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Low-Order Modes as Diagnostics of Spheroidal Non-neutral Plasmas
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In many experiments on single-component plasmas, including antimatter plasmas, the stan-
dard diagnostic techniques used to measure the density and temperature are not appropriate. We
present a new method for determining the size, shape, average density, and temperature of a single-
component plasma confined in a Penning trap from measurements of the plasma mode frequencies.

PACS numbers: 52.25.Wz, 52.35.Fp, 52.65.+z, 52.70.-m

Many experiments requiring the confinement of
charged particles have been performed in Penning traps.
High-precision measurements of magnetic moments of
fundamental particles [1] have been made, and atomic
spectroscopy in an isolated trap environment is of po-
tential use for the next generation of atomic clocks [2].
Similar traps are employed in ion cyclotron mass spec-
trometry [3], and for experiments on pure electron plas-
mas [4].

Recently, Penning traps have been used to accumu-
late antiparticles. Large numbers of positrons have been
confined [5], with the goal of studying positron-electron
plasmas. These cool positrons have proven useful in the
study of positron-molecule interactions [6]. Trapped an-
tiprotons have enabled the precise measurement of the
antiproton mass and are required for the formation of
antihydrogen [7).

In many of these experiments, the trapped particles
form single-component plasmas. Although such work
[4,8] has concentrated on cylindrical plasmas, many ex-
periments require a harmonic confining potential, in
which the low-temperature equilibria are uniform-density
spheroids [9]. A recent cold fluid theory [10] predicts the
frequencies of plasma modes in laser-cooled ion plasmas
[9,11] and has been used to deduce the aspect ratios of
cold, spheroidal electron plasmas {12], but no detailed
work on these plasmas at finite temperatures has been
carried out.

In this Letter, we present experimental results on
the dependence on aspect ratio and temperature of the
quadrupole mode frequency in spheroidal electron plas-
mas. The experiment exploits our new capability of con-
trolling the plasma temperature by rf heating. We com-
pare our results with an analytical model [13] and with
numerical simulations. This is the first comprehensive
experimental and numerical study to elucidate the shape-
dependent effects of plasma temperature on these modes.
When extrapolated to T' = 0, the data agree well with the
cold fluid theory. At the experimental temperatures of
300 K and above, the frequencies are found to depend on

the plasma temperature, length, and aspect ratio. These
results provide a remote, real-time measurement of these

parameters, a capability previously unavailable for elec-
tron plasmas and requiring laser systems for ion plasmas.
The technique is expected to be particularly useful in the
long-term confinement of antiparticles, where dumping
the plasma is not desirable, and where the atomic struc-
ture required for the laser techniques is absent.

The Penning trap used for these experiments (see
Fig. 1) has electrodes that approximate the hyperboloidal
surfaces required for a purely quadratic potential. The
radial distance from the trap center to the ring electrode
is po = V229, where zp = 6.3 cm is the distance to each
end cap. If the potential on both end caps is U and the
ring potential is —U, then the potential inside the trap is
®(p,z) = U(2% — }p?)/23, where p = (2% + y?)1/2 is the
cylindrical radius. These electrodes are the final stage
of a trap for accumulating positrons from a radioactive
source [6]. The electron plasmas described here are very
similar to the positron plasmas whose study is our main
goal, so that the techniques developed for electrons apply
to both.

The magnetic field, B, used for these experiments was
typically 1 kG, resulting in an electron cyclotron fre-
quency Q. = eB/mc of 1.8 x 10!° rad/s. Here e and
m are the charge and mass of the electron, respectively,
and c is the speed of light. A trapping potential of
U = —5 V resulted in a harmonic oscillation frequency
w, = (2eU/mz3)"/? of 2.1 x 107 rad/s. Typical plas-
mas had a length L ~ 7 cm and a radius p, =~ 1 cm,
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FIG. 1. The Penning trap used for these experiments, with
a typical plasma shown to scale.
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where we define L and p, as the points at which the
particle density n(p, z) fell to half its central value no.
Total particle numbers of N =~ 3 x 107 electrons yielded
densities of ng =~ 2 x 10 cm~3 and plasma frequencies
of wp, = (47nge?/m)'/2 ~ 8 x 107 rad/s, giving the or-
dering w, < wp K Q.. The Debye length was typically
Ap ~ 1 mm, so that Ap < pp < po. The time scale on
which the plasma evolves, given by the 1-h radial con-
finement time for electrons and by the 100 s annihilation
time for positrons, is much longer than the other time
scales of the experiment, including the 1 s plasma cool-
ing time.

