the formation of with corresponding eigenfrequenay= wq(r) obtained
the hollow profile plasmas might be sufficient to close thefrom the boundary conditionp;(r ) =0. This is the “wall
gap with experiment. mode.” For hollow profiles a second modeself-shielded
In this paper we report the results of three-dimensionamode”) also exists with frequency = wo(r may for which
particle-in-cell simulations that also attempt to account for _ _
the remaining quantitative disagreement. We simulate the Pr=r(0=wo(l), 1=Tmax ©
test case considered by Fiehal. We also consider the effect d1=01>T naxs (10

of modifying the velocity distribution as suggested by H|I:sa-Where wo(r) is the equilibrium rotation frequency profile

beck and O’Neil by simulating the experimental method : : . .
used to produce hollow profiles. The simulations predictand Mmax IS the radius at which the profile peaks. In both

rowth rates in rouah aareement with the theorv of FinandeS’ the eigenfrequencies are real and both modes are
growth rates ough agreeme € theory of ¥ neutrally stable in this infinite length approximation.
et al. Kinetic corrections increase the growth rates, but fail to

lift th th rat ficientlv t ith th . Finn et al. identify two instability mechanisms when fi-
tlal teitgcrglve rate sufliciently fo agree wi € EXpenmen- e length plasma columns are considered. The first occurs

. . : when the shape of the end of the plasma is such that there is
In Sec. Il we briefly review the theory of the d|ocotrqn radial variation of the equilibrium plasma length. In this
modes. In Seq. lll we describe the model and numerlca:Ease during motion there can be a compression of the plasma
methods usedfm our study.hln ﬁec. Ivavg aplply (zjur mhetho y the confining potential that conserves the line integrated
:ﬁetgft Z?Sl—tiilssgb:—:‘néir:r?gtco‘)}NZilt Eic;g"O :?1 msrl;(.:a\r} vf/?a t drilw density parallel to the magnetic field. The second mechanism
conclﬁsions from our work ' Y o is a perturbation of the plasma length when particles interact
: with the confining potential at the ends. Fiehal. demon-
strate that both mechanisms give instability with comparable
Il. THEORY growth rates. The mode equation becothes

1d/ d m?
etry by an axial magnetic field and an electrostatic potential( @ ~Mwo())| a( r m@bl) - %
The equations describing the motion are isomorphic to those '
of two-dimensional fluid flow?in the limit that the length of mq ng La(r)
the plasma is much greater than its radius. In the case of the =+ B T Lo(r) *t
non-neutral plasma, the particles are considered to bounce 0 0
longitudinally while drifting azimuthally. Assuming a longi- q Al &]
tudinal wave numbek,=0, the fundamental equations of + E—O(a)—mwo(r))nol_—o¢l, (11)

the Drift—Poisson Model then becontie the infinite length , _ .
approximation whereLq(r) andLg(r) are, respectively, the equilibrium ra-

dial profile of the plasma length and its radial derivative. The
f9_P+V ~0 ) functional A[ ¢] is the first order correction to the plasma
at (=0, length caused by perturbations in the poteritidlo make the
analysis tractable, Finet al. approximate the equilibrium
length of the plasma by a quadratic function. However, per-
turbations in the plasma lengtiA § were implemented ignor-
ing curvature of the ends as a simple approximation. In Sec.
V2h=— ﬁ_ (3) IV we describe results from our own codl#riftk) that solves

€o Eq. (1) if A[¢]=0. See Appendix.

We first consider electrons confined in cylindrical geom- Ny
—me b1

u= B 2
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The work of Hilsabeck and O’Neil and of Copgd al. legged differential operators for the Laplacian operator are
include refinements to the theory and implementation of Finrused at the cylindrical boundary so that the cylindrical shape
et al. Both accept an arbitrary plasma shape, use realistits treated realistically. Likewise, boundary conditions are
axial boundary conditions, and incorporate perturbations inmplemented realistically, with a grounded cylinder sand-
the plasma length self-consistently using a Green’s functionwiched between confinement rings at each end held at suffi-
Solutions are by numerical methods. Both efforts find similarcient potential to confine the plasneee Fig. 1. Beyond the
growth rates for the self-shielded mode that are several timesngs (longitudinally) and away from the plasma on each end
smaller than the comparable test case taken from experimens. a short buffer zone of grounded cylinder at the end of
Calculated real frequencies of the mode are slightly smallewhich periodic boundary conditions?$/dz=0) are main-
than the maximum of the rotation profile in contrast to ex-tained to complete the boundary conditions for the computa-
perimental values that are reported to be as much as 25%on region.
lower than the maximum of the profife: Poisson’s equation is solved by distributing density to

