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We study the evolution of magnetized and rigidly rotating neutron stars within a fully general

relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial

dimensions. The stars are modeled as rotating, magnetized polytropic stars, and we examine diverse

scenarios to study their dynamics and stability properties. In particular, we concentrate on the stability of

the stars and possible critical behavior. In addition to their intrinsic physical significance, we use these

evolutions as further tests of our implementation, which incorporates new developments to handle

magnetized systems.

DOI: 10.1103/PhysRevD.81.124023 PACS numbers: 04.25.D�, 04.25.dc, 04.40.Dg, 97.60.�s

I. INTRODUCTION

Neutron stars play a key role in some of the most
interesting astrophysical events observed, from supernova
remnants and pulsars to a less certain role in long gamma
ray bursts. As such they have attracted significant research
into their dynamics (for a recent review see [1]). In this
paper, we revisit the dynamics of rotating, and possibly
magnetized, neutron stars modeled as polytropic stars
within a fully nonlinear, general relativistic model of ideal
magnetohydrodynamics (GRþMHD). We study the
stability properties of these stars and highlight possible
critical behavior exhibited by the system. Furthermore,
our studies serve to demonstrate the effectiveness of
our code and certain new developments discussed here.
This code has been applied to other astrophysical problems
[2–7].

In recent years, a number of fully relativistic evolutions
(as opposed to those using Newtonian gravity or other
approximations to general relativity) of rotating polytropes
have appeared studying gravitational wave production and
black hole formation in astrophysically relevant systems.
To this end, studies beyond spherical symmetry are re-
quired, which are computationally more demanding. For
instance, rotating stars require moving beyond spherical
symmetry and many interesting axisymmetric scenarios
can be addressed using 2D implementations allowing for
excellent resolution without requiring major resources
(e.g. [8–10]). In contrast, studies of the most general flows
and instabilities require 3D simulations and are the most
expensive realistically accessible scenarios being currently
considered. Future efforts, including radiation transport
mechanisms, will move beyond 3D scenarios and require
efficient use of petaflop (and beyond) resources (e.g. [11]).

Another important distinction in these studies is whether
the modeled stars are rigidly rotating or allow for differ-
ential rotation. Rigidly rotating stars support more mass
than nonrotating ones (so-called TOV stars), but generally
do not support the largest masses achieved with differential
rotation nor do they demonstrate some of the more inter-
esting instabilities such as the bar mode instability [12].
Instead, uniformly rotating stars tend to demonstrate one of
two behaviors: stability or instability to collapse to a black
hole. Previous studies suggest that significant disks do not
form from such collapse [13–15]. Recall that stars rotating
differentially are expected to settle into rigidly rotating
configurations on short time scales, and hence a normal
neutron star observed today is generally expected to be
rigidly rotating.
Achieving ever more realism, models of neutron stars

have also begun to consider stars with magnetic field
[9,16–18]. Magnetic fields provide, in particular, an effec-
tive pressure that generally supports greater mass [19] as
well as an efficient way to transport angular momentum. In
differentially rotating stars, even small magnetic fields can
be amplified by the magnetorotational instability.
Generally these studies begin with a nonmagnetized neu-
tron star to which a small, seed magnetic field is added.
However, in [20], fully consistent, magnetized stars are
evolved, although only nonrotating results are presented.
Another approach is to study the modes through a pertur-
bation approach [21,22] and analyze the growth of these
modes with respect to a given stationary solution. The
dynamical behavior of magnetized stars is important also
for their role in explaining strong electromagnetic emis-
sions. Indeed, isolated stars with strong magnetic fields, so-
calledmagnetars, are suspected to be the engines powering
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anomalous x-ray pulsars and soft gamma ray repeaters
[23]. At least 10% of all neutron stars [24] are born as
magnetars. In the context of single stars, it is thus interest-
ing to examine whether strong magnetic fields may deform
stars away from axisymmetry making them strong pro-
ducers of gravitational waves [25].

Here we present results with uniformly rotating neutron
stars that possess a fully consistent magnetic dipole mo-
ment. That is to say, the initial data used here represents a
stationary state of the full GRþMHD equations. These
evolutions are computed with a general relativity code
employing the generalized harmonic scheme (allowing
for black hole excision). Further, no symmetry assump-
tions are made. High resolutions are achieved using a
distributed adaptive mesh refinement infrastructure.
These evolutions demonstrate that our code can evolve a
stable rotating star for many periods accurately. Similarly,
unstable stars evolve to black holes with no evidence of any
significant disk forming. Finally, we give evidence that
unstable, rotating, magnetized stars represent minimally
unstable solutions that could serve as type I critical
solutions.

In Sec. II we provide details about the formulation of the
equations. In Sec. III we discuss aspects of our numerical
implementation and describe the diagnostic quantities
evaluated in Sec. IV. In Sec. V we discuss the initial data
we use. We present our results in Sec. VI and conclude in
Sec. VII.

II. FORMULATION AND EQUATIONS OFMOTION

Neutron stars can be modeled by relativistic fluids (pos-
sibly with the inclusion of magnetic fields) under the action
of strong gravitational fields [26]. These systems are gov-
erned both by the Einstein equations for the geometry and
by the relativistic equations of magnetohydrodynamics for
the matter. We write both systems as first-order hyperbolic
equations. This form of the equations is convenient in order
to take advantage of several rigorous numerical techniques
devised for such systems to ensure, at the linear level,
stability of the implementation. More information regard-
ing the motivation for this approach can be found in
[2,27,28]. By way of notation, we use letters from the
beginning of the alphabet (a, b, c) for spacetime indices,
while letters from the middle of the alphabet (i, j, k) range
over spatial components. We adopt geometric units where
c ¼ G ¼ 1. However, as discussed in Sec. III, when ap-
propriate, we rescale the value of G to achieve improved
accuracy in the conservative to primitive variable conver-
sion stage.