Trapped plasmas cool toward a temperature of T =
0.025 eV by collisions with molecules of the N2 buffer gas
(pressure ~ 10~ torr). To measure the temperature, the
plasma is “dumped” through one of the end caps onto a
set of concentric rings, where the charge detected gives
the number and radial distribution of particles stored. A
magnetic field coil to the left of the collectors in Fig. 1
generates the mirror field for a “magnetic beach” temper-
ature analyzer [14]. Plasmas may be heated by applying
a short burst (At < 0.1 s) of broadband noise (f < 10
MHz) to one of the end caps. Figure 2(a) shows the
plasma temperature measured during a cycle of rf heat-
ing and buffer gas cooling.

Oscillations of the plasma were measured by applying
a signal to one of the end caps and detecting the plasma
response on the other. A typical spectrum is shown in
the inset to Fig. 2(b). The mode labeled f, was identified
as the axial, center-of-mass oscillation because the mea-

heatin heatin
(a) Moelee 06| puiss =
06 —=}— S 04l
f L2002} /
% 04+ .T\ 0.0 E=—=T—= L 1
‘; [ -0.2 -01 00 01 0.2
- T \. time (sec)
02} . N\
| e
;-
0.0 ~®-e-e-e.0 X k'"J‘O~o~--.-.l-o~.-o-a‘.
s 0 1 2 3 4
5.6 r
(b) .l "
85 f
~ 541 £ 5 2
g , BE
g Iy 82 |
52 1 e,
. 2 3 4 6
§ I * frequency (M?iz)
g %
& 50 ’ LN
. .\.
, \.‘o_
4.8 [#%0%e00%e '~._.~.-.-._._.—._.-‘
-1 0 1 2 3 4
time (sec)

FIG. 2. (a) Temperature measured during a cycle of rf
heating and buffer gas cooling. Inset: detail showing tempera-
ture rise during the rf pulse. (b) Frequency of the quadrupole
mode. Inset: typical spectrum showing center-of-mass mode
at f; = w:/2r and quadrupole mode at f2 = wa/27.

sured frequency is very close to the calculated value. The
amplitude of the center-of-mass response may be used to
determine the total number of particles. An accurate cal-
ibration of the response may be obtained by dumping the
plasma.

In either trap, when the charge cloud dimensions ex-
ceed \p, resonances are visible at frequencies both higher
and lower than w,. In contrast to the center-of-mass
mode, the frequencies of these plasma modes are not de-
termined only by the trapping potential, U. In Fig. 2(b),
the frequency of the mode designated f2 in the inset is
measured during a heating pulse, showing its clear de-
pendence on temperature. After the plasma cools, the
mode frequency returns to its original value, indicat-
ing that the plasma shape has not changed significantly.
Over longer times, the mode frequency is observed to
drift slowly as the plasma expands, providing an exam-
ple of the use of the mode for real-time monitoring of the
plasma. This mode, identified below as the quadrupole
mode, was chosen for careful study because it is the most
prominent plasma mode and is detectable under a wide
variety of plasma conditions, so that parametric depen-
dencies could be studied.

The cold fluid theory of Dubin [10] of modes of a
spheroidal single-component plasma is the first analytical
theory to treat the boundary conditions of a finite plasma
exactly. For strongly magnetized plasmas (2, > wp),
the cold fluid dispersion relation for low-frequency eigen-
modes with azimuthal symmetry reduces to

w? k1 P(k1)Qu(k2)’

where k1 = a(a? — 1 + w?/w?)"V2, k3 = a(a? —1)7V/2,
and a = L/2p, is the aspect ratio of the plasma. P, and
Q. are Legendre functions of the first and second kinds,
respectively, and P/ and Q] are their derivatives. Using
the cold fluid equilibrium relation [9] for w, as a function
of w, and a, the solutions to Eq. (1) can be expressed
as functions of a only, as shown in Fig. 3 for several of
the low-order normal modes. For | > 2, there are multi-
ple branches of the dispersion relation, corresponding to
modes with different numbers of radial nodes. For some
plasmas, two low-frequency modes are observed which
are candidates for the lower branches of the | = 3 and
| = 4 modes shown in Fig. 3.

The frequency of the mode shown in Fig. 2(b) was
studied as a function of the aspect ratio and tempera-
ture. The aspect ratio was varied by reducing the mag-
netic field after loading the electrons, thus expanding
the plasma radially. Temperature effects were studied
by heating the plasma and measuring the mode frequen-
cies as the plasma cooled, as shown in Fig. 2. Figure 4
shows the second measured mode frequency as a func-
tion of temperature for three different plasmas. When
the data are extrapolated to T' = 0, frequencies within
about 1% of the cold fluid predictions for the quadrupole
(I =2, m = 0, in Dubin’s notation) mode are obtained,
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FIG. 3. Dependence of plasma mode frequencies on aspect
ratio, according to cold fluid theory. Only the lowest-order
azimuthally symmetric modes are shown; for | = 3 and | = 4,
there are two branches. Sketches indicate the fluid motions
characteristic of each mode. The dashed line is the plasma
frequency.

confirming our identification of the mode.

