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Excising a boosted rotating black hole with overlapping grids
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We use the overlapping grids method to construct a fourth order accurate discretization of a first order
reduction of the Klein-Gordon scalar field equation on a boosted spinning black hole background in
axisymmetry. This method allows us to use a spherical outer boundary and excise the singularity from the
domain with a spheroidal inner boundary which is moving with respect to the main grid. We discuss the
use of higher order accurate energy conserving schemes to handle the axis of symmetry and compare it
with a simpler technique based on regularity conditions. We also compare the single grid long-term
stability property of this formulation of the wave equation with that of a different first order reduction.
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I. INTRODUCTION

Black hole excision has become an important technique
in numerical relativity. First proposed by Unruh [1], ex-
cision consists in placing an outflow inner boundary which
eliminates the black hole singularity from the domain.
Sometimes combined with singularity-avoiding slicings,
it is used in all of the current long-term black hole evolu-
tions. (For review articles see Refs. [2–5], some more
recent work includes [6–8].) Excision has proved most
successful with black holes at a fixed coordinate location.
For example, in studies of orbiting compact objects (black
holes and/or neutron stars), long runs have been achieved
in corotating frames, where dynamic gauge conditions
attempt to keep the black holes at fixed locations. For
more general orbits, and for simulations over many orbital
time scales, it is anticipated that the ability to move the
black holes on the computational grid through a stable
excision algorithm will be crucial.

Excision methods for moving black holes typically re-
quire the extrapolation of data onto the trailing edge of the
black hole [9–13]. We recently reported on a new excision
method using simultaneous, multiple coordinate patches,
and implemented these numerically using overlapping
grids [14]. In this method each boundary, whether an outer
boundary or an excision boundary, moving or static with
respect to a main coordinate system, is fixed to at least one
coordinate system. The different coordinate patches over-
lap just like the charts of an atlas. Information is commu-
nicated from one grid to the other using only interpolation,
without any decomposition into ingoing and outgoing var-
iables. This excision method has a number of advantages,
including: (1) the possibility of choosing coordinate
patches which conform to each individual boundary, giving
smooth numerical boundaries and thus simplifying the
boundary treatment; (2) the ability to adapt the coordinates
near the black hole to the horizon geometry, allowing the
excision surface to be placed relatively far from the singu-
larity, and thereby ‘‘excising the excisable’’; (3) the use of
simple data structures and the implementation of standard
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methods for parallelization and adaptive mesh refinement
due to the fact that individual grids are logically Cartesian.

In our previous work we demonstrated this excision
method by evolving a Klein-Gordon massless scalar field
on a boosted Schwarzschild background. Numerical tests
showed that the scheme was stable and second order
convergent for very large boost parameters (v � 0:98c).
A long-term convergence test of spherical waves in
Minkowski space also showed that the interfaces between
the overlapping grids did not introduce growing numerical
errors. Moreover, our tests indicated that the overlapping
grids technique is robust, in the sense that stability was not
dependent on some of the fine details of the implementa-
tion. For example, stability was independent of the inter-
polation method, the number of grids used, the physical
overlap size of the grids (which was kept fixed while test-
ing convergence), and their relative resolutions.

Overlapping grids have also been used recently in evo-
lutions of the full Einstein equations. Thornburg [15], for
example, used six spherical coordinate patches to excise a
Kerr black hole (a � 0:6). The patches are designed such
that coordinate lines in one direction overlay each other, so
that the interpolation required is effectively one dimen-
sional. Using the BSSN formulation, Thornburg was able
to evolve the Einstein equations for 1500M, and it ap-
peared that the instabilities were related to the outer bound-
ary treatment. He also used overlapping patches in
an apparent horizon solver, which is now available in
Cactus [16].

More recently, Anderson and Matzner [17] have per-
formed simulations of black holes with overlapping grids.
They used two stereographic patches to cover the spherical
excision region, and solved the standard _g– _K ADM equa-
tions in a constrained evolution. They were able to evolve
boosted black holes (v � 0:5c) across the computational
domain, and runs of single, stationary black holes ran for
more than 700M.

Finally, in a related approach, Reula, Tiglio, and Lehner
[18] use multiple coordinate patches designed such that all
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boundary points on neighboring patches are aligned.
Rather than overlapping, the grids just touch. The commu-
nication between the touching grids is based on the
Carpenter-Gottlieb-Abarbanel’s method [19], which re-
quires the computation of the characteristic variables.
They successfully evolved a Klein-Gordon scalar field on
a Kerr background spacetime and are currently working
towards fully relativistic evolutions.

In this paper we expand upon our previous work, and
choose to study improvements in the following directions:
(1) we generalize the background spacetime geometry to
allow for spinning black holes, and investigate the effect of
high spin (a � 0:99) on the system’s stability; (2) we
upgrade our derivative and interpolation operators to give
global fourth order accuracy; (3) we introduce a spherical
patch for the outer boundary, removing all boundary
corners.

While in [14] we put strong emphasis on the use of
energy conserving schemes based on difference operators
satisfying the summation by parts rule, here we allow
ourselves to explore discretizations for which a stability
proof based on the discrete energy method is not immedi-
ately available. At times, such discretizations can be much
simpler, particularly in the higher order accurate case.

The paper is organized as follows: In Sec. II we outline
the main ingredients of the overlapping grids method.
Section III is a generalization of Sec. III B of [14] to the
spinning case with the inclusion of a potential in the wave
equation. The various coordinate systems used and the
regularization of the equations on the axis are discussed
in Sec. IV. Before describing in Sec. VI the details of
the discretization, in Sec. V we produce group velocity
diagrams which illustrate how information propagates
through the domain. A high resolution convergence test
using the forcing solution method is described in Sec. VII.
This paper contains three appendices.
II. OVERLAPPING GRIDS

When solving hyperbolic initial-boundary value prob-
lems numerically, it is often difficult, if not impossible, to
accurately represent the entire domain, boundary included,
with a single grid. For example, at least two coordinate
patches are required to cover the entire surface of a 3-
sphere without coordinate singularities. When solving for
the spacetime representing a binary black hole collision,
one may want to use a spherical domain with the outer
boundary placed sufficiently far away, in which the black
hole singularities are excised. To represent the interior of a
sphere with two (or one after the merger) smaller spheres
removed, more than one coordinate system is needed,
specially if one wants the coordinates to be adapted to
the boundaries of the problem.

The overlapping grids methods provides a simple and
flexible solution to such problems. Our scheme is based on
that described in Starius [20] and Ref. [21]. To demonstrate
124027
how the algorithm works we consider the first order linear
hyperbolic system

@tu � P�t; x; @x�u; (1)

where u is a vector valued function representing tensor
field components, in a domain 	�t� with smooth boundary
@	�t�. The problem includes appropriate initial and
boundary data. In general, system (1) is specified in a
coordinate system ft; ~xg which is not and cannot be adapted
to the boundary of the problem. We will refer to this
boundary as the physical boundary, and we allow for it to
be moving with respect to the main coordinate system. We
introduce a coordinate system ft0; ~x0g adapted to @	�t�, in
the sense that the boundary surface can be represented by
x0i � const, for some i. The equations in this coordinate
system will take a different form

@t0u0 � P0�t0; x0; @x0 �u0; (2)

where the components of u0 are related to the components
of u via tensor transformation laws. The initial and bound-
ary data are also transformed. To maintain simultaneity of
patches we restrict the coordinate transformation by de-
manding that t0 � t.

The problem is discretized by introducing a grid for each
coordinate system. Any grid point of the main grid which
lies beyond a x0i � const line (or surface) are dropped, as
illustrated in Fig. 1. The two grids overlap and the physical
overlap size is kept constant when performing grid refine-
ment tests.

The numerical computation of the right hand side of (1)
at a particular grid point ~xij requires information from a
number of grid points in each coordinate direction. With a
fourth order accurate centered difference operator, for
example, one needs two grid points in each direction.
Grid points of the main grid, at which the right hand side
cannot be evaluated, are updated via interpolation from the
other grid. All components of u0 are interpolated onto the
main grid and the tensor law transformation is used to
evaluate the components of u. A similar procedure is
done at the nonphysical boundary of the second grid.
Points that require interpolation are marked with a solid
dot in the figure. The numerical treatment of the physical
boundary is as that of a single grid boundary.