A. The Einstein equations

The Einstein equations can be written as a system of ten
nonlinear partial differential equations for the spacetime
metric gab. The harmonic formulation of the Einstein

equations exploits the fact that the coordinates xa can be
chosen satisfying the generalized harmonic condition
[29,30]

rcrcx
a ¼ ��a ¼ Haðt; xiÞ; (1)

where �a � gbc�abc are the contracted Christoffel sym-
bols. The arbitrary source functionsHaðt; xiÞ determine the
coordinate freedom of Einstein equations. The original
harmonic coordinates correspond to the case Haðt; xiÞ ¼
0, which is the choice here. The Einstein equations can be
expressed in their generalized harmonic form [29], in
particular,

gcd@cdgab þ @aHb þ @bHa

¼ �16�
�
Tab � T

2
gab

�
þ 2�cabH

c

þ 2gcdgefð@egac@fgbd � �ace�bdfÞ: (2)

The matter is coupled to the geometry by means of the
stress-energy tensor Tab and its trace T � gabTab, which
will be dictated by the particular model of magnetized fluid
under consideration, detailed in the next subsection.
The spacetime can be foliated into hypersurfaces of

constant coordinate time x0 � t ¼ const. On these space-
like hypersurfaces, one defines a spatial 3-metric hij ¼ gij.

A vector normal to the hypersurfaces is given by na �
�rat=kratk, and coordinates defined on neighboring hy-
persurfaces can be related through the lapse, �, and shift
vector, �i. With these definitions, the spacetime differen-
tial element can then be written as

ds2 ¼ gabdx
adxb

¼ ��2dt2 þ hijðdxi þ �idtÞðdxj þ �jdtÞ: (3)

Indices on spacetime quantities are raised and lowered with
the 4-metric, gab, and its inverse, while the 3-metric hij and

its inverse are used to raise and lower indices on spatial
quantities.
We adopt a first-order reduction of the second order

differential equations represented in Eqs. (2). This reduc-
tion can be achieved by introducing new independent
variables related to the time and space derivatives of the
fields

Qab � �nc@cgab; Diab � @igab: (4)

Within these definitions we can write our evolution equa-
tions in our GH formalism in the following way [31]:

@tgab ¼ �kDkab � �Qab; (5)
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@tQab ¼ �k@kQab � �hij@iDjab � �@aHb � �@bHa þ 2��cabH
c þ 2�gcdðhijDicaDjdb �QcaQdb � gef�ace�bdfÞ

� �

2
ncndQcdQab � �hijDiabQjcn

c � 8��ð2Tab � gabTÞ � 2�0�½naZb þ nbZa � gabn
cZc�

þ �1�
iðDiab � @igabÞ; (6)

@tDiab ¼ �k@kDiab � �@iQab þ �

2
ncndDicdQab þ �hjkncDijcDkab � �1�ðDiab � @igabÞ: (7)

This GH formulation includes a number of constraints that
must be satisfied for consistency. On the one hand, there
are two sets of first-order constraints, obtained from
Eqs. (4) and defined as

C iab � @igab �Diab ¼ 0;

Cijab � @iDjab � @jDiab ¼ 0;
(8)

which were introduced when performing the reduction to
first-order [2,31]. On the other hand, there are the
Hamiltonian and momentum constraints that in the gener-
alized harmonic formulation show up in terms of a four-
vector Za, which is defined as

2Za � ��a �Haðt; xiÞ: (9)

It can be shown that the Hamiltonian and momentum
constraints are satisfied if Za ¼ @tZ

a ¼ 0 [32]. In order
to dynamically control the violation of the constraints, we
have included certain terms proportional to these con-
straints (8) and (9). These additional terms depend on
free parameters �0 and �1, allowing one to dynamically
damp constraint—including the Hamiltonian, momentum,
and first-order constraints (8)—violating modes on a time
scale proportional to ��i [31,33].

We evolve the gravitational field equations shown in
Eqs. (5)–(7). These equations rely on the computation of
the four-dimensional Christoffel symbols from the metric
gab

�abc ¼ 1
2ðDbca þDcba �DabcÞ: (10)

While we evolve the Diab functions, the set D0ab are not
evolved, but are calculated from evolved quantities as

D0ab ¼ ��Qab þ �kDkab: (11)

This description suffices to explain the gravitational
evolution, and the following section describes the evolu-
tion of the matter. However, we note here that the MHD
equations are written in the standard 3þ 1 decomposition
of spacetime and thus require the spatial metric hij, the

lapse �, shift �i, and Arnowitt-Deser-Misner (ADM) ex-
trinsic curvature, Kij. These quantities can be written in

terms of our evolved fields using

hij ¼ gij; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=g00

q
; �i ¼ �ijg0j;

Kij ¼ 1

2
Qij þ 1

�
ðDðijÞ0 � �kDðijÞkÞ:

(12)

Conversely, the Hamiltonian and momentum constraints
are usually written in terms of spatial derivatives of the
metric Dkij and the extrinsic curvature Kij. In fact, we use

these 3þ 1 quantities (and similar expressions for their
derivatives) to calculate the residuals of the Hamiltonian
and momentum constraints expressed in their standard
form.