Hilsabeck and O’Neil conclude that quantitative agree-the computational grid and using a three-dimensional multi-
ment with the measured growth rates and frequencies ragrid algorithnt® to solve Poisson’s equation. Particles are
quires the inclusion of a kinetic effect which arises from themoved in the X,y)-plane assuming:x B drift motion and
experimental method used to load the hollow density prousing a predictor-corrector algorithm. In the longitudinal
files. The experimental protocol is assumed to truncate the-direction we use Newton’s Second Law and a leapfrog al-
high-velocity tails of the longitudinal velocity distribution in gorithm. Densities are distributed to the grid, fields are com-
a radially dependent way. This can be important because theuted from Poisson’s equation, particles are moved in re-
fast particles penetrate into a region in the ends of the plasmsponse to the fields, and new densities are computed to begin
where theirwg(r) is reduced compared to slower particlesthe cycle anew.
that do penetrate so deeply. If the longitudinal velocity dis-  The total kinetic energy of the particles is monitored to
tributions have radial dependence, the dynamics of the modensure that the algorithm conserves energy throughout the
can be altered. Hilsabeck and O’Neil introduce the kineticcomputation and the Courant condition JAt<1) is moni-
correction by linearizing the Hamiltonian for the system andtored to ensure that the code is numerically stable. The code
keeping a term of ordex? in the Debye length. They con- was found to be very stable and once a somewhat optimized
clude that plasma shape and kinetic effects together coulset of convergence parameters for the multigrid algorithm
explain the discrepancy with experiment. were chosen, the basic stepping code performed without fur-
ther attention. For the test cases we describe in this paper, a
3 ns time step was typically used to follow about 10-30
cycles of them=1 mode of interest. The code was run on an

In this paper we take a numerical approach by doingSGI Origin 2000 or IBM SP computer depending on com-
particle-in-cell simulations. The method has the advantage gfuter resources required. Each simulation to determine a
incorporating realistic boundary and end conditions in detaigrowth rate typically took about a week.
while also providing diagnostic information about the plas-
mas that are otherwise unknown in the experiments or in they. RESULTS
methods of Finnet al. and of Hilsabeck and O’Neil. We , , . , .
perform numerical experiments with the intent of helping to In th's sectlon' we descrlbe regults O.f several simulation
understand whether plasma shape and/or kinetic effects aAEéxlculatlons. We first desprlbe a simulation of a test case of
adequate to predict experimentally measured growth rates f pnn e_t al. We then consider the effec_t on grovvth rate F)f
the unstablan=1 diocotron mode in finite-length plasmas. changing the depth of the hollowness in the density profile.

Azimuthally symmetric equilibria are computed sepa—Fma_"y' we shift to a second “family” of quilibria and in—_
rately using a two-dimensionalr ¢ z) nonlinear Poisson vestigate the effect on growth rate of creating plasmas with
solver'® The two-dimensional density array is passed fromnon—MaxweIIian distributions of longitudinal velocity as is

the equilibrium code to the simulation code and interpoIated"‘Ctu\f\‘/"yr(]jone n th(.edexpderlmer?";s. ilies” of ilibria. Th
onto a three-dimensional Cartesian grid. The three e have considered two “families” of equilibria. The

dimensional density is then represented by particles—in—cellgrSt is based on a test case used by Fébal.” The electron

; et lasma had a radiug,=0.02 m, confined within a cylinder
(PIC). The azimuthal symmetry of the distribution of par- P ; B U5 ' e
ticles is broken by density corrections or by small initial of radiusr,,=0.038 m. The magnetic field was 375 G and

displacements of each particle chosen to seed a particulél?e Eor(;finilng rirrl]g |?(E)t%r;tials%/\r/]ere_50 V'the ce_r(;trlflil ?8'3'3
azimuthal mode using the infinite-length theory as guide fo ernad a ength of 0.32 m. The rings had a width of 0.03 m
the mode shapes. and in this case the !ength Qf the buffer zone was zero.