In our code we use nth order Lagrange interpolation,
which in two dimensions is given by

fInt�x; y� �
Xn
i�1

Xn
j�1

Yn
l�1
l�i

x� xl
xi � xl

Yn
k�1
k�j

y� yk
yj � yk

f�xi; yj�: (3)

If f is sufficiently smooth, the interpolating function is a
nth order approximation of f�x; y�.

Note that if the physical boundary moves with respect to
the main grid, grid points may have to be dropped from or
added to the main grid and the set of points which require
interpolation needs continuous updating. This is done at
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FIG. 2 (color online). We use a main cylindrical grid and two
spherical grids adapted to the inner and outer boundaries. The
irregular shape of the main grid is the result of having dropped
grid points which lie beyond imaginary lines on the spherical
grids. The dot represents the ring singularity of the black hole.

FIG. 1 (color online). This illustrative example consists of two
overlapping grids. The one on the left is the main grid. The other
one is adapted to the physical boundary of the problem, which
may be moving with respect to the main grid. The grid points
marked with a solid dot are updated via interpolation. The
overlapping grids algorithm is described in the body of the paper.
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the end of each full time step of the time integrator of
choice (e.g., fourth order Runge-Kutta). When grid points
are added to the main grid, the grid adapted to the boundary
is able to provide accurate data for these points.

The overlapping grids method requires artificial dissipa-
tion for stability [22]. We use sixth order dissipation, see
Eq. (52), which has a seven point stencil in each direction.
This means that in our code we actually interpolate three,
rather than two grid points.

Here we consider the case in which a scalar field prop-
agates on a boosted spinning black hole background. Two
boundaries are introduced: an inner and an outer boundary.
The first one represents the excision surface and is purely
outflow. It requires no boundary data. The second one is
introduced for computational reasons. We need to have a
bounded spatial domain because of limited computational
resources. To handle the two boundaries we introduce two
additional coordinate patches. One patch is adapted to the
outer boundary and one patch is comoving with the black
hole, and fixed to the inner excision boundary. We choose
cylindrical coordinates for the main coordinate patch. The
black hole is boosted with velocity � along the axis of
symmetry with respect to this coordinate system.
Spheroidal coordinates are used on the second patch,
such that the location of the event horizon is at a constant
coordinate value, and spherical coordinates on the outer
124027
patch. We require that all data in all three coordinate
systems be simultaneous. By adapting these coordinates
to the black hole horizon, we may excise the spherical grid
at the event horizon for all values of the boost parameter.
This allows for an efficient use of the excision technique,
as we can excise the excisable. The layout of the grids is
illustrated in Fig. 2. For the fourth order accurate case,
which is the minimum order that we require, Eq. (3) on an
uniform grid takes the form

fInt�xi � a�x; yj � b�y� �
Xi�2

p�i�1

Xj�2

q�j�1

Yi�2

l�i�1
l�p

a� i� l
p� l

	
Yj�2

k�j�1
k�q

b� j� k
q� k

fpq; (4)

where 0 
 a < 1 and 0 
 b < 1.
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The boundary treatment and the discretization near the
axis of symmetry are described in Sec. VI.

III. A FIRST ORDER REDUCTION OF THE WAVE
EQUATION

In this section we write down the wave equation on a
general curved background and discuss a particular first
order reduction. In Sec. VII B we consider a different first
order reduction, which has different features, and compare
the numerical stability of the two formulations. For a
definition of strong and symmetric hyperbolicity we refer
the reader to [21,23]. The rest of this section is a general-
ization of Sec. III B of [14].

The equation of motion for a scalar field propagating on
a curved background �M;g� is given by the second order
wave equation

r�r
���

dV
d�

� 0; (5)

where r denotes the covariant derivative associated with
the Lorentz metric g and V��� is a potential.

In terms of the tensor density �� �
�������
�g

p
g� , where

g � det�g� �, the wave equation can be written as

@���� @ �� �
�������
�g

p dV
d�

� 0: (6)

If we introduce the auxiliary variables T � @t� and di �
@i�, we can rewrite Eq. (6) as a first order system,

@t� � T; (7)

@tT � �

�
�ti@iT � @i��itT� � @i��ijdj� � @t�ttT

� @t�tjdj �
�������
�g

p dV
d�

��
�tt; (8)

@tdi � @iT: (9)

An attractive feature of this particular first order reduction
is that the constraint variables propagate trivially, namely
@tCi � 0. This ensures that any solution of (7)–(9) which
satisfies the constraints initially, will satisfy them at later
times, even in the presence of (static) boundaries.

The characteristic speeds in an arbitrary direction ~n,
with j ~nj � 1, are given by the eigenvalues of the matrix

An � Aini �
0 0 0
0 �2�tn=�tt ��nj=�tt

0 ni 0

0@ 1A: (10)

These are s� � ��tn �
��������������������������������
��tn�2 � �tt�nn

p
�=���tt� � �n �

%
�������
hnn

p
and s0 � 0 with multiplicity equal to the spatial

dimension of the problem, where % is the lapse function,
�i the shift vector, and hij is the induced 3-metric on the
t � const slices in the Arnowitt-Deser-Misner (ADM)
decomposition (58). Hyperbolicity requires that the char-
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acteristic speeds be real, namely, ��tn�2 � �tt�nn �
det�hij�h

nn � 0 for any n, which will be true as long as
the t � const hypersurfaces are spacelike.

One can verify that

H�t; ~x� �
( 0 0
0 �)�tt 0
0 0 )�ij

0@ 1A; (11)

where ( and ) are functions of t and ~x, is the most general
symmetric matrix [24] that satisfies HAi � �HAi�T , i �
1; 2; 3. When positive definite, which will be the case if and
only if @t is timelike and ( > 0, )> 0, it represents the
most general symmetrizer of system (7)–(9). Using the fact
that �tt < 0 (because the t � const slices are spacelike)

and �ij �
�������
�g

p
gij � %

����������������
det�hij�

q
�hij � �i�j=%2� one can

show that the symmetrizer is positive definite if and only if
the vector field @t is timelike.

The symmetrizer can be used to construct an energy and
obtain energy estimates. The time derivative of

E �
Z
	

�
1

2
���ttT2 � �ijdidj� �

�������
�g

p
V���

�
d3x (12)

is given by

d
dt
E �

Z
@	

�T�tiT � T�ijdj�nid
2,

�
1

2

Z
	
�T@t�ttT � 2T@t�tjdj � di@t�ijdj�d3x

�
Z
	
@t

�������
�g

p
V���d3x; (13)

where ni is the outward pointing unit normal to @	. If
V��� is quadratic in �, e.g., V � 1

2m
2�2, @t is timelike,

and maximally dissipative boundary conditions are used,
we have an energy estimate. Note that in this case (12)
corresponds to the choice ( � m2=2 and ) � 1=2 in (11).
If, furthermore, the background admits a timelike vector
field k and we use a coordinate system adapted to it, @t �
k, the components of �� will be time independent and we
have, ignoring boundary terms, energy conservation.

The integrand of the surface term can be written as

2�T�tiT � T�ijdj�ni � .�w
��.�;n�2 � .�w

��.�;n�2;

(14)

where .� � �n � �tn and

w��.�;n� � �

����������������
1� �̂tn

p ���
2

p T �
1���
2

p
�̂indi����������������
1� �̂tn

p ; (15)

w�0;n� � �i?di (16)

are the orthonormal characteristic variables of HAn. To
simplify the notation we have introduced the quantities
�n �

������������������������
0� ��n� n

p
, �̂�n � ��n=�n, and �i?. The latter

satisfies 0ij�i?�
j
? � 1 and 0ij�i?�

jn � 0. To express the
-4



EXCISING A BOOSTED ROTATING BLACK HOLE WITH . . . PHYSICAL REVIEW D 71, 124027 (2005)
primitive variables in terms of the characteristic variables
we invert Eqs. (15) and (16),

T �

����������������
1� �̂tn

p ���
2

p w��.�;n� �

����������������
1� �̂tn

p ���
2

p w��.�;n�; (17)

di �
�̂in���
2

p

�
w��.�;n�����������������
1� �̂tn

p �
w��.�;n�����������������
1� �̂tn

p �
� �i?w

�0;n�: (18)

We use Eqs. (15)–(18) in the boundary conditions to pre-
scribe exact data to the incoming characteristic variable
w��.�;n�. The variable � is a zero speed characteristic
variable for any direction n and requires no boundary data.