B. MHD equations

We now briefly introduce the perfect fluid equations.
Additional information can be found in our previous work
[27,28] as well as in topical review articles [34,35].
The stress-energy tensor for the perfect fluid in the

presence of a Maxwell field is given by

Tab ¼ ½�oð1þ �Þ þ P�uaub þ Pgab þ Fa
cFbc

� 1
4gabF

cdFcd: (13)

The fluid is described by rest mass density �o, the specific
internal energy density �, the isotropic pressure P, and the
four velocity of the fluid ua. With these quantities we can
construct the enthalpy

he ¼ �o þ �o�þ P (14)

and construct the standard spatial coordinate velocity of the
fluid vi as

W � �naua; vi � 1

W
hiju

j; (15)

whereW is the Lorentz factor between the fluid frame and
the fiducial ADM observers.
The Maxwell tensor Fab can be written as

Fab ¼ naEb � nbEa þ �abcdBcnd; (16)

where Ea and Ba are the electric and magnetic fields
measured by a ‘‘normal’’ observer na. Consequently,
both fields are purely spatial, i.e., Eana ¼ Bana ¼ 0.
The evolution of the magnetized fluid is described by

different sets of conservation laws. The magnetic field, in
the ideal MHD limit, follows the Maxwell equation

r�ð�F�	 þ g�	�Þ ¼ 
n	�; (17)

where �Fab � �abcdFcd=2 is the dual of the Maxwell ten-
sor and we have introduced a real scalar field � to control
the divergence constraint. This technique is known as
divergence cleaning [36] and allows for a convenient way
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to control the constraint violation by inducing a damped
wave equation for the scalar field �. The other Maxwell
equation, in the ideal MHD limit, only gives the definition
for the current density, since the electric field is given in
terms of the velocity of the fluid and the magnetic field, that
is,

Ei ¼ ��ijkvkBk: (18)

Conservation of the stress-energy tensor in Eq. (13),

raT
ab ¼ 0; (19)

provides four evolution equations for the fluid variables,
namely, the velocity and the internal energy. Conservation
of the baryon number

rað�ou
aÞ ¼ 0 (20)

leads to the evolution equation of the rest mass density �o.
Closure of the equations is achieved by introducing an
equation of state (EOS) relating the pressure with the other
thermodynamical quantities of the fluid, P ¼ Pð�o; �Þ.

High resolution shock capturing schemes (HRSC) are
robust numerical methods for compressible fluid dynam-
ics. These methods, based on Godunov’s seminal work
[37], are fundamentally based on expressing the fluid
equations as integral conservation laws. To this end, we
introduce conservative variables q ¼ ðD; Si; �; B

iÞT, where
D ¼ W�o; (21)

Si ¼ ðheW2 þ B2Þvi � ðBjvjÞBi; (22)

� ¼ heW
2 þ B2 � P� 1

2

�
ðBiviÞ2 þ B2

W2

�
�D; (23)

and Bi is both a primitive and a conservative variable. In an
asymptotically flat spacetime these quantities are con-
served and are related to the total energy, momentum,
and, in the nonrelativistic limit, the kinetic energy, respec-
tively. The quantities w ¼ ð�o; v

i; P; BiÞT are called the
primitive variables in contrast to the conservative variables.
The fluid state can be specified using either set of variables,
and both sets are required to write the MHD evolution
equations. Anticipating the form of these equations, we
also introduce the densitized conserved variables

~D ¼ ffiffiffi
h
p

D; ~Si ¼
ffiffiffi
h
p

Si;

~� ¼ ffiffiffi
h
p

�; ~Bi ¼ ffiffiffi
h
p

Bi;
(24)

where h ¼ detðhijÞ. The fluid equations can now be written

in balance law form

@t~qþ @kf
kð~qÞ ¼ sð~qÞ; (25)

where fk are flux functions, and s are source terms. The
fluid equations in this form are

@t ~Dþ @i

�
� ~D

�
vi � �i

�

��
¼ 0; (26)

@t ~Sj þ @i

�
�

�
~Sj

�
vi � �i

�

�
þ ffiffiffi

h
p

Phij

��

¼ �3�i
jkð~Sivk þ ffiffiffi

h
p

Phi
kÞ þ ~Sa@j�

a � @j�ð~�þ ~DÞ
� ��ð ~BiW

�2 þ vivj
~BjÞ@k ~Bk; (27)

@t~�þ @i

�
�

�
~Si � �i

�
~�� vi ~D

��

¼ �

�
Kij

~Sivj þ ffiffiffi
h
p

KP� 1

�
~Sa@a�

�
;

� ��vj
~Bj@k ~B

k; (28)

@t ~B
b þ @i

�
~Bb

�
vi � �i

�

�
� ~Bi

�
vb � �b

�

��

¼ �� ffiffiffi
h
p

hbi@i�� ��vi@j ~B
j; (29)

@t� ¼ �cr��� ch
�ffiffiffi
h
p @i ~B

i þ ð�i � �viÞ@i�; (30)

where cr ¼ 
 and we have allowed for different speeds
than light by introducing the parameter ch. Except in the
tests, we will use the original prescription (17) with ch ¼
1. Here 3�i

jk is the Christoffel symbol associated with the

3-metric hij, and K is the trace of the extrinsic curvature,

K ¼ Ki
i. Notice that the aforementioned system is an

extended version of the one employed in our earlier works
[5,27,28]. Here we have added additional terms toggled by
the parameter � , which allow for considering an extension
of the ‘‘eight-wave’’ formulation which, in the absence of
the cleaning field�, ensures the strong hyperbolicity of the
system [36] —at the cost of introducing derivative terms in
the sources. Furthermore, by setting � ¼ 1, the propaga-
tion speeds of two constraint violating modes become
nonvanishing, and hence violations are dragged along by
the fluid’s velocity. This is numerically convenient as
possible violations will propagate off the grid.
Finally, we close the system of fluid equations with an