In the present work, the plasma is typically representedh The radlgl degsnﬁ profile of .the_ plasma in the Finn
by about 16 computational “particles” that, in turn, each theory was given by the parametrization,
represent several thousand plasma electrons. The computa- no(r)=ng(0)[1—(r/rp)?1[1+(u+2)(r/ry)?] (12
tion is done in three-dimensional Cartesian geometry intq . )

o . . . or r<r, and zero elsewhere. The radial profile of the length
which is embedded the confining cylinder. The grid used wasL ’iasma was parametrized by Fiemal. as
N, X Ny X N,= 65X 65X 129 for plasmas that were typically P P y ’
0.30 m in length with a Debye length ¢£0.003 m. Short- Lo(r)=Lo(0)[1—k(r/ry)?], (13

I1l. SIMULATIONS
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Plasma Length Profiles Phase and Amplitude vs. Time
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FIG. 2. Radial length profiles for the plasmas identified with asterisks in ) ) ) )
Fig. 4. A parabolic fit {(x)=Lq(1—«(r/r,)?)) to the uppermost curve FIG. 3. (Uppe) The phase _S|gnal in radians frqm which the real_ frequ_ency
yields roughly a value=0.3. Asn.,/n, increases, the profiles are less and @, of the mode is determined. The phase signal from the simulation is
less parabolic. remarkably linear(Lower) An exponential growth curve compared to the
amplitude signal for then=1 mode from the particle-in-cell simulations.
Error flags on the simulation results plotted in Fig. 4 are estimates of the
. . . uncertainty in growth rate determinations based on figures like this one.
wherer,, is the radius of the cylinder. The hollowness of the ying 9
profile was controlled by the parameterand the curvature
of the ends was described by the paramaternn the test

case computed by Firet al,, u« was chosen to be 3, resulting frequency was 1.401C° s~ which is consistent with the
in a ration,,/Np=1.28 and a value fok of 0.25.

) . : . __expectation of a real frequency near the maximum of the
We prepared a simulation using the same radial denSIt}[adial rotation profile of our equilibrium (1.4410° s™1). In
profile, plasma radius, cylinder radius, confining ring poten-

fial d tic field as the Fienal. test We ch each case in Fig. 4, the simulation gives a real frequency of
'aT’ and magnetic fie 1?31 ZeVIB g' esl Case.l eﬁ ofsg 3'[he mode to within 1%—-3% of the maximum of the rotation
a plasma temperature of 1.2 eV and a plasma length of 0. Brofile wo(max) in contrast to the 25% reduction reported by
m. Under these conditions the value offrom our equilib-

. . Kabantsev.

g“zné("fgg V‘faas apprOX|m?jt_er 0.3 and thflngjml%éx VY?S We completed the first “family” of simulations by main-
' m ~ corresponding to(up(max)—. : X S taining the value ofy(max) and deepening the profile using

Plasma length profiles for the series of simulations based on

the Finnet al.test case are shown in Fig. 2. Observe that the

result of 0.008, and the experimental value of 0.025. Our real

vertical scale is truncated. The radial variationlLgfis rela- Relative Growth Rate versus Hollowness
tively small compared to the overall length of the plasma. 0.03
The profiles in Fig. 2 do not appear to be strictly parabolic,
so our value of kappéD.3) is only a rough approximation to 0.025} o Experiment (UCSD) {
the Finn value of 0.25. _

At each time step of the simulation a longitudinally line- 0.02 { Nonmaxwellian
integrated density function was formed and then Fourier ana-
lyzed to find the amplitude and phase of the 1 mode. The 3 0015 { H | Maxwelian |
phase signal as a function of time was used to measure the ™ J[ e
real frequency of the mode and an exponential function was 001l _ }
fitted to the amplitude signdhs a function of timeto obtain Coonn 81
the growth rate. The amplitude signal rises with an apparent 0.005} Particle Code (Maxwellian)
exponential growth, but the signal wobbles slightly with time
relative to the exponential. We have indicated with error bars 0 o . . . .
an estimate of the uncertainty that this gave to the growth 0 2 4 6 8
rate measurements. The wobbles may arise from interference Mmax "o(0)