We also assume axisymmetry, which implies that there
exists a spacelike Killing field  �  �@� � @2. By
adopting coordinate systems adapted to the Killing field,
we have that the metric components are independent of the
2 coordinate. Since we are only interested in axisymmetric
solutions of the wave equation, i.e., solutions which do not
depend on 2, the variable d2, which represents @2�, can
be eliminated from the system.

In the next section we define the various coordinate
systems used in our overlapping grids scheme and special-
ize Eqs. (7)–(9) to these coordinates.

IV. THE KERR METRIC IN KERR-SCHILD
COORDINATES

We are interested in the case in which the background is
given by a rotating Kerr black hole. We will use Kerr-
Schild coordinates [25,26]. After recalling basic properties
of these coordinates we explicitly compute the coefficients
�� needed in the evolution system (7)–(9) and determine
the regularized equations on the axis.

The Kerr-Schild metric components are given by

g� � )� � 2H‘�‘ (19)

where

)� � diagf�1;�1;�1;�1g; (20)

H �
Mr3

r4 � a2z2
; (21)

‘� �

�
1;
rx� ay

r2 � a2
;
ry� ax

r2 � a2
;
z
r

�
; (22)

and r is determined implicitly by

x2 � y2

r2 � a2
�
z2

r2
� 1;

or explicitly by

r2 � r2BL�x; y; z� �
1

2
�62 � a2� �

�����������������������������������������
1

4
�62 � a2�2 � a2z2

s
;

(23)
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where 62 � x2 � y2 � z2. The inverse metric can be writ-
ten as

g� � )� � 2H‘�‘ ; (24)

where ‘� � )� ‘ � g� ‘ is a null vector.
The quantitiesM and a are constants,M representing the

mass and Ma the angular momentum of the black hole as
measured from infinity. We restrict ourselves to the case
a2 <M2. We recall that the event horizon is located at r �
r� � M� �M2 � a2�1=2, the Cauchy horizon at r � r� �

M� �M2 � a2�1=2, and the stationary limit surface, the set
of points in which the Killing field 7 � @=@t becomes null,
is given by r � M� �M2 � a2cos28�1=2. Another set of
points in which 7 is null is given by r � M� �M2 �

a2cos28�1=2. The disc x2 � y2 
 a2, z � 0 corresponds to
r � 0. The ring x2 � y2 � a2, z � 0 is a curvature singu-
larity. For later convenience we introduce the quantity
92
BL�r; 8� � r2 � a2cos28.

A. Boosted cylindrical coordinates

The main coordinate system is obtained by performing a
Lorentz boost, followed by a transformation to cylindrical
coordinates. Under a Lorentz boost, i.e., in the new coor-
dinates

�t � ��t� �z�; �x � x; �y � y;

�z � ��z� �t�;
(25)

where � � �1� �2��1=2, the components of the Kerr-
Schild metric become

g �� � � ) �� � � 2H‘ ��‘ � ;

) �� � � diagf�1;�1;�1;�1g;

‘ �� �

�
r̂
r
;
r �x� a �y

r2 � a2
;
r �y� a �x

r2 � a2
;
ẑ
r

�
;

where r̂ � ��r� �z�, ẑ � ��z� �r�, z � ���z� ��t� and
r � rBL�x; y; z� � rBL� �x; �y; ���z� ��t��. At time �t the sin-
gularity is located at �x2 � �y2 � a2, �z � ���t.

We now go to cylindrical coordinates f�t; �9; �z; �2g, with
�9 cos �2 � �x and �9 sin �2 � �y, obtaining

‘ �� �

�
r̂
r
;

r �9

r2 � a2
;
ẑ
r
;�

a �92

r2 � a2

�
;

) �� � � diagf�1;�1;�1;� �92g

and

) �� � � diag
�
�1;�1;�1;�

1

�92

�
;

‘ �� �

�
�
r̂
r
;

r �9

r2 � a2
;
ẑ
r
;�

a

r2 � a2

�
;

� �� � � �9�) �� � � 2H‘ ��‘ � �;

(26)

where z � ���z� ��t� and r � rBL� �9 cos �2; �9 sin �2;���z�
��t��. Now the singularity is located at �9 � jaj, �z � ���t.
-5
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Note that in these coordinates the time derivative of
�������
�g

p

vanishes.
In this coordinate system the symmetrizer associated

with this first order reduction does not lead to a conserved
energy (@�t� �� � � 0), except for � � 0. The region in
which the system is symmetric hyperbolic is determined
by the set of points in which @�t is timelike, namely

�g�t �t � 1�
2Hr̂2

r2
> 0: (27)

In the unboosted case the system is symmetric hyperbolic
outside the stationary limit surface, and only strongly
hyperbolic inside (see Fig. 4). For � � 0 the region of
lack of symmetric hyperbolicity increases. This issue was
explored in greater detail in [14] for the a � 0 case.

On the axis of symmetry ( �9 � 0) Eq. (8) needs to be
regularized. We want to express it in a form which avoids
‘‘0=0’’. This can be done by taking the limit �9! 0 in the
equations. For this purpose it is convenient to introduce the
rescaled quantities

~� �t �t �
��t �t

�9
; ~��t �9 �

��t �9

�92 ; ~��t �z �
��t �z

�9
;

~� �9 �9 �
� �9 �9

�9
; ~� �9 �z �

� �9 �z

�92 ; ~� �z �z �
� �z �z

�9
;

which have a finite limit for �9! 0 provided that r � r0 >
0. The right hand side of (8) at �9 � 0 becomes

@�t �T �

�
~��t �z@�z

�T � 2~��t �9 �T � @�z�~�
�t �z �T� � 2~� �9 �9@ �9d �9

� 2~� �9 �zd�z � @�z�~�
�z �zd�z� � @�t ~�

�t �t �T � @�t ~�
�t �zd�z

�
dV
d�

��
��~��t �t�:

In Sec. V we analyze the group velocity of the system
and produce plots which give a graphical representation of
how information propagates throughout the domain.
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B. Comoving spherical coordinate system

To excise the black hole we introduce a spherical coor-
dinate system ft0; r0; 80; 20g which is related to the un-
boosted Cartesian coordinates ft; x; y; zg, the coordinates
in which the black hole is at rest, by

t0 � �t � ��t� �z�; r0 � rBL�x; y; z�;

80 � tan�1

�
rBL
z

�������������������
x2 � y2

r2BL � a2

s �
� cos�1

�
z
rBL

�
;

20 � tan�1

�
rBLy� ax
rBLx� ay

�
:

(28)

Note that for � � 0 the time coordinate coincides with the
Kerr-Schild time and not that of the Boyer-Lindquist co-
ordinates [27]. In addition, the azimuthal angle20 does not
coincide with the Boyer-Lindquist 2BL, but it is related to
it via

20 � 2BL � a
Z
�r2 � 2Mr� a2��1dr:

The inverse coordinate transformation of (28) is given
by

t �
t0

�
� �r0 cos80; x � sin80�r0 cos20 � a sin20�;

y � sin80�r0 sin20 � a cos20�; z � r0 cos80: (29)

The coordinates are adapted to the event horizon in the
sense that its location (r0 � r�) is time independent and
setting t0 � �t ensures simultaneity with the main coordi-
nate system. The components of the inverse metric can be
constructed from

‘�
0
� ����1� � cos80�; 1; 0; 0�; (30)
)�
0 0 �

1

92
BL

�92
BL ����r02 � a2� cos80 ��r0 sin80 �a�� cos80

r02 � a2 0 a
1 0

sin�280

0
BBB@

1
CCCA; (31)
where 92
BL � r02 � a2cos280. By definition, ��

0 0 ����������
�g0

p
g�

0 0 , where g�
0 0 � )�

0 0 � 2H‘�
0
‘ 

0
and���������

�g0
q

�
92
BL

�
sin80:

Note that for a � 0 there is a region outside the event
horizon in which the system is not symmetric hyperbolic,
even when � � 0.

As we did in the cylindrical case on the axis of symmetry
(80 � 0 or 80 � :) we need to regularize the equations.
Introducing the quantities

~� t0t0 �
�t

0t0

sin80
; ~�t

0r0 �
�t

0r0

sin80
; ~�t

080 �
�t

080

sin280
;

~�r
0r0 �

�r
0r0

sin80
; ~�8

080 �
�8

080

sin80
;

and taking the limit 80 ! 80, where 80 � 0; :, the right
hand side of (8) on the axis becomes
-6
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@t0T
0 �

�
~�t

0r0@r0T
0 � @r0 �~�

t0r0T0� � 2~�t
080T0 (32)

�@r0 �~�r
0r0dr0 � � 2~�8

080@80d80 �
92
BL

�
dV
d�

��
��~�t

0t0 �; (33)

where the components of ~��
0 0 are understood to be eval-

uated at 80 � 0; :.
Note that in general the characteristic speeds in the

rotating case are higher than those of the nonrotating
case. For example, in the radial direction at �r; 8� �
�M;:=2� they can be as large as 4=3 in the extremal
unboosted case a � M, � � 0. In the nonrotating case,
instead, the same characteristic speeds are bounded by 1
outside the event horizon.