EOS. We choose the ideal fluid EOS

P ¼ ð�� 1Þ�o�; (31)

where � is the constant adiabatic exponent. Nuclear matter
in neutron stars is relatively stiff, and we set � ¼ 2 in this
work. When the fluid flow is adiabatic, this EOS reduces to
the well-known polytropic EOS

P ¼ 
�o
�; (32)

where 
 is a dimensional constant. We use the polytropic
EOS only for setting initial data.
The set of fluid equations, Eqs. (26)–(29), are used to

evolve the conservative variables. However, these equa-

LIEBLING et al. PHYSICAL REVIEW D 81, 124023 (2010)

124023-4



tions also contain the primitive variables, which necessi-
tates a step in the evolution scheme that solves for the
primitive variables in terms of the conservative ones. Given
the primitive variables, the conservative variables are
easily calculated from the algebraic expressions in
Eqs. (24). Calculating the primitive variables from the
conservative variables, however, is more delicate, as it
requires the solution of a transcendental equation. To this
end we first define the quantity x � heW

2. We then write
S2 ¼ SiSi in terms of x and solve for W2, obtaining

W2 ¼ x2ðxþ B2Þ2
x2ðxþ B2Þ2 � x2S2 � ð2xþ B2ÞðSiBiÞ2 : (33)

Using the definition of �, we define a function that is
identically zero

fðxÞ ¼ x� P� 1

2

�ðSiBiÞ2
x2

þ B2

W2

�
þ B2 � ��D ¼ 0:

(34)

If the enthalpy can be expressed as a simple function of the
pressure, as can be done for the ideal fluid and a general-
ized EOS with a cold nuclear component, then we can
express the pressure as a function x. For the ideal fluid EOS
used here, the enthalpy equation

he ¼ x

W2
¼ �0 þ �0�þ P (35)

can be solved for P by substituting in �0 ¼ D=W and the
EOS to obtain

P ¼ �� 1

�

�
x

W2
� D

W

�
: (36)

Combining these equations, f is a function of a single
unknown x. This equation can be solved numerically using
the Newton-Raphson method. It is useful to note that x has
a minimum physical value, which is found by requiring in
Eq. (33) that W2 � 1.

III. IMPLEMENTATION DETAILS

The code is constructed within the HAD computational
infrastructure, which provides distributed adaptive mesh
refinement (AMR). The AMR follows in the style of
Berger and Oliger [38], but uses the tapering condition
for AMR boundaries instead of temporal interpolation
[39]. The combined set of geometric equations and fluid
equations, Eqs. (5)–(7) and (26)–(30), respectively, is dis-
cretized using the method of lines. The geometric equa-
tions are discretized using operators that satisfy a
summation by parts property [40,41]. The fluid equations
are discretized using the Harten–Lax–van Leer–Einfeldt
(HLLE) method [42]. The semidiscrete equations are
solved using a third order accurate, total variation dimin-
ishing Runge-Kutta solver [43].

The fluid equations diverge as the density goes to zero,
and, as is standard practice, we disallow any true vacuum
by setting such regions to a floor or atmosphere value. The
floor is applied after each fluid update as

D minðD;
Þ; � minð�; 
Þ; (37)

where 
 is chosen to be many orders of magnitude smaller
than the maximum densities and pressures in the initial
data. The comparison of otherwise identical runs but with
different floor values suggests that the use of an atmo-
sphere generally does not affect accuracy.
We have, however, found certain issues with precision

occurring within the primitive solver. Typical maximum
values of the density are about 10�2 in geometric units,
with a floor value of 
 ¼ 10�8. We have found it useful
therefore to scale Newton’s constant G such that the fluid
densities and pressures are close to order unity. Thus,
rather than using the typical choice of G ¼ 1, we might
use G ¼ 1=1000. As G affects only the coupling of the
fluid to the geometry, the evolution of the geometric equa-
tions is not affected by this scaling. Empirically, we find
that scaling G allows the primitive variables to be more
easily recovered in low density regions. This improvement
appears to be related to finite precision effects in the
primitive solver. The scaling decreases the effective floor
valuewhile avoiding the problems associated with having a
true vacuum.
The Maxwell equations require that the magnetic field

be divergenceless. This is the so-called ‘‘no monopole’’
constraint. A variety of schemes exist with the goal of
controlling the growth of the divergence. We choose a
strategy that ensures flexibility and robustness when deal-
ing with multiple grid structure (as in AMR) and allows, in
principle, for a clean boundary treatment [44]. To this end
we have implemented hyperbolic divergence cleaning as
described in [36] (also see [45]). We thus introduce a scalar
�ðx; y; z; tÞ that is sourced by the negative of the diver-
gence of the magnetic field as shown in Eq. (30). As
described in [36], this scheme implies that the divergence
obeys a damped wave equation so that constraint violations
propagate off the grid and their value is reduced.
For initial data generated with Magstar, the diver-

gence is around machine precision, and so to test the
implementation of divergence cleaning, we introduce a
perturbation to the magnetic field in order to produce a
significant amount of divergence to the magnetic field. In
particular, this perturbation takes the form of a spherical,
Gaussian shell of radius ro, width 
, and amplitude A

added to each component of ~B. We expect the divergence
cleaning to propagate this perturbation as a damped wave,

and we therefore plot the scaled quantity x2½ ~r � ~B� in
Fig. 1. As can be seen by comparing the cases of no
cleaning (top) and with cleaning (bottom), the divergence
propagates with damping through the refinement bounda-
ries across the grid.
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As typical with codes dealing with linearly degenerate
hyperbolic systems, like those employed in numerical
relativity, a dissipation operator is applied to the metric
variables. This operation uses a high-order derivative to
serve as a low-pass filter and does not affect the accuracy of
the simulation. We have found it useful for keeping things
smooth. Although this operation is not applied to the fluid
variables, we have found it quite important in keeping the
magnetic field components smooth. The magnetic field
evolution is coupled tightly with that of the velocity, and
any nonsmoothness that appears in the velocity can easily
affect the smoothness of the magnetic field. The addition of
dissipation to the magnetic field and divergence cleaning
field helps control the behavior of the magnetic field.