in the amplitude signal with then=1 continuum which , ,
FIG. 4. Comparisons of growth rates to the theory of Fairal. and an

would be expected to be present if our initial perturbatlonexperimental test cagepen circleg Asterisks(*) mark simulation growth

sged is 'nOt quite right. Figure 3 ShOWS a typical amp”tUd_erates using Finn's density formula with=3.0, 5.66, 8.19, and 15.07. The
signal with a corresponding exponential growth for compari-corresponding ratios.,/n, are 1.28, 1.64, 2.00, 3.00. Hyphet mark
son as well as the Corresponding phase signal. simulation points obtained by depleting the tails of the longitudinal velocity

The results of the simulations are shown in Fig. 4. Thedistrbutions. Corresponding Maxwellian cases are marked by *” for com-
arison. Also included for comparison are predictions from our drift-kinetic

ratio of growth rate to real mode frequency is about 0-Ooiode calculation(open squargsand results of the “complete model” of
compared to the Finet al. result of 0.009, the Coppet al. Coppaet al. marked with open diamonds.
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the Finn et al. radial density parameterization with Line—Integrated Density Profiles
=5.66, 8.19, 15.07. The corresponding ratigg,,/n, are ) ) " i
1.64, 2.00, 3.00. These growth rates are also shown in Fig. 4
as the points marked with the asterisk symbol. The point
at n,a/Ng(0)=2 is coincident with the prediction of our
drift-kinetic code(see Appendix

The second family of simulations was done to address
the possibility suggested by Hilsabeck and O’Neil that the
persistent discrepancy between experiment and theory may
be a kinetic effect when particles of differing energies pen-
etrate the confining potential at the ends to differing degrees.
This effect may be enhanced because, experimentally, the
hollow profiles are created from a nonhollow profile by tem-
porarily lowering the end potentials. This procedure allows
more particles to escape nera#O than _at larger ra(_ji_i, ar_1d 00 0.01 0.02 0.03 0.04
also depletes the Maxwellian distribution of velocities in a Radius (meters)
radially dependent way. The non-Maxwellian distributions
created in this way will depend heavily on the protocol used!G. 5. Simulated hollow line-integrated density profiles obtained by tem-

. . s . porarily lowering the potentials on the confinement rings according to the
to create the plasmas and EXpenmental VelOCIty dlsmbuuorgrotocol described in the text. Absolute line integrated densities=& are

data are not ava"able. for a.specific test case. 1.10x 10" (bottom), 5.12x 10 (middle), and 2.5X 10 (top) particles per
For purposes of simulation, we began with a flat-toppedsquare meter.

density profile. We again used a magnetic field of 375 G and
a temperature of 1.2 eV. However, the radius of the cylinder
was 0.05 m and the plasma length about 0.35 m. The centr%
density plateau was»$10> m~ 3. The confining ring poten-

tials were —200 V. The central cylinder had a length of
0.44 m, rings a width of 0.03 m, and a buffer zone length o

0.05 m. Three plasmas were created using the protocol described

The equilibrium was calculated and loaded into the . - . .
simulation code as before. However, when the code begar‘;’\bove Withnmay/Ng=1.5, 3.2, 6.2. The corresponding density

the ring voltages(boundary conditionswere reduced lin- profiles are shown in Fig. 5. The growth rates are shown in
) ) : Fig. 4 marked with the hyphe@) symbol. The 6.2 point is
early over a 1us period of time to some fraction of the

o - . labeled as “non-Maxwellian.” For comparison, we took the
original confining value chosen to reduce the potential near_ . . ; :
radial density profiles from these three non-Maxwellian

r=0 to a value close to the central potential of the plasma. . : C e .
: . oo ._Simulations and created distributions differing only in that
The rings were then held down at this destination potentia e o .
he longitudinal velocity distributions were Maxwellian at all

for 4 us, then linearly raised again to the original value OVer i (with temperature 1.2 eV These are shown in Fig. 4

a final microsecond. The resulting density profile was hollow . o .
and not unlike the profiles obtained from the Figtnal. for- marked with the " symbol. The non-Maxwellian growth

mula. The degree of hollownegB,,,,/Ny(0)] was controlled
by the fraction applied to the-200 V ring potentials when