C. Outer spherical coordinate system

In order to have a smooth outer boundary we introduce a
spherical coordinate system f�t; �r; �8; �2g, which is related to
the boosted cylindrical coordinate system through the time
independent transformation

�9 � �r sin �8; �z � �r cos �8; (34)

and its inverse

�r �
����������������
�92 � �z2

q
; �8 � tan�1 �9

�z
; (35)

which ensure simultaneity.
In this coordinate system we have���������
� �gs

p
� �r2 sin �8;

) �� � 
s � diag

�
�1;�1;�

1

�r2
;�

1

�r2sin2 �8

�
;

‘ ��
s �

�
�
r̂
r
;

r�r

r2 � a2
sin2 �8�

ẑ
r
cos �8;

r

r2 � a2
sin �8 cos �8

�
ẑ
r�r

sin �8;�
a

r2 � a2

�
:

As for the comoving spherical coordinate system, to
have the evolution equation in a form that avoids ‘‘0=0’’
it is convenient to introduce the rescaled quantities

~� �t �t �
��t �t

sin �8
; ~��t �r �

��t �r

sin �8
; ~��t �8 �

��t �8

sin2 �8
;

~� �r �r �
� �r �r

sin �8
; ~� �r �8 �

� �r �8

sin2 �8
; ~� �8 �8 �

� �8 �8

sin �8
:

We get

@�t �T �

�
~��t �r@ �r

�T � @�r�~�
�r �t �T� � 2~��t �8 �T � @ �r�~�

�r �rd�r�

� 2~� �8 �8@ �8d �8 � 2~��r �8d�r � @�t ~�
�t �t �T � @�t ~�

�t �rd�r

� �r2
dV
d�

��
��~��t �t�:
124027
D. Transformation of variables

The interpolation procedure which is used to communi-
cate information between the grids requires the coordinate
transformations and the tensor transformation laws to re-
late the components of the evolved fields. The boosted
cylindrical and comoving spherical coordinate systems
are related by

�t � t0; �9 � sin80
�����������������
r02 � a2

p
;

�z � ��1r0 cos80 � �t0; �2 � 20 � tan�1

�
a
r0

�
;

(36)

and the inverse transformation

t0 � �t; r0 � rBL� �9 cos �2; �9 sin �2;���z� ��t��;

80 � tan�1

�
�9rBL

z
�������������������
r2BL � a2

q �
� cos�1

�
z
rBL

�
;

20 � �2� tan�1

�
a
rBL

�
;

(37)

where z � ���z� ��t�.
The field � transforms like a scalar and the fields T and

di transform like components of 1-forms. In this case we
have

�T � T0 � ��
r02 � a2

92
BL

cos80dr0 � ��
r0

92
BL

sin80d80 ;

d �9 �
r0

�����������������
r02 � a2

p

92
BL

sin80dr0 �

�����������������
r02 � a2

p

92
BL

cos80d80 ;

d�z � �
r02 � a2

92
BL

cos80dr0 � �
r0

92
BL

sin80d80 ;

(38)

and

T0 � �T � �d�z;

dr0 �
r0�����������������

r02 � a2
p sin80d �9 � ��1 cos80d �z;

d80 �
�����������������
r02 � a2

p
cos80d �9 � ��1r0 sin80d�z;

(39)

where � �T; d �9; d �z� and �T0; dr0 ; d80 � are the fields on the
cylindrical and spherical grids, respectively.

We also need the transformations between the boosted
cylindrical and the outer spherical coordinate systems,
Eqs. (34) and (35), and

d �9 � sin �8d �r �
cos �8
�r
d �8; (40)

d�z � cos �8d �r �
sin �8
�r
d �8; (41)

and
-7
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d �r � sin �8d �9 � cos �8d �z; (42)

d �8 � �r�cos �8d �9 � sin �8d �z�: (43)
2

V. GROUP VELOCITY DIAGRAMS

To have a graphical representation of how information
propagates through the domain it is useful to construct
group velocity or light cones diagrams. These diagrams
are obtained by looking at the group velocity of the system
at selected points of the domain. We briefly describe how
the procedure works. More details can be found in [28–
30].

Consider a system of quasilinear partial differential
equations in two spatial dimensions

@tu � Ai�t; x; u�@iu� B�t; x; u�: (44)

The characteristic speeds, or phase velocities, in the direc-
tion ~n � �n1; n2� are given by the eigenvalues of Aini. We
focus on one of them, which we denote by .�t; ~x; u; ~n�. The
group velocity is given by its gradient with respect to ~n,
–2

–1

0

1

2

z

0 0.5 1 1.5 2 2.5

ρ

FIG. 3 (color online). The light cone structure in Kerr-Schild
cylindrical coordinates for � � 0, a � 0, and M � 1. The event
horizon is located at r �

����������������
�92 � �z2

p
� 2M.

124027
i.e.,

~v g�t; ~x; u; ~n� �
�
@.
@n1

;
@.
@n2

�
: (45)

In order to produce light cones plots at a certain time t0,
about a solution u0, we select a number of uniformly
spaced points of the domain, ~xi, and plot the parametric
function

~x�<� � ~xi � % ~vg�t0; ~xi; u0; ~n�<��; (46)

where ~n�<� � �cos<; sin<� with < 2 �0; 2:� and % is a
constant introduced for aesthetic reasons. It avoids that
the cones either overlap or are too small.

We produced plots for the linear system (7)–(9) in the
cylindrical coordinate system. Figure 3 illustrates the light
cone structure in the nonrotating case, whereas Fig. 4
–2

–1

0

1

z

0 0.5 1 1.5 2 2.5

ρ

FIG. 4 (color online). The light cone structure in Kerr-Schild
cylindrical coordinates for � � 0, a � 0:99M, and M � 1. The
red line represents the event horizon and the blue line the Cauchy
horizon. The brown dot is the ring singularity. The outer region
between the event horizon and the green line, the stationary limit
surface, represents the ergoregion. Between the two green lines
the vector field @t is spacelike and, therefore, the system is only
strongly hyperbolic. (From right to left, the lines in the electronic
version are colored green, red, blue and green.)
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FIG. 5 (color online). The light cone structure in Kerr-Schild
cylindrical coordinates for � � �0:85, a � 0:99M, and M � 1.
The red line represents the event horizon and the blue line the
Cauchy horizon. The brown dot is the ring singularity, which is
moving towards positive values of �z. The outer region between
the event horizon and the green line represents the ergoregion.
(From right to left, the lines in the electronic version are colored
green, red, blue and green.)
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represents the light cones in the rapidly spinning case, and
Fig. 5 shows the rapidly spinning, highly boosted case. It is
interesting to see how in Fig. 5 the light cones tilt. While
the light cones that are being approached by the black hole
are almost unperturbed, those behind are tilted in such a
way that the information is forced to follow the black hole.
This ‘‘dragging’’ effect is clearly noticeable in our numeri-
cal simulations.

In all cases we chose % � �1=8, where the negative
sign follows from the convention that a positive speed
along ~n corresponds to propagation in the � ~n direction.
VI. DISCRETIZATION

To discretize system (7)–(9) we replace the partial de-
rivative @i with the finite difference operator Di, without
expanding derivatives of products. This leads to the semi-
discrete system
124027
@t� � T; (47)

@tT � �

�
�tiDiT �Di��itT� �Di��ijdj� � @t�ttT

� @t�
tjdj �

�������
�g

p dV
d�

��
�tt; (48)

@tdi � DiT; (49)

where we have not explicitly written out the grid function
indices. As was shown in [14], this type of discretization
leads to discrete energy conservation provided that @t is a
timelike Killing field [31].