At the boundaries of the domain, simple outflow bound-
ary conditions are applied to the fluid variables. This is
accomplished by copying the values of the conservative
variables near the boundary outward. Most of the gravita-

tional variables are treated using Sommerfeld-like bound-
ary conditions of the form [46]�

@t þ @r þ 1

r

�
ðgab � �abÞ ¼ 0; (38)

where �ab is just the Minkowski metric. The rest, which
are not so crucial, are set by either maximally dissipative
[2] or constraint preserving boundary conditions [31].
A relevant issue when considering the collapse of stars is

the formation of a black hole. To deal with such situations,
we adopt black hole excision where we dynamically moni-
tor for the appearance of trapped surfaces (which lie inside
an event horizon if cosmic censorship holds) and excise
cubical region(s) from the computational domain. As dis-
cussed in [47,48], this excision introduces inner boundaries
that are of ‘‘outflow’’ type, and so no boundary condition is
required there. However, for a more robust handling of the
fluid, we also allow for a modification of the fluid equa-
tions inside the trapped surface [7]. The MHD equations
are written in balance law form

_Uþ FðUÞ0 ¼ S; (39)

which we modify to include a damping term near the black
hole

_Uþ FðUÞ0 ¼ S� fðrÞð�xÞpðU�U0Þ: (40)

Here the function fðrÞ decreases smoothly with r, from a
given value at the excision region to zero at the outermost
trapped surface (OTS) found, and is zero for r � rOTS, so
that the exterior of the black hole is causally disconnected
from the effect of this extra term. U0 is set to zero or to the
value of the atmosphere if the corresponding field has one.
The coefficient ð�xÞp ensures that the damping term con-
verges to zero as the grid spacing�x is reduced. As long as
one chooses p greater than or equal to the order of con-
vergence of the code, this term will not modify the con-
vergence rate. We typically adopt a value of p ¼ 4.
Finally, gravitational radiation is calculated via the

evaluation of the Newman-Penrose scalar �4, which is
computed by contracting the Weyl tensor, Cabcd, with a
suitably defined null tetrad f‘; n;m; �mg,

�4 ¼ Cabcdn
a �mbnc �md; (41)

extracted at spherical surfaces �i located in the wave zone,
far from the sources. We also consider possible corrections
required to deal with gauge ambiguities, as discussed in
[49]. We refer the reader to that paper for details on the
adopted tetrad and required corrections.

IV. DIAGNOSTIC QUANTITIES

The initial configuration for the stars is axisymmetric,
and we therefore want to be able to measure any change to
this structure. For this purpose, we monitor certain distor-
tion parameters [50] defined as

FIG. 1. Demonstration of the effectiveness of divergence
cleaning at handling deviations from a divergenceless magnetic
field. A calculation of the divergence of the magnetic field,

x2½ ~r � ~B�, along the x axis for 3 times is shown for each of three
cases: (top) No divergence cleaning; (middle) Cleaning with
ch ¼ 0:1 and cr ¼ 0:01; and (bottom) Cleaning with ch ¼ 1:0
and cr ¼ 0:1. These runs were otherwise identical for a magne-
tized, rotating star of coordinate equatorial radius of 10 with spin
along the z axis with three levels of refinement (at �50, �25,
and �12:5) and a perturbation to the magnetic field to introduce
an explicit deviation from divergenceless. Concentrating on the
MHD equations, the metric terms were frozen at their initial
values, e.g. the Cowling approximation. The bottom row shows
clear wavelike behavior as it ‘‘cleans’’ the divergence.
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�þ ¼ Ixx � Iyy

Ixx þ Iyy
; (42)

�� ¼ 2Ixy

Ixx þ Iyy
; (43)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ þ �2�

q
; (44)

in terms of the moment of inertia tensor

Ijk �
Z

Dxjxkd3x: (45)

These parameters are computed with respect to the con-
servative variable D.

It is also standard practice to display the maximum of
the (primitive) rest mass density, and we compute the
fractional change in time as

�� � maxj�0ðtÞj �maxj�0ð0Þj
maxj�0ð0Þj : (46)

Generally, for stable stars one sees this quantity oscillate
from inherent numerical perturbations about a stable solu-
tion. For unstable solutions, one expects this quantity to
change in a significant way. Similarly, we compute the
relative change in baryon mass as a function of time as

�Mbaryon �
MbaryonðtÞ �Mbaryonð0Þ

Mbaryonð0Þ ; (47)

where

Mbaryon �
Z

DdV: (48)

This mass is related to the expected baryon number and
should be strictly conserved as long as mass is not leaving
the computational domain. Many HRSC schemes explic-
itly conserve this quantity, but here it is not a priori con-
served. Our use of an atmosphere entails adding a small
amount of mass in regions that would otherwise become
evacuated. Another reason is that we are using a finite
difference based AMR, which does not accommodate as
readily a strictly conservative treatment as a finite volume
method would [51]. Finally, the presence of source terms in
the evolution equations for the other conservative variables
also breaks perfect conservation of these other quantities.