Line-Integrated Density (relative)

lole, and finally becomes identical to the core temperature at
the edge of the density hole. Thus, the radial velocity distri-
fbutions can depend sensitively on the protocol that produces
th

the confining potentials were lowered. Since the potential «10?  Root-Mean-Square Velocity Profiles
remained down for several bounce times, virtually all par- ef ) ) i ) ) j
ticles with longitudinal velocities below a certain critical

value were removed. The velocity distributions resulting st

from this protocol had a radial dependence and since equili-
bration times were much longer than the time of our simula-
tion, the resulting velocity distributions as a function of ra-
dius were and remained “non-Maxwellian” through the
course of the simulation. The hollowed density profiles cre-
ated in this way are shown in Fig. 5. Figure 6 shows the
corresponding root-mean-square velocity profiles.

The velocity distributions themselves at each radius
were not Maxwellian, but appeared to be approximately a
combination of a core Maxwellian of one temperature, with a 0 , , , , , ,
tail of different temperature. In the case of the least hollow 0 0005 001 0015 002 0025 0.03 0035
plasma, the tail was cooler than the core distributiba., Radius (meters)
f‘truncated”). However, for the,,mOSt hollow prOfIIe’ the tail FIG. 6. Radial root-mean-square velocity,| profiles for the simulated
is warmer for the smallest radii, then crosses over to becomﬁasmas of Fig. 5. The corresponding velocity distributions at each radius
cooler for a radius about halfway up the slope of the densityre identified as “non-Maxwellian” in Fig. 4.

Velocity (meters/second)
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Line-Integrated Density Profiles tocol, fail to remove the discrepancy with experiment. The
" " " " growth rate is shown in Fig. 4 marked with a hypHen but
lacking a crosspiece on the error bars.

As an approximate check of the results of our simula-
tions and to provide an additional comparison to results by
Finn et al. and Coppeet al,, we have used a separate linear
drift-kinetic eigenvalue coddsee Appendix to compute
growth rates. The code, which was originally written for the
infinitely-long plasma approximation, was easily modified to
include theL j/L, term on the right-hand side of E(L1) but
not the A term. The eigenvalue code uses equilibria calcu-
lated separately by the same code used to calculate equilibria
for the simulations using density profiles from E2) (see
Fig. 4).

This independent calculation reproduces the Féhal.
growth rate almost exactly at.,,,/ny=1.28, coincides ex-
FIG. 7. Original and simulated hollow line-integrated density profile for an actly with the simulation point at,,/ng=1.64, and meshes
alternative formation protocol described in the text. The hollow profile wassmoothly with the results of Coppet al. using their “com-
obtaingd from the original shown in the figure by lowering the confinementplete model.” The results of our eigenvalue code are shown
potentials to about the central potential of the plasma for abou2.9he . .
curves are normalized to a line-integrated density of £.20”m~2 atr as open squares in Fig. 4. The results of Coppal. are
=0. This non-Maxwellian case is shown with a hyphen symbol for ~ Shown as open diamonds.

Nmax/No=1.3 in Fig. 4. Finally, to further check the performance of the code and
our results, we repeated three simulations of the Finn test
) ) case with a doubled magnetic field, then with a more refined

rates are enhanced over their Maxwellian counterparts b¥omputational grid in they-plane, and finally with both the

factors of 1.9, 1.3, and 1.5 fotna/n equal to 1.5, 3.2, and  gapje(wall) and unstabldself-shielding modes seeded si-
6.2, respectively. multaneously.

To complett_a this second far_nily of numerical experi— Doubling the magnetic field gave a valgéw, =0.007,
ments, we considered an alternative protocol for forming th§hich is virtually identical to the value of Fig. 4. This sug-
hollow profile. We began with a markedly peaked equilib- gaqts that the bounce averaging of the longitudinal motion at
rium taken from Fig. 16 in the paper by Hilsabeck andie jower magnetic field is being done adequately.