In the interior we use the centered fourth order accurate
finite difference operators

D�1�uij � D�1�
0

�
1�

h21
6
D�1�

� D
�1�
�

�
uij

� ��ui�2;j � 8ui�1;j � 8ui�1;j � ui�2;j�=�12h1�;

(50)

D�2�uij � D�2�
0

�
1�

h22
6
D�2�

� D
�2�
�

�
uij

� ��ui;j�2 � 8ui;j�1 � 8ui;j�1 � ui;j�2�=�12h2�:

(51)

We now discuss the discretization near the axis of sym-
metry and near the physical boundaries.

A. Axis of symmetry

The difference operators (50) and (51) have a 5 point
stencil. Grid points that are too close to the axis require
special treatment. If a grid point is close to but not on the
axis of symmetry we use Eqs. (47)–(49) combined with the
regularity conditions to evaluate difference operators in the
direction normal to the axis. With respect to the coordinate
normal to the axis �, T, and dA are even and dn is odd,
where n is normal to the axis and A is tangent. If a grid
point lies on the axis we use the regularized equations
combined with the regularity conditions. Specifically, in
the boosted cylindrical coordinate case we use

@�t �T �

�
~��t �zD� �z� �T � 2~��t �9 �T �D��z��~��t �z �T� � 2~� �9 �9D� �9�

regd �9

� 2~� �9 �zd�z �D��z��~� �z �zd�z� � @�t ~�
�t �t �T � @�t ~�

�t �zd�z

��
dV
d�

��
��~��t �t�:

In the comoving spherical grid on the axis of symmetry
(8 � 0 and 8 � :) we use the approximation
-9
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FIG. 6 (color online). The maximum value of the Courant
factor for the stability of the fourth order accurate approximation
of the 2D wave equation, @tu0 � @iui, @tui � @iu0, with artifi-
cial dissipation (52), integrated with fourth order Runge-Kutta,
as a function of the dissipation parameter ,.
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@t0T
0 �

�
~�t

0r0D�r0�T0 �D�r0��~�t
0r0T0� � 2~�t

080T0

�D�r0��~�r
0r0dr0 � � 2~�8

080D�80�
reg d80

� �
92
BL

�
dV
d�

��
��~�t

0t0 �:

whereas in the outer spherical grid we use

@�t �T �

�
~��t �rD� �r� �T �D� �r��~��r �t �T� � 2~��t �8 �T �D��r��~� �r �rd�r�

� 2~� �8 �8D� �8�
regd �8 � 2~��r �8d�r � @�t ~�

�t �t �T � @�t ~�
�t �rd�r

� �r2
dV
d�

��
��~��t �t�:

The operator D�n�
reg represents the centered fourth order

accurate operator computed using the regularity condi-
tions. Note that this discretization is not energy conserving.
This is discussed further in Appendix B. Clearly, the
derivative operator in the direction parallel to the axis
needs to be modified near the physical boundary and
boundary data needs to be provided at the outer boundary.
This is discussed in the next subsection.

B. Boundary conditions

We always place the excision surface r0 � r0min between
the Cauchy and the event horizon, in which case no bound-
ary conditions are required. The fourth order accurate
difference operator near the excision surface in the normal
direction to it, however, needs to be modified. The modi-
fication is given in Appendix A. A similar modification of
the difference operator is required near the outer boundary
of the outer spherical grid, �r � �rmax. In addition, here we
give data to the incoming characteristic variables in the
normal direction, including at those points which lie on the
axis, where the normal is chosen to be parallel to the axis
(see Fig. 4 of [14]). We do not couple the ingoing to the
outgoing characteristic variables. Our numerical imple-
mentation is based on Olsson’s method [32].

C. Artificial dissipation

It is known that overlapping grids require artificial dis-
sipation for stability [22]. Therefore to the right hand side
of the discretized system we add a term of the form

Qduij � ,�h51�D
�1�
� D

�1�
� �3 � h52�D

�2�
� D

�2�
� �3�uij: (52)

We modify this operator near the physical boundaries
according to

Qdu0 � ,h3D3
�u0; Qdu1 � ,h3�D3

� � 3D�D
2
��u1;

Qdu2 � ,h3�D3
� � 3D�D2

� � 3D�D2
��u2;

where we have only kept the relevant grid point index. The
modification near i � N is obtained from the above with
124027
the replacements i! N � i and D� ! �D�. This modi-
fication was derived by combining the extrapolation con-
ditions h3D3

�u�j � 0 and h3D3
�uN�j, j � 1; 2; 3 with (52)

whenever grid points outside the domain are needed. The
result is then multiplied by h to ensure that the modifica-
tion is a third order correction, which does not lower the
global accuracy of the scheme [33]. Near and on the axis of
symmetry dissipation (in the normal direction) is computed
exploiting the regularity conditions of the fields. We were
not able to modify the dissipative operator such that a
discrete energy estimate holds and without lowering the
global accuracy of the scheme.

D. The discrete energy method

Unlike for the second order accurate case considered in
[14], we are not able to show that our discretization sat-
isfies a discrete energy estimate, not even on a single grid
and with homogeneous boundary data. We should stress
that the inability to obtain a discrete energy estimate is by
no means a proof of instability. The discrete energy method
is only a sufficient condition for stability.

In Sec. VII numerical experimentation is used to deter-
mine the stability of our scheme.

E. Choice of time step and dissipation parameter

We obtain the fully discrete system by integrating the
semidiscrete system of ordinary differential equations with
fourth order Runge-Kutta. Whenever explicit finite differ-
ence schemes are used to approximate hyperbolic prob-
lems, the ratio between the time step size k and the mesh
size h � minfhig, the Courant factor, cannot be greater
than a certain value [34], which is inversely proportional
to the characteristic speeds of the system. In Fig. 6 we
numerically estimate allowable values for the Courant
-10
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factor by examining the 2D wave equation written in first
order form, @tu0 � @iui, @tui � @iu0. We plot the Courant
limits for fourth order Runge-Kutta as a function of the
artificial dissipation parameter, assuming fourth order,
centered differencing for the spatial derivatives (50) and
(51) and sixth order dissipation (52). A similar plot for the
second order accurate case can be found in Fig. 7 of [14].
From the plot we see that the value , � 0:0075, while
damping the high frequency modes, does not force us to
reduce the Courant factor. This is the value of dissipation
parameter that we use in our simulations. It is about 3 times
smaller than the correspondent value for a second order
accurate approximation (, � 0:02).
0 1 2 3 4 5 6 7 8
t

0

FIG. 7 (color online). The convergence rates Qh on the three
grids obtained using the forcing solution w�t; r; 8� with n � 2.
The domains and coarsest resolutions are: �0; 10� 	 ��10; 10�,
160	 320 for the main grid; �1; 3� 	 �0; :�, 80	 240 for the
inner spherical grid; �8; 14� 	 �0; :�, 240	 240 for the outer
spherical grid. The Courant factor is set to 0:4 and the dissipation
parameter to , � 0:0075. The values of other parameters are:
M � 1, � � �0:85, a � 0:99.
VII. NUMERICAL EXPERIMENTS

In this section we outline the test carried out to verify
that our overlapping grid code is fourth order convergent.
We faced some unexpected issues when testing for long-
term stability.

A. Convergence test

Let u be the exact solution of the continuum problem at
time t and vh the solution of the fully discrete approxima-
tion at time step n, such that t � kn, obtained with a mesh
size h. The convergence rate is computed as

Qh � log2
k u� vh kh
k u� vh=2 kh

; (53)

where k � kh is a discrete L2 norm. Neglecting roundoff
errors one should expect that limh!0Qh � 4 for a fourth
order accurate scheme. To use this equation we need an
exact solution of the continuum problem. We use the same
forcing solution technique described in [14].

Let us rewrite the partial differential equation as L�u� �
0 and let w be an arbitrary function. If w is inserted into the
equation, in general, it will produce a nonvanishing right
hand side,

L�w� � F: (54)

Clearly, the modified equation ~L�u� � L�u� � F � 0 has
w as an exact solution and the convergence of the code can
be tested using Eq. (53).