We also compute the angular momentum of the fluid.
Since our stars rotate about the z axis, we need only
compute a single such quantity

Jz ¼
Z
ðxnjTjy � ynjTjxÞ

ffiffiffi
h
p

d3x: (49)

The use of Cartesian coordinates is typically avoided when
one expects angular momentum to be conserved since
cylindrical coordinates are better adapted to the respective
Killing vector. However, because this project is part of a
more general effort to model a variety of systems with
different natural coordinates and no symmetries, we simply
monitor the extent to which this is conserved by computing
a fractional change as

�Jz � JzðtÞ � Jzð0Þ
Jzð0Þ : (50)

Finally, we also monitor the extent to which our numeri-
cal solution satisfies the Einstein equations as expressed in
Eq. (1). That is, we compute the so-called residual of these
equations, expressed as the four-vector Za as in Eq. (9). In
particular, we monitor the norm of this vector

j ~Zj � kZak2: (51)

Analytical solutions to Einstein equations must have a
vanishing residual, and thus we monitor this residual for
solutions obtained at various resolutions to check for con-
vergence to a consistent solution.

V. INITIAL DATA

We use initial data generated with the program
Magstar, part of the LORENE software package. These
solutions are described in [19] and are rigidly rotating,
magnetized neutron stars. They are generated as fully
consistent solutions of Einstein’s equations as opposed to
taking nonmagnetized stars and adding a seed magnetic
field without re-solving the constraints. The initial mag-
netic field is dipolar and aligned with the rotation axis,
produced by a current function fðA�Þ ¼ const, where A�

is the toroidal component of the electromagnetic potential
vector.
To get a handle on the solutions generated, we first turn

off the magnetic field and compute the ‘‘usual’’ two-
parameter solution space as described in [52]. Using the
terminology of [19], we compute solutions based on the
two parameters of central enthalpy and frequency.
Examination of Eq. (13) of [19] shows that the log-central
enthalpy Hc is related to the entropy used here [he as
defined in Eq. (14)] by

Hc ¼ lnðheÞ þ C; (52)

where C is constructed by physical constants and he is
evaluated at the center of the star.
These nonmagnetized solutions are diagrammed in a

plot of total gravitational mass versus central enthalpy in
Fig. 2. The lower curve shows the static limit for stars that
are not rotating. The upper curve is the mass shedding
limit, represented by the largest frequency for which
Magstar returned a solution. These curves serve as the
upper and lower bounds on the solution space of stationary,
unmagnetized stars. It should be noted that Magstar
generates only rigidly rotating stars, and therefore the
evolutions are far from the fast rotating regime expected
to excite large and growing nonaxisymmetric modes.
We also compute and show a sequence of stars at con-

stant baryon mass. Such sequences are important because
real stars are expected to conserve baryon mass as they
evolve, and thus the sequences are expected to approximate
their evolution. Furthermore, along such sequences it has
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been shown that there is a stability change at the minimum
in the angular momentum [52]. Looking at the inset of
Fig. 2, one therefore expects the solutions on the right to be
unstable while those on the left should remain stable.

Note that the addition of a nonvanishing magnetic field
adds another dimension to this diagram although the effect
of the magnetic field on the initial data is not so dramatic.
Certainly there are many ways in which to ‘‘add’’ a mag-
netic field to a stellar solution. In [19] a nonvanishing
current is assumed and a solution is obtained with the
same baryon mass but now with nonvanishing magnetic
field. In particular, solutions at the mass shedding limit
with no magnetic field are shown in Fig. 2 by open tri-
angles. Almost indistinguishable from these solutions are
those magnetized such that the radial magnetic field at the
pole of the star is 1000 gigatesla (GT) or 1016 G, shown
with open circles.

We consider different perturbations. To perturb the pres-
sure, we decrease it according to real parameters Ap and m

in terms of the unperturbed pressure p0 depending on the
azimuthal angle ’

p ¼ p0½1� Apsin
2ðm’Þ�: (53)

We also consider perturbations to the rest mass density
decreasing it everywhere by a fraction A�

� ¼ �0½1� A��: (54)

We verify the initial data in our evolution code in a
number of ways. We examine convergence of the data to
a unique solution which solves the constraints. In Fig. 3 we
show the residual of the Hamiltonian and y component of
the momentum constraint for three different resolutions.
The Hamiltonian constraint is a good measure of the
fidelity of the solution to the Einstein equations, and, as
is clear from the figure, its residual decreases rapidly with

FIG. 2 (color online). Diagram of solution space of stars
generated with Magstar (using its units). The total gravita-
tional mass is plotted versus the central enthalpy. The upper
curve (purple, open triangles) represents stars with no magnetic
field at the mass shredding limit. Very close to this are shown
(green, open circles) stars rotating at the same frequencies but
with a radial magnetic field at the pole of 1000 GT ¼ 1016 G.
The masses of these stars are barely changed with respect to their
nonmagnetic counterparts. The lower curve (blue, open squares)
represents the static limit with no rotation. A sequence of
constant baryon mass stars (MB ¼ 3:6Msol) is shown (red stars).
This sequence is also shown in the inset along with their angular
momentum (yellow, open circles) and frequency of rotation
(green stars). The location of the initial data used in the initial
data convergence test of Fig. 3 and the long term, stability test of
Fig. 4 is also shown (green, solid square) although that solution
strictly does not belong here because it has a nonvanishing
magnetic field.