The cold fluid theory assumes a cold plasma of uni-
form density in an exactly quadratic potential imposed
by distant electrodes. To model effects not included in
the cold fluid theory, plasmas were simulated numerically.
The electrode voltages and z-integrated density profiles
of experimentally measured plasmas were used as input
to a Poisson-Boltzmann equilibrium code. The result-
ing equilibria, from which the plasma aspect ratios were
obtained, were constrained to match the experimental
density profiles and the total particle number. The com-
putations were done assuming axisymmetry and used a
120 by 240 grid for the coordinates p and z.

The computed equilibria were then used to create ini-
tial distributions for particle-in-cell simulations which
used the same spatial grid and electrode representation
as the equilibrium computation. The center-of-mass and
quadrupole modes were excited by displacing all of the
particles by a small amount in the same direction in z and
also by stretching the plasma along the z axis. The posi-
tion of the center of mass, zc.m., and the density-average
of the square of the position of the plasma relative to
the center of mass, ((2 — zc.m.)?), were then tracked in
time and Fourier-analyzed to yield the frequencies of the
center-of-mass and quadrupole modes, respectively. The
plasma was represented by 50000 particles, which were
advanced through 16 384 time steps of 4 x 109 s each.

The experimentally measured plasmas shown in Fig. 4
were studied using these simulation techniques. From the
Poisson-Boltzmann code, the aspect ratios were found to
be 7.80, 4.38, and 2.24. For each aspect ratio, simulations
were made for ten temperatures in the range 0.001-0.176
eV. The frequency ratio between the quadrupole and
354
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FIG. 4. Temperature dependence of the quadrupole mode
frequency for plasmas with different shapes: (W), a = 2.24,
L =6.20 cm; (o), @ = 4.38, L = 7.52 cm; and (A), o = 7.80,
L = 8.32 cm. Solid lines are the results of numerical simu-
lations of the plasmas. Arrows on the vertical axis show the
cold fluid theory predictions; dashed lines are from Eq. (2).
The inset shows the radial density profiles of these plasmas.

center-of-mass modes shown by the solid lines in Fig. 4
is in excellent agreement with the data. The simulation
frequencies at the lowest temperatures agree well with
the predictions of Dubin’s cold fluid theory, which are
marked with arrows on the ordinate of Fig. 4. This is
interesting in view of the fact that the density profiles
shown in the inset to Fig. 4 differ substantially from the
nearly uniform density expected for a plasma in global
thermal equilibrium [15] (and assumed by the cold fluid
theory). The insensitivity of the mode frequencies to the
plasma profile simplifies their use as diagnostics, as dis-
cussed below.

An approximate analytical treatment of temperature
effects on the quadrupole mode frequency was proposed
recently by Dubin [13]. This model leads to a prediction
of a shift in the quadrupole mode frequency from the cold
fluid result w§ to wo [16]:

(w2)? = (W§)? + 20 by — g()] 2, @)
with
o? wi 9%4;
9(2) = 5 (8 ez ®

where Az = 2Q(k2)/(a? — 1), kp is the Boltzmann con-
stant, and ¥ = 3 is the ratio of specific heats for one-
dimensional expansions. All quantities on the right-hand
sides of Eq. (2) and Eq. (3) are evaluated in the cold fluid
limit. The function g(c) describes the frequency shift
from the temperature dependence of the plasma shape.
If this term is neglected, one obtains a result similar to
the Bohm-Gross dispersion relation for a warm neutral
plasma, w? = w2 + vkZkpT/m, with k; ~ m(l —1)/L.
The data shown in Fig. 4 indicate that (w7)? is linear
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in T for the longer plasmas studied, but deviates from
linearity for the shortest plasma, for which the temper-
ature dependence is strongest. The slopes of the curves
at low temperatures agree reasonably well with the pre-
dictions of Eq. (2), which are plotted as dashed lines in
Fig. 4.

For positron and positron-electron plasmas, nonde-
structive diagnostics are essential, and the measurement
of the frequencies of plasma modes is an attractive way of
accomplishing this, because frequencies can be measured
with great precision. The modes studied are global, and
thus they provide information on global plasma param-
eters. For the purposes of mode studies, the spatial dis-
tribution is adequately parametrized by L and «, since
the mode frequencies are relatively insensitive to the ra-
dial density profile. Therefore, the cold fluid equilibrium
theory for a uniform-density spheroid [9] may be used to
relate the parameters N, a, and L:

_ 24€?
mw?