We chose w�t; r; 8� � sin�t� r� cos�n8�, where ft; r; 8g
are the spheroidal coordinates of the rest frame and n is an
integer. This is an exact solution of

r�r
�w�

dV
dw

� F � 0; (55)

as long as F is given by
124027
F � �
a2sin28� n2

92
BL

sin�t� r� cos�n8� �
2r

92
BL

cos�t� r�

	 cos�n8� �
n cos8

92
BL sin8

sin�t� r� sin�n8� �
dV
dw

:

(56)

Both w and F are scalar quantities. The evolution Eq. (8) is
modified according to

@tT � �

�
�ti@iT � @i��

itT� � @i��
ijdj� � @t�

ttT

� @t�tjdj �
�������
�g

p dV
d�

�
�������
�g

p
F
��

�tt; (57)

where g � det�g� �. On the axis of symmetry we use the
limits lim8!0

sinn8
sin8 � n and lim8!:

sinn8
sin8 � ��1�n�1n. The

result of our convergence test forM � 1, � � �0:85, a �
0:99, and n � 2, confirms that we have fourth order con-
vergence on each grid and is shown in Fig. 7. The simula-
tion was stopped when the inner spherical grid was about to
touch the outer spherical grid.

Furthermore, Fig. 8 illustrates that failing to add artifi-
cial dissipation to the scheme can lead to numerical
instabilities.

B. Long-term stability: a comparison between two first
order reductions

In [14] we performed long-term stability tests to check
that the interpolation process did not introduce unwanted
growth of the error. There we used M � a � � � 0 and
had only the spherical inner patch and the cylindrical
-11
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FIG. 8 (color online). This figure illustrates the importance of
artificial dissipation when using overlapping grids. The discrete
L2 norm of the error on the main grid at three different resolution
for M � a � � � 0. For this test second order accurate opera-
tors, satisfying summation by parts on each grid, were used, but
no artificial dissipation was added. The Courant factor is set to 1.
The domains and coarsest resolutions are: �0; 10� 	 ��10; 10�,
80	 160 for the main grid; �1; 3� 	 �0; :�, 40	 120 for the
inner spherical grid; �8; 14� 	 �0; :�, 120	 120 for the outer
spherical grid. The lack of stability is evident. On the other hand,
as shown in the inset, when artificial dissipation is added to the
overlapping grids scheme (, � 0:02) stability is restored.
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patch. Here we repeat the same test, but with nontrivial
values for the black hole mass and spin. Interestingly, this
test revealed that the approximation for the initial-
boundary value problem for the reduction (7)–(9), which
we will refer to as T reduction from now on, suffers from
exponential growth of the error whenever the domain con-
tains a region in which the system is only strongly hyper-
bolic. These errors are concentrated near the excision
region and, at the resolutions that we typically use, become
evident only after about a hundred crossing times.

To exclude the possibility of the overlapping grid
method being responsible for this growth, we eliminated
all grids, except the inner one. The growth was still there.
Furthermore, the growth was present also when the second
order accurate, energy conserving method for axisymmet-
ric systems developed in [14] and the modification of the
dissipative operator constructed in [35] were used.

We recall that the first order formulation (7)–(9) is
symmetric hyperbolic only outside the ergoregion (outside
the black hole in the nonrotating case). It is important to
realize that the use of the discrete energy method to obtain
stable discretization relies on the fact that the energy is a
positive definite quadratic form of the main variables. Not
having symmetric hyperbolicity on the entire domain, we
have no guarantee of obtaining a stable discretization.

This prompted us to investigate a different first order
reduction, which, unlike the T reduction, is symmetric
hyperbolic everywhere. The energy associated with the
124027
symmetrizer, however, is not conserved and therefore we
have no preferred way of discretizing the system. After
describing this alternative reduction we experimentally
compare the stability properties of the two formulations.

As in Sec. III we start with the wave equation around a
curved background

1�������
�g

p @��
�������
�g

p
g� @ �� �

dV
d�

� 0:

Using the ADM decomposition of the metric [36]

ds2 � g� dx
�dx 

� �%2dt2 � hij�dxi � �idt��dxj � �jdt� (58)

the wave equation becomes

@t

� ���
h

p

%
�@t�� �i@i��

�
� @i

� ���
h

p

%
��i@t�� �%2hij

� �i�j�@j��

�
� %

���
h

p dV
d�

;

where h � det�hij�.
We introduce the auxiliary variables % � ��i@i��

@t��=% and di � @i�. Defining

%K �
1���
h

p @i�
���
h

p
�i� � @t ln

���
h

p
;

hij&kij � �
1���
h

p @i�
���
h

p
hki�

the wave equation can be written in the form

@�
@t

� �i@i�� %%; (59)

@%
@t

� �i@i%� %hij@jdi � %hij&kijdk � hij@i%dj

� %K%� %
dV
d�

; (60)

@di
@t

� �j@jdi � %@i%� @i�jdj � @i%%: (61)

We will refer to this first order reduction of the wave
equation as the % reduction. In the particular case of the
Kerr-Schild metric we have

H �
Mr

92
BL

;

% � �1� 2H��1=2;

�r � 2H%2 � 1� %2;

�8 � 0;
-12
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���
h

p
� det�hij�1=2 � %�192

BL sin8;

hrr � %2 �
a2sin28

92
BL

;

hr8 � 0;

h88 �
1

92
BL

:

The principal part is given by

An �
�n 0 0
0 �n �%hjn

0 �%ni �n0ij

0@ 1A;
where �n � �ini and hjn � hjini. The characteristic var-
iables and speeds in the direction n are

w��;n� � %�
�������
hnn

p
dn; �n � %

�������
hnn

p

w�0;n�
A � dA; �n

w�0;n�
� � �; �n

where A is a vector orthogonal to n. The inverse trans-
formation is

% �
1

2
�w��;n� � w��;n��;

dn �
1

2
�������
hnn

p �w��;n� � w��;n��;

dA � w�0;n�
A ;

� � w�0;n�
� :
0 1000 2000 3000 4000
t

10
-2

10
-1

10
0

10
1

10
2

10
3

||v
-u

ex
a|| h

T 40
T 80
T 160
Π 40
Π 80
Π 160

FIG. 9 (color online). Long-term stability test comparing two dif
resolutions using the second order accurate discretization. We used
k=h � 1:5, , � 0:02, M � 1, a � 0 (left) or a � 0:99 (right), and
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The most general symmetrizer is

H�t; ~x� �
( 0 0
0 ) 0
0 0 )hij

0@ 1A;
where ( � (�t; ~x�> 0 and ) � )�t; ~x�> 0. This reduc-
tion, unlike the T reduction, has an everywhere positive
definite symmetrizer (it is symmetric hyperbolic) if and
only if the t � const slices of spacetime are spacelike.

Using the regularity conditions (the fields �, %, dr are
even and d8 is odd) and the fact that on the axis @8% � 0
and %hij&8ijd8 � �%h88@8d8 we obtain the following
regularized equation on the axis:

@t% � �r@r%� %hrr@rdr � 2%h88@8d8 � %hij&rijdr

� hrr@r%dr � %K%� %
dV
d�

:

We compare single grid, long-term stability of the T and
% formulations using the same second order accurate finite
difference operator modified as in [14], where one sided
difference operators were used at the physical boundaries
and at the axis. The dissipative operator is modified ac-
cording to prescription given in [35] at the physical
boundaries and regularity is used at the axis. No special
grouping of variables is done for the % formulation. Long-
term stability tests were done using the forcing solution of
Sec. VII with n � 2. At the outer boundary r � rmax we
give data to the incoming characteristic variables of An. (In
the T formulation we actually give data to the incoming
characteristic variables of HAn. One can show that both
methods control the boundary term arising in the energy
estimate [37].)

Our tests revealed that the % formulation, despite not
being energy conserving, outperforms the T formulation in
terms of stability and long-term stability. Figure (9) clearly
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ferent reductions of the wave equation (T and %) at different
the following parameters: rmin � 1, rmax � 10, tmax � 5	 104,
n � 2.
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shows that if the excision boundary is placed well inside
the event horizon the T discretization is unstable, whereas
the % discretization is stable. Interestingly, in the highly
spinning case, the rate of growth of the error in the
T formulation does not seem to increase with resolution.
Note that by excising at rmin � M � 1, the region of lack
of symmetric hyperbolicity is actually larger in the non-
spinning case.

In an attempt to understand the different behavior of the
T and % reductions of the wave equation, in Appendix C
we perform a Laplace-Fourier analysis of an analogous
constant coefficient toy model initial-boundary value
problem.
VIII. CONCLUSION

The difficulties associated with the construction of a
stable scheme for the wave equation on a black hole
background are also present in simulations of fully non-
linear general relativistic systems. Therefore, the ability to
handle a scalar field propagating around a boosted spinning
black hole is one of the first necessary steps towards the
construction of a successful, long-term stable binary black
hole collision numerical code from which gravitational
wave templates can be extracted. In this work we showed
that the overlapping grids method is compatible with fourth
order accuracy, provided that sufficiently high order inter-
polation and artificial dissipation are used. We also noticed
that simple schemes at times work better than more com-
plicated techniques based on conservation of discrete
quantities (see, for example, the treatment of the axis in
Appendix B).