FIG. 3 (color online). The residuals of two constraint equa-
tions, namely, the Hamiltonian constraint and the y component
of the momentum constraint. A slice along the x axis of the
computed residuals for various unigrid resolutions. Top: That the
Hamiltonian constraint residual converges to zero with increas-
ing resolution is taken as evidence that the initial data are
properly constructed and read into the code. Bottom: That the
momentum constraint residual improves with the first increase in
resolution is similar evidence. However, the next increase in
resolution fails to bring down this residual. We suspect that this
remaining error is associated not with truncation error but
instead with inherent errors in the numerical transformation
and interpolation from LORENE’s spherical basis to our
Cartesian one. Note the spikes that arise at the stellar boundaries
due to discontinuities in the fluid variables;, these are not
expected to converge to zero.
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resolution. Furthermore, we confirm that the divergence of
the magnetic field is around machine precision.

VI. RESULTS

A. Stable, rotating star test

Before addressing the effects of the magnetic field, we
verify that the code reproduces the expected behavior as
described, for example, in [53]. First, we consider evolu-
tions of stable, rotating stars and find that the code evolves

such a star as long as desired while maintaining a sta-
tionary solution. This is a demanding test as it depends
on the balance between gravitational and hydrostatic forces
in a rotating configuration with both a nonconforming grid
and variables not adapted to the symmetries of the
problem.
One example of the behavior of the numerical solution is

shown in Fig. 4. As apparent in the top frame of the figure,
the fractional change in the maximum of the density os-
cillates with a slow overall increase. This oscillation is
characteristic of quasinormal ringing of the star excited
by inherent numerical error. However, the figure shows
data for a number of resolutions, and the trend as resolution
improves is toward a flatter curve. This trend is particularly
apparent in the inset, which shows just the first rotational
period. This behavior suggests that the code is converging
to the continuum solution.
In addition to the runs with varying resolution, Fig. 4

shows another evolution with a coarse level extending
twice as far but with fine levels identical to the medium
resolution run just discussed. Generally, the results are the
same as for the nonextended domain, indicating little effect
from the boundary for the first half-period.
Although the fluid scheme used here is not strictly

conservative because of (i) AMR boundaries for our vertex
centered scheme, (ii) our outer boundary treatment, and
(iii) our use of a fluid floor, Fig. 4 shows that the fractional
change in the volume-integrated baryon mass remains
constant to a high degree. Similarly, the integrated angular
momentum of the fluid converges to conservation.
Finally, the bottom frame of Fig. 4 shows the maximum

value of the constraint violation. These values increase
with time as the numerical error accumulates, but higher
resolution runs demonstrate less violation though it satu-
rates due to the intrinsic error of the initial and boundary
data.

B. Unstable, rotating, magnetized star test

Similarly, we evolve a rotating, magnetized star located
on the unstable side. These stars, perturbed by inherent
numerical error, collapse to black holes. We see no evi-
dence of significant disk formation (as in e.g. [15,16,54–
56]). Notice that even though we do not impose any type of
symmetry, no asymmetric, unstable modes are observed.
This behavior is consistent with previous work that studied
the possible onset of axisymmetric instabilities [57]. These
previous studies found that such instabilities require high
rotation rates characterized by T=W > 0:25 in contrast to
those studied here for which T=W 	 0:1. Consequently,
we see no evidence for deformations of the star as would be
apparent by monitoring the distortion parameters moving
away from zero.
In Fig. 5, we show an example of such an evolution at

three successively finer resolutions. Because the star is
collapsing, the maximum density increases dramatically.

FIG. 4 (color online). Convergence results for the evolution of
a stable, nonmagnetized, rotating star (the particular initial
solution is shown in Fig. 2 as a green solid square). Three fixed
mesh refinement evolutions are shown, each with a multiple of
the coarsest resolution resolving the equator of the star with the
following: (magenta, dot-dashed line) 30 points/star, (blue, dot-
ted line) 60 points/star, and (black, solid line) 120 points/star.
Also shown is a run with the same stellar resolution of (red, long-
dashed line) 60 points/star but with a coarse grid that extends
twice as far in all directions. The two highest resolution runs
were terminated early because of the computational cost, not
because of any robustness problems. The insets show the same
data but in finer detail for the first rotational period. The top
frame shows the fractional change in maximum density versus
rotational period. With increasing resolution the solution better
approximates a stationary solution. The upper middle frame
shows the fractional change in the baryon mass, Although our
scheme, using vertex centered AMR, an atmosphere, and full
general relativity with sources, is not strictly conservative, the
plot shows that deviations from strict conservation are small and
decrease with more resolution. The lower middle frame shows
the fractional change in integrated angular momentum. Again,
the code demonstrates convergence to conservation. The bottom
frame shows the maximum of the norm of the Za constraint
residuals as a function of time that also converge.
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FIG. 6 (color online). Density �0 and magnetic field strength on the y ¼ 0 plane for the same star as shown in Fig. 5. The density is
shown with respect to the color map while the contours denote the magnetic field, which is equally spaced from 0 to 5� 1015 G. The
top left corresponds to t ¼ 0:5P while the top right to t ¼ 0:9P (the circle shown represents the apparent horizon.) The bottom plot
illustrates the normalized mass as a function of time, along with its rate of change.

FIG. 5 (color online). Collapse to black hole of an unstable,
unperturbed, magnetized star for multiple of a base resolution.
The initial datum is an unperturbed Magstar solution with
central enthalpy Hc ¼ 0:8 rotating at a frequency f ¼ 835 Hz
and with polar magnetic field of 1000 GT ¼ 1016 G. The top
frame shows the maximum density, which increases with time as
the star collapses. The upper middle frame shows a norm of the
divergence of the magnetic field. The lower frames show the
distortion parameters of the D field as functions of time.
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The magnetic field remains essentially poloidal throughout
the collapse and its maximum magnitude increases due to
the resulting compression of the field lines. Despite this
increase, the magnetic field plays no important role in the
collapse since its associated pressure is still several orders
of magnitude smaller than the fluid pressure. While we do
observe an increase in the norm of the divergence, the
growth is not particularly fast and the divergence remains
small in absolute terms and relative to the magnetic field.