L k3() Q1 [k2(a)] N. (4)
Thus, a measurement of N fixes a relationship between L
and o. Measurement of two plasma modes combined with
the results of simulations or warm fluid theory would pro-
vide the additional relationships to uniquely determine L,
a, and T, and hence also the plasma radius and density.
If the temperature is known, as it is in the presence of
a buffer gas, then with N determined from the ampli-
tude of the center-of-mass response, Eq. (2) and Eq. (4)
may be used to determine L and a from the quadrupole
mode frequency. Once the plasma parameters are estab-
lished, whether by these techniques or by other diagnos-
tics, subsequent changes in either temperature or shape
may be deduced from additional shifts in a single mode
frequency, as in the data for w, during a heating pulse,
shown in Fig. 2(b). Alternatively, if the temperature can
be controlled, the plasma length and aspect ratio may be
found from the slope and intercept of data for (w;)? vs
T. Applying this technique to the data in Fig. 4, we ob-
tain lengths of 8.5, 7.3, and 5.3 cm for the three plasmas,
while the experimental values are 8.3, 7.5, and 6.2 cm,
respectively.

The use of data from modes other than the quadrupole
mode would benefit greatly from a complete theory of
finite-temperature spheroidal plasmas. Modes with az-
imuthal structure, such as the | = 2, m = 2 diocotron
mode, have frequencies that depend on aspect ratio [10]
and could provide the data needed for complete determi-
nation of the bulk plasma parameters, if their tempera-

ture dependence were understood.

In summary, the data presented here show that the
frequency of the quadrupole mode of a spheroidal single-
component plasma has well-characterized dependences
on the plasma aspect ratio, length, and temperature.
These relationships provide a nonperturbative plasma di-
agnostic that should be useful in a variety of experiments.
The excellent agreement between the simulations and
the experiment demonstrates that such simulations are a
valuable tool for the detailed study of these modes. They
could, for example, be used to study the effects of trap
anharmonicity, nonuniform plasma density, and nonlin-
ear mode coupling. Based on the results presented here,
further work on the theory of plasma modes in finite-
temperature spheroidal plasmas is warranted.

We would like to acknowledge helpful conversations
with D. H. E. Dubin and the technical assistance of E.
A. Jerzewski. The work at the University of California,
San Diego is supported by the Office of Naval Research.

[1] H. Dehmelt, Rev. Mod. Phys. 62, 525 (1990); L. S. Brown
and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986); D. J.
Wineland, W. M. Itano, and R. S. Van Dyck, Jr., Adv.
At. Mol. Phys. 19, 135 (1983).

[2] J. J. Bollinger et al., Phys. Rev. Lett. 54, 1000 (1985).

(3] C. L. Wilkins et al., Mass Spectrom. Rev. 8, 67 (1989).

[4] C. F. Driscoll, J. H. Malmberg, and K. S. Fine, Phys.
Rev. Lett. 60, 1290 (1988); C. F. Driscoll and K. S. Fine,
Phys. Fluids B 2, 1359 (1990).

[5] C. M. Surko, M. Leventhal, and A. Passner, Phys. Rev.
Lett. 62, 901 (1989); T. J. Murphy and C. M. Surko,
Phys. Rev. A 48, 5696 (1992).

[6] T.J. Murphy and C. M. Surko, Phys. Rev. Lett. 67, 2954
(1991); S. Tang et al., Phys. Rev. Lett. 68, 3793 (1992).

[7] G. Gabrielse et al., Phys. Rev. Lett. 65, 1317 (1990); G.
Gabrielse et al., Phys. Lett. A 129, 38 (1988).

(8] T. M. O’Neil, Phys. Rev. Lett. 55, 943 (1985); D. H.
E. Dubin and T. M. O’Neil, Phys. Rev. Lett. 60, 1286
(1988).

[9] J. J. Bollinger et al., Phys. Rev. A 48, 525 (1993).

[10] D. H. E. Dubin, Phys. Rev. Lett. 66, 2076 (1991).

[11] D. J. Heinzen et al., Phys. Rev. Lett. 66, 2080 (1991).

[12] C. S. Weimer et al., “Electrostatic Modes as a Diagnostic
in Penning Trap Experiments” (to be published).

(13] D. H. E. Dubin, Phys. Fluids B 5, 295 (1993).

[14] D. Boyd et al., Phys. Lett. 45A, 421 (1973).

[15] Local thermal equilibrium along each magnetic field line
will be established on a time scale 7 ~ 1/v.. ~ 0.1 ms,
where Ve, is the electron-electron collision frequency. This
equilibration time is much shorter than the time for cool-
ing on the buffer gas.

(16] D. H. E. Dubin (private communication).

355