In Sec. VII B we observed that different hyperbolic first
order reductions, which have different levels of hyperbol-
icity (symmetric or only strongly hyperbolic) inside (or
near) the excision region, have different stability proper-
ties. This was unexpected since in the continuum limit the
treatment of the excision region, if contained inside the
black hole, should not affect the solution outside and there-
fore should not introduce any instabilities [38]. We noticed
that for the T formulation the behavior of the solution is
highly sensitive to the discretization (changing the way the
dissipative operator is modified at the inner boundary, for
example, can have noticeable effects on the growth rate of
the error). It would be interesting to combine the %- and
T formulations by using the former in the inner spheroidal
patch and the latter in the other patches, closely resembling
the ‘‘interpolating formulation’’ introduced in [39].

In this work, as in [14], we only considered fully first
order systems. Recently, second order in space systems
have generated more interest, both at the continuum and
discrete level [40–48]. We intend to apply the overlapping
grid method to such systems and, most importantly, to the
fully nonlinear dynamical case, in which nontrivial issues
arise. Unlike in the toy model cases that we have inves-
tigated so far, in the nonlinear case one has to face the
124027
problem of tracking a suitable outflow surface containing
the black hole singularity and the dynamical generation of
a grid adapted to this surface. We are currently working on
a number of related points.

Overlapping grids represent possibly the simplest and
most flexible technique capable of accurately handling
smooth and time dependent boundaries within finite differ-
encing. It is our hope that it will become a useful tool for
the binary black hole problem.
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APPENDIX A: MODIFICATION OF THE 4TH
ORDER ACCURATE OPERATOR

The fourth order accurate centered difference operator is
given by

Dui � ��ui�2 � 8ui�1 � 8ui�1 � ui�2�=�12h�:

When no boundaries are present (or if the grid functions are
periodic), we have

�u;Dv�h � ��Du; v�h; (A1)

where �u; v�h � h
P
jujvj. In [21] it is shown that, by

appropriately modifying the difference operator and the
scalar product near and at the boundary, one can recover
the summation by parts rule [49]

�u;Dv�h � ��Du; v�h � ujvjj
N
0 : (A2)

We are interested in a globally fourth order accurate
scheme. For this purpose one could use a sixth order
accurate operator at the interior with a third order accurate
modification near the boundaries, or a fourth order accurate
operator in the interior with a third order accurate modifi-
cation near the boundaries. Whereas the first operator
satisfies the summation by parts rule with respect to a
diagonal scalar product, the second one requires a non-
diagonal scalar product

�u; v�h � h
XN
i;j�0

uivj,ij: (A3)

Since the global accuracy is the same, in this work we
choose the second option as it involves a smaller stencil
and therefore requires fewer computational resources. Its
modification near the boundary is given by
-14
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Dui �
1

h

X6
j�0

dijuj; i � 0; . . . ; 4; (A4)

Dui �
1

h

X6
j�0

�dN�i;juN�j; i � N � 4; . . . ; N; (A5)

where

d00 � �11=6;

d01 � 3;

d02 � �3=2;

d03 � 1=3;

d04 � 0;

d05 � 0;

d06 � 0;

d10 � �24��779 042 810 827 742 869

� 104 535 124 033 147
����������������������
26 116 897

p
�=f1;

d11 � �1=6��176 530 817 412 806 109 689

� 29 768 274 816 875 927
����������������������
26 116 897

p
�=f1;

d12 � 343��171 079 116 122 226 871

� 27 975 630 462 649
����������������������
26 116 897

p
�=f1;

d13 � �3=2��7 475 554 291 248 533 227

� 1 648 464 218 793 925
����������������������
26 116 897

p
�=f1;

d14 � 1=3��2 383 792 768 180 030 915

� 1 179 620 587 812 973
����������������������
26 116 897

p
�=f1;
124027
d15 � �1232��115 724 529 581 315

� 37 280 576 429
����������������������
26 116 897

p
�=f1;

d16 � 0;

d20 � �12��380 966 843� 86 315
����������������������
26 116 897

p
�=f2;

d21 � 1=3�5 024 933 015� 2 010 631
����������������������
26 116 897

p
�=f2;

d22 � �231=2��431 968 921� 86 711
����������������������
26 116 897

p
�=f2;

d23 � ��65 931 742 559� 12 256 337
����������������������
26 116 897

p
�=f2;

d24 � �1=6��50 597 298 167

� 9 716 873
����������������������
26 116 897

p
�=f2;

d25 � �88��15 453 061� 2911
����������������������
26 116 897

p
�=f2;

d26 � 0;

d30 � 48��56 020 909 845 192 541

� 9 790 180 507 043
����������������������
26 116 897

p
�=f1;

d31 � 1=6��9 918 249 049 237 586 011

� 1 463 702 013 196 501
����������������������
26 116 897

p
�=f1;

d32 � �13��4 130 451 756 851 441 723

� 664 278 707 201 077
����������������������
26 116 897

p
�=f1;

d33 � 3=2��2 693 710 8467 782 666 617

� 5 169 063 172 799 767
����������������������
26 116 897

p
�=f1;

d34 � �1=3�6 548 308 508 012 371 315

� 3 968 886 380 989 379
����������������������
26 116 897

p
�=f1;
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d35 � 88��91 337 851 897 923 397

� 19 696 768 305 507
����������������������
26 116 897

p
�=f1;

d36 � 242��120 683� 15
����������������������
26 116 897

p
�=f3;

d40 � 264��120 683� 15
����������������������
26 116 897

p
�=f3;

d41 � 1=3��43 118 111� 23 357
����������������������
26 116 897

p
�=f3;

d42 � �47=2��28 770 085� 2259
����������������������
26 116 897

p
�=f3;

d43 � �3�1 003 619 433� 11 777
����������������������
26 116 897

p
�=f3;

d44 � �11=6��384 168 269� 65 747
����������������������
26 116 897

p
�=f3;

d45 � 22�87 290 207� 10 221
����������������������
26 116 897

p
�=f3;

d46 � �66�3 692 405� 419
����������������������
26 116 897

p
�=f3;

and

f1 � �56 764 003 702 447 356 523

� 8 154 993 476 273 221
����������������������
26 116 897

p
;

f2 � �55 804 550 303� 9 650 225
����������������������
26 116 897

p
;

f3 � 3 262 210 757� 271 861
����������������������
26 116 897

p
:

The expression for the ,ij coefficients can be found in
[21], where stability proofs for linear hyperbolic problems
without corners can be found.
APPENDIX B: HIGHER ORDER ACCURATE
DISCRETIZATIONS NEAR THE AXIS OF

SYMMETRY

To illustrate the difficulties that arise with higher order
discretizations of axisymmetric systems we consider the
polar wave equation written in first order form

@tT �
1

9
@9�9P� (B1)
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@tP � @9T; (B2)

where Pj9�0 � 0. This system admits the following con-
served energy:

E �
Z 9max

0
�T2 � P2�9d9 (B3)

in the sense that its time derivative gives only boundary
contributions

dE
dt

� 2�9TP�j9max
: (B4)

From the vanishing of P at 9 � 0 we have that

lim
9!0

1

9
@9�9P� � 2@9P: (B5)

Hence we consider the following semidiscrete approxima-
tion

d
dt
T0 � 2�DP�0; (B6)

d
dt
Ti �

1

9i
�D9P�i; i � 1; . . . ; N; (B7)

d
dt
Pi � �DT�i; i � 1; . . . ; N; (B8)

and discrete energy

E �
XN
i�1

�T2
i � P2

i �9i,ih� %T2
0h

2: (B9)

Let us assume that D is a finite difference operator satisfy-
ing the summation by parts rule (A2) with respect to a
diagonal scalar product. The time derivative of (B9) gives

d
dt
E � 2

XN
i�1

�TiD�9P�i � Pi9iDTi�,ih� 4%T0DP0h
2

� 2TN9NPN � 2T0�2%DP0h� ,0D�9P�0�h:

In order to have an energy estimate consistent with the one
of the continuum we need to ensure that the last term
vanishes, i.e., the difference operator at the axis has to
satisfy

2%DP0h � ,0D�9P�0 (B10)

for some %. As was pointed out in [14], if a first order
accurate one sided difference operator is used on the axis,
then (B10) is satisfied for % � ,0=2 � 1=4.