O'Neil. “We then lowered the ring potentials for 28 toa Doubling the computational grid resolution in the
potential about equal to the central potential of the equ'“b'xy-plane from 65 65X 129 to 129K 129x 129 increased
rium. '_I'he Iine-integra_ted-_density profilébefore and after _ylw, to 0.008 which is just beyond the upper flag limit in
hollowing) are shown in Fig. 7. The root-mean-square 1ongi-gig "4 This value does not qualitatively change any of our

tudinal velocity profile is shown in Fig. 8. The relative roq 5 put does put us closer to the Finn and Coppa calcu-
growth rate for this non-Maxwellian case is shown at a valugtions. However, it is presently impractical for us to do ex-
of Nyax/Np=1.3 in Fig. 4. Again, kinetic effects, to the degree o give investigations at this resolution.

that the protocol used corresponds to the experimental pro-

Line-Integrated Density (relative)

0 0.01 0.02 0.03 0.04 0.05
Radius (meters)

Finally, we seeded botm=1 modes simultaneously at
about the 1% level. In this cagé w,=0.008, i.e., no signifi-
cant change in the growth rate of the unstable mode.

x10° Root—-Mean-Square Velocity Profile
T 1 V. CONCLUSIONS
6f 1 We have used particle-in-cell simulations to compute
growth rates for the hollow, finite-lengtih=1 self-shielded
St ] diocotron mode. We have investigated test cases where the

persistent discrepancy between theory and experiment may
be a consequence of the shape of the ends of the plasma or of

Velocity (meters/second)
B

3} ] kinetic effects arising from non-Maxwellian velocity distri-
butions introduced in the experimental preparation of the
2r 1 plasmas. In none of the test families were we able to achieve

growth rates as large as the experimental value. Real fre-
quencies computed in the simulations for the self-shielding
mode were typically within about 3% of the maxima of the

o . . . .

0 0.005 0.01 0.015 0.02 respective rotation profiles, in contrast to reported experi-
Radius (meters) mental reductions of 25%.

FIG. 8. Radial root-mean-square velocity,) profile for the alternative Figure 4 summarizes our results. Our simulation of the

formation protocol of Fig. 7. growth rates for the experimental test cd5&SD) is a fac-
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tor of 3 lower than the experiment, but slightly less than the m of, kq df,
theoretical analyses of Firgt al. and Coppaet al. Observe, fi(r,v)=— [@ o T
however, that the comparisons are made in a region of very P
steep dependence oR,,,/Ng(0). b1

The simulation growth rates increase by a factor of about X (w—mMawg(r)—kvy(r))" (AB)
2 asn;a/Ng(0) increases to more than 6, but never reach the
experimental value. Thus, we agree with the conclusion obsing this expression fof; in Poisson’s equation,
Hilsabeck and O’Neil that the end shape effects we consid- P
ered are alone insufficient to remove the discrepancy with V2¢>1:—qJ fodv (A7)
experiment. €0 J -

We have also simulated a non-Maxwellian longitudinal . . e o
velocity distribution effect suggested by Hilsabeck anolylelds the following electrostatic drift-kinetic mode equation:
O'Neil. The effect increases growth rates by 30%—-90% comq ¢ [ dg¢,| m? ,
pared to Maxwellian control cases. Nevertheless, the simular= a<r W) - Tz(i)l— K*¢q
tion is still a factor of 2.0 too low to remove the discrepancy

with experiment atn,/ny(0)=1.28. However, the two g2ny(r) (w—mwo(r)—kvb(r)>
1

methods which we used to create the non-Maxwellian distri- — —
butions may not correspond to the actual experimental pro-
tocols, leaving some room yet for further study.

€9Mpv t2h kv

mq d
* €oBr(w—mawg(r)—kuvp(r)) a(no(r))
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X212

dx. (A9)

Equation(A8) is solved numerically by finite differencing on
a radial grid to obtain a set of linear equations #or at the
APPENDIX: DRIFT-KINETIC CALCULATION radial grid points. At the ends of the radial interval we use

We solve Eq.(11) with the modified density derivative the boundary conditions

term of Finn and Castillo by a matrix shooting coasilled de,
driftk). The code and underlying theory will be briefly dis- dar
cussed here.