Figure 6 displays two snapshots of the density and
magnetic field strength of the collapsing star tested in
Fig. 5. The first one illustrates a stage during the collapse
before an apparent horizon forms. The second one shows
the behavior after an apparent horizon is found and its
interior excised. The apparent horizon appears at t ’
0:6P, when the maximum of the density is �max ¼ 0:271
and the minimum of the lapse is �min ¼ 0:2.

C. Perturbations of unstable stars

Previous work presented in [53] argues that, in general,
unstable stars should either collapse to a black hole or
expand and oscillate about a stable stellar solution.
Seeking to duplicate this behavior, we perturb an unstable
star. Indeed, as shown in Fig. 7, we find precisely the
behavior described. If our perturbation increases the pres-
sure sufficiently, we find a star that expands and oscillates
about some other, presumably stable solution. However, if
we choose a perturbation that barely increases the pressure,
the star collapses to a black hole.

However, given the interest in black hole critical phe-
nomena (see [58,59]) over the past couple of decades, we
study in detail the separation between these two behaviors.

That is, we continue to adjust Ap in Eq. (53) searching for a

value A�p above which one finds black hole formation and

below which one finds an expanding solution (the way we
have parametrized the pressure perturbation, A�p < 0).

As apparent from Fig. 7, the more one continues this
tuning, the longer the unstable star survives. This type of
tuning is reminiscent of a similar analysis of an unstable,
irregular static solution [60]. What these results suggest is
that the unstable solution (i) sits at the threshold of black
hole formation with (ii) a single unstable mode. That small
perturbations about the solution send it either to collapse or
expansion suggests that it sits at the threshold. Furthermore
that a single parameter is sufficient to stabilize the solution
suggests that there is a single unstable mode. In contrast,
sometimes one can tune multiple parameters to find a
threshold solution [61].
If these suggestions hold up, these would suggest that at

least some of these unstable solutions might serve as type I
critical solutions. Indeed, previous work [62] perturbed
stable TOV stars in spherical symmetry and found unstable
TOV stars at criticality in type I collapse. In that work, they
were able to achieve phenomenal resolution and tuning. In
contrast, while they perturbed a self-consistent stable so-
lution and saw the tuned evolution driven to the unstable
branch of solutions, here we begin with the unstable solu-
tion and perturb around it. Here, we have only been able to
tune to about one part in a million, being prevented from
tuning further because successive evolutions stop the trend
toward longer lived solutions. That such searches are pre-
vented from continuing might indicate some new phe-
nomena, or, more likely, that boundary effects and
numerical error begin to spoil the threshold behavior.
We have looked for a scaling law in the survival times of

these tuned unstable stars. To the extent that this rough
tuning is representative of the overall behavior, we find that
the different solutions appear to scale as expected. How-
ever, because our searches have terminated so far from
criticality, we cannot have much confidence in a precise
scaling relationship. There has been recent work in the
axisymmetric collision of neutron stars [63,64] that ap-
pears to demonstrate the same type of critical behavior as
observed in [62].
We find the same type of behavior about a magnetized

star as shown in Fig. 8. Here we have carried out three
searches by varying a different parameter all perturbing the
same solution. The figure makes apparent the same ringing
for all three families, although the amplitude varies across
the different tuning families. It seems reasonable to take
the results of these tunings as further evidence that only a
single mode is unstable since if there were more unstable
modes, these different tunings would produce solutions
more varied from each other. We have begun to look at
the geometry of the purported unstable mode by looking at
the difference � ¼ �0ðtÞ � �0ð0Þ at late times for near-
critical evolutions. These calculations indicate the mode is

FIG. 7 (color online). The maximum density �max as a func-
tion of time for an unstable, perturbed [m ¼ 3 in Eq. (53)],
nonmagnetic, rotating star. The (unperturbed) initial star has
central enthalpy 0.8 and rotates at the mass shedding limit.
Solutions resulting from tuning the amplitude of the perturbation
Ap to roughly one part in 106 show the two disparate outcomes

(as discussed in [53]): collapse to black hole or violent oscil-
lations about a stable stellar solution with equivalent mass. With
more tuning, the star resembles the initial, unstable solution for a
longer time.
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likely axisymmetric with differences between � on the
x ¼ 0 plane and � on the y ¼ 0 plane being at about the
10% level.

VII. CONCLUSIONS

We study the evolution of rotating stellar configurations
and examine different phenomenology related to stability
and magnetic field influence in their dynamical behavior.
The stars are constructed assuming a polytropic equation
of state using the code Magstar, which is part of the
publicly available LORENE package. We present several
studies that indicate our code reliably and robustly evolves
astrophysically relevant scenarios including magnetic field
effects. We study the dynamical effect of perturbations of
stars on the unstable branch of solutions. We find evidence
that these unstable solutions may play a similar role as the
unstable TOV stars play in spherically symmetric evolu-

tions as studied in [62]. This is significant because it
suggests that the addition of angular momentum, magnetic
field, and three dimensions do not allow for a multitude of
unstable modes. Needless to say, the phenomena associ-
ated with the threshold of gravitational collapse merit
further study.
Beyond the studies considered in this work, further

interesting phenomenology to consider include the impact
of magnetic fields in the stability of the star, a thorough
analysis of the possible critical phenomena observed, and
differences due to more realistic equations of state. The
investigation of such scenarios will be presented
elsewhere.
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