Using Maple we were able to obtain a (nonunique)
locally second order accurate modification of the differ-
ence operator which leads to discrete energy conservation.
However, we had to exploit the regularity conditions at the
axis (P is odd and T and 9P are even functions of 9). The
semidiscrete system
-16
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FIG. 10 (color online). We compare the energy conserving
discretization (B11) with the simpler fourth order accurate one
based on regularity. We plot the discrete energy (B9) with % �
1=4 as a function of time. The grid consist of 200 grid points and
the domain is 0 
 9 
 20. We use 4th order Runge-Kutta with a
small Courant factor, �t=�9 � 1=10 to be close to the semi-
discrete approximation. We use initial data T � sin6�9� for 0 

9 
 : and zero elsewhere. The energy of the simpler approxi-
mation oscillates about the value of the energy of the energy
conserving scheme.
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d
dt
T0 � �3P1 � 4P2 � 3P3�=h; (B11)

d
dt
T1 �

1

91
��9P�2 � 2�9P�3�=�11h�;

d
dt
T2 �

1

92
��3�9P�1 � 11�9P�3 � 2�9P�4�=�16h�;

d
dt
T3 �

1

93
��6�9P�1 � 11�9P�2 � 16�9P�4

� 2�9P�5�=�26h�;

d
dt
Ti �

1

9i
D�9P�i i � 4; . . . ; N � 4;

d
dt
TN�3 � �8�9P�N�5 � 64�9P�N�4 � 59�9P�N�2

� 3�9P�N�=�98h�;

d
dt
TN�2 � �8�9P�N�4 � 59�9P�N�3 � 59�9P�N�1

� 8�9P�N�=�86h�;

d
dt
TN�1 � ��9P�N � �9P�N�2�=�2h�;

d
dt
TN � �3�9P�N�3 � 8�9P�N�2 � 59�9P�N�1

� 48�9P�N�=�34h�;

d
dt
P1 � ��3T0 � T2 � 2T3�=�11h�;

d
dt
P2 � ��6T0 � 3T1 � 11T3 � 2T4�=�16h�;

d
dt
P3 � �3T0 � 6T1 � 11T2 � 16T4 � 2T5�=�26h�;

d
dt
Pi � DTi i � 4; . . . ; N � 4;

d
dt
PN�3 � �8TN�5 � 64TN�4 � 59TN�2 � 3TN�=�98h�;

d
dt
PN�2 � �8TN�4 � 59TN�3 � 59TN�1 � 8TN�=�86h�;

d
dt
PN�1 � �TN � TN�2�=�2h�;

d
dt
PN � �3TN�3 � 8TN�2 � 59TN�1 � 48TN�=�34h�:

(B12)

where D is the standard fourth order accurate centered
approximation of @9, conserves the following discrete
energy

E �
XN
i�1

�T2
i � P2

i �9i,ih� T2
0,0h

2; (B13)

where , � f�1=8�; �11=8�; �2=3�; �13=12�; 1; . . . ; 1;
�49=48�; �43=48�; �59=48�; �17=48�g. We have
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d
dt
E � 2TN9NPN: (B14)

Numerical experiments done at high resolutions suggest
that the overall order of accuracy of the scheme is three.

We now compare this discretization with a fourth order
accurate approximation, obtained by simply exploiting the
regularity conditions of the fields. We use the approxima-
tion (B6)–(B8) where D is the standard centered fourth
order accurate finite difference operator, appropriately
modified at the outer boundary and use the fact that T
and 9P are symmetric across the axis. We see that the time
derivative of the discrete energy (B9) is

d
dt
E � 2TN9NPN �

1

6
�8T0P1 � 2T0P2 � 2T1P1�h

�
4%
6
T0��P2 � 8P1�h:

Clearly, there is no value of % that leads to cancellations of
the terms near the axis. Furthermore, if corrections of the
form T2

i h
2 or P2

i h
2 are added to the energy, products like

TiPi�2 or PiTi�2 appear in the estimate. Also, any mixed
product PiTjh2 would give rise to P2 and T2 terms. This
discretization does not conserve the energy (B9). In par-
ticular for % � 1=4 one is left with the axis terms

1

6
�T0P2 � 2T1P1�h: (B15)

Clearly, the fourth order accurate discretization based on
regularity conditions, although not energy conserving, is
-17
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FIG. 11 (color online). We compare the numerical errors of the
energy conserving discretization with the fourth order accurate
one. We use 50 grid points and the domain 0 
 9 
 5. The
Courant factor is �t=�9 � 1. We use the forcing solution
method with exact solution � � 9 sin9 sint and forcing term
F � � sint�sin9� 39 cos9�=9. The errors of the simpler fourth
order accurate approximation are clearly much smaller than
those of the energy conserving scheme.
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much simpler. The introduction of ghost zones makes it
numerical implementation trivial. Figure 10 illustrates
how, for a particular problem and with some particular
initial data, the energy of the fourth order accurate operator
oscillates about the value of the energy conserving scheme.

Furthermore, no long-term growth of the error was
observed with the simpler fourth order approximation. In
fact, our experiments indicate that, in general, the errors
are much smaller than with the energy conserving scheme
(B11). This is due to the lower order of local accuracy near
the axis of symmetry and is illustrated in Fig. 11.

In our overlapping grid code we adopted the simpler
fourth order accurate approximation near the axis.

APPENDIX C: LAPLACE-FOURIER ANALYSIS OF
TWO FIRST ORDER REDUCTIONS OF THE FIRST

ORDER WAVE EQUATION

Consider the wave equation around Minkowski in
Cartesian coordinates

)�
0 0@�0@ 02 � 0; (C1)

where )�
0 0 � diagf�1;�1;�1;�1g. Under the follow-

ing change of coordinates

t � t0; xi � x0i � �it0; (C2)

where �i are constant, the wave equation takes the form

@2t 2 � 2�i@t@i2� �0ij � �i�j�@i@j2: (C3)

We consider two different types of reductions: the
T reduction
124027
@t2 � T; (C4)

@tT � 2�i@iT � �0ij � �i�j�@idj; (C5)

@tdj � @jT; (C6)

and the % reduction

@t2 � �i@i2�%; (C7)

@t% � �i@i%� 0ij@idj; (C8)

@tdj � �i@idj � @j%: (C9)

Notice that the constraints Cj � dj � @j2 � 0, which are
introduced in the reduction process, propagate differently
in the two formulations. Whereas in the first case we have
@tCj � 0, in the second case we have @tCj � �i@iCj. In
both cases the 2 variable decouples from the system. We
will drop it in the analysis that follows.

The T reduction has the following symmetrizer:

T2 � �0ij � �i�j�didj (C10)

and characteristic speeds

0; �n � 1: (C11)

The % reduction has a simpler symmetrizer

%2 � 0ijdidj; (C12)

and the characteristic speeds are given by

�n; �n � 1: (C13)

Most importantly, whereas (C12) is positive definite for
any �i, (C10) is positive definite if and only if 0ij�i�j <
1. The last condition is equivalent to the requirement that
the vector field @t be timelike.

Assume �1 > 1 and consider the quarter space problem
x > 0 with periodic solutions in y and z and no boundary
conditions at x � 0. With the % reduction energy esti-
mates can be obtained in the outflow case using the energy
method. For the T formulation a Laplace-Fourier analysis
yields the following eigenvalue problem (a system of
ordinary differential equations in the variable x)

@xT � sd1;

��2
1 � 1�@xd1 � 2�1�s� i�A!

A�d1

� s�1��s� i�A!
A�2 �!A!

A�T:

If an eigenvalue with <�s�> 0 exists, then the initial-
boundary value problem is ill posed in any sense [21].
The eigenvalues are
-18
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.� � �1�s� i�A!
A�

�
������������������������������������������������������������������
�s� i�A!A�2 � ��2

1 � 1�!A!A
q

: (C14)

Because of the requirement that the solution belongs to
L2�0;�1�, we must discard those eigenvalues which have
positive real part. Since <�.��> 0 if <�s�> 0, the prob-
lem is not obviously ill posed.
124027
This analysis reinforces our suspicion that the observed
exponential frequency dependent growth is merely due to
the discretization. More work is needed to exactly establish
the cause of the growth. It is possible that applying the
Laplace transform method to the semidiscrete problem
may shed some light.
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