=0if m=0; ¢1(0)=0if m=1; ¢1(ryy)=0.
0

The code solves for linear modes in an infinitely long (AL0)
cylinder using the drift-kinetic equation Since the set of linear equations is homogeneous we must
of o of  q a¢ of . A1) avoid the trivial solutionp; =0 and this is done by requiring

R VoV, I+p——— — — =0,
gt P Yz T my 9z aw bi(ro)=1 (A11)
wherem, is the particle massy is the velocity in thez ¢ some arbitrary choice of critical radius between the
direction, and the drift velocity is origin and the conducting wall. Equati@A11) replaces the
—ngxi finite-difference equation at the grid point corresponding to

Vp=——"— (A2) r. and the replaced difference equation is saved for later use
B .
to determine the mode frequency. The general result of solv-
Linearizing this equation according to ing the linear system with the replacement equafiatl)
consists of a function with a discontinuous derivativer at

= + imé+ikz—i . . ST
¢(1,2,6)= do(r) + do(Nexpimo+ikz—iwt), (A3) =r.. The mode frequency is determined by adjusting its
f(r,z,0,v)=fo(r,v)+fi(r)expimé+ikz—iont), (A4)  value until the original finite difference equationratr is
. satisfied, resulting in a smooth eigenmode. This adjustment
with . - L . )
is made by refining an initial guess using Powell’s method as
No(r) b s implemented infNumerical Recipe¥’
fo(r,v)= o 2m exfl — (v—vp(r))2vg], (A5) For the unstable mode studied in this paper we kset
th

=0, andm=1. For k=0 the plasma dispersion function
wherev(r) is the beam velocity profile of the plasnidi ~ vanishes. To include at least part of the physics discussed by
any) anduvy, is the thermal velocity, then results in Finn and Castillo, we make the replacement in &),



3224 Phys. Plasmas, Vol. 9, No. 8, August 2002 G. W. Mason and R. L. Spencer

d IR. H. Levy, Phys. Fluid$, 1288(1965; 11, 920 (1968.
a(no(r)) Ly(r) dr ——(ng(r)Lo(r)) (A12) zR. J. Briggs, J. D. Daugherty, and R. H. Levy, Phys. Fiuigs421(1970.
R. C. Davidson,Theory of Non-neutral Plasma@Benjamin, Reading,
1974.
. 4C. F. Driscoll and K. S. Fine, Phys. Fluids B 1359(1990.
to obtain 5C. F. Driscoll, Phys. Rev. Let64, 645(1990.
5A. Kabantsev and C. Driscoll, ilNon-Neutral Plasmas IJledited by J.
Bollinger, R. Spencer, and R. DavidsgAmerican Institute of Physics,
New York, 1999, pp. 208-213.
1 ’R. A. Smith and M. N. Rosenbluth, Phys. Rev. Lé&#, 649(1990.
8R. A. Smith, Phys. Fluids B}, 287 (1992.
d 9S. N. Rasband, R. L. Spencer, and R. R. Vanfleet, Phys. Fluiflsé89
_ — (1993.
dr (No(1)Lo(r)) ¢1=0. (A13) 103, N. Rasband, Phys. Plasn94 (1996.
3. M. Finn, D. del Castillo-Negrete, and D. C. Barnes, Phys. Plagmnas
3744(1999.
Thus, although the coddriftk generally solves a much more 12GI- G. Nslé Cogg?,zoAd])D‘Angola, G. L. Delzanno, and G. Lapenta, Phys.
; ; ; ; Plasmass, 11 .
general problem, the drift-kinetic mode equation reduces '[QST_ J. Hilsabeck and T. M. O'Neil, Phys. Plasm&s407 (2000.
Eq. (11) whenk=0 andm=1. 143, Ichimaru, Basic Principles of Plasma Physid®enjamin, Reading,
For each case that we study we run a separate equilib-1973, Chap. 4.

rium codé® to obtain the plasma length as a function of **W. H. 'IDFESS S. A Teukolsky,deT( Vettsrgw, and B. P. Flanny;
merical Recipes in Fortran2nd ed.(Cambridge University Press, New
radiusLq(r). We then fit a polynomial im to the numerically York, 1992, Chap. 10.

determined.(r) and usedriftk as described above to solve g | Spencer, S. N. Rasband, and R. R. Vanfleet, Phys. Fluis1B38
for w and ¢4(r). (1993.

1d
(w— mwO(r)){Fd_(

=

_ mq
EoBr Lo(r)




