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We present three-dimensional simulations of Einstein’s equations implementing a symmetric hyper-
bolic system of equations with dynamical lapse. The numerical implementation makes use of
techniques that guarantee linear numerical stability for the associated initial-boundary value problem.
The code is first tested with a gauge wave solution, where rather larger amplitudes and for significantly
longer times are obtained with respect to other state of the art implementations. Additionally, by
minimizing a suitably defined energy for the constraints in terms of free constraint-functions in the
formulation one can dynamically single out preferred values of these functions for the problem at hand.
We apply the technique to fully three-dimensional simulations of a stationary black hole spacetime
with excision of the singularity, considerably extending the lifetime of the simulations.
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L. INTRODUCTION

The construction of an accurate and stable numerical
implementation of Einstein’s equations in settings such as
three-dimensional binary black hole collisions represents
a major challenge. Indeed, although significant progress
has been achieved in the last few years (see [1] and
references therein), the goal remains elusive. In practice,
numerical or continuum instabilities often arise, render-
ing particular simulations of little use after some time, or
at high enough resolutions. Because of the complicated
set of equations one is dealing with, coupled to the often
scarce computational resources, tracking down the source
of problems is usually difficult. Faced with this situation,
a possible strategy is to make use of techniques that
systematically control different aspects of the problem
under consideration. One possibility for such a strategy
can be achieved by proceeding along the following lines:

First, as has been emphasized in a number of works [2],
by choosing a well-posed initial-boundary value problem
(IBVP), which is a necessary condition for a numerically
stable implementation (see, for example, [3,4]). A sym-
metric hyperbolic system with maximally dissipative
boundary conditions is an example of a system that de-
fines such a well-posed problem. Furthermore, the bound-
ary conditions should not only define a well-posed initial
value problem but also must conform to the physical
situation in mind. For instance, they should preserve the
constraints and have minimal spurious influence on the
solution.

Second, by translating the previous analytically
framed considerations into the numerical arena. That is,
by constructing a numerically stable scheme for the IBVP
under consideration. One way of doing so is by construct-
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ing difference operators and imposing the discrete bound-
ary conditions in a way such that the steps followed at the
continuum to show well posedness can be reproduced at
the discrete level [4-6].

Third, by implementing the equations so that spurious
growth in time of the solution is removed or minimized.
A numerically stable implementation need not free the
simulation from errors that at fixed resolution grow fast in
time (although at fixed time they would go away with
resolution). There are a number of possible alternatives
for this effect to be minimized.

One option is to achieve semidiscrete or discrete strict
stability, i.e., given a sharp energy estimate at the con-
tinuum, to discretize in a way such that the estimate also
holds at the semidiscrete or discrete levels [5,7]. In this
way, growth in the numerical solution that is not called
for by the continuum system is ruled out. In this strategy
one must count with a sharp energy estimate for the
problem at hand, such as those of [§-10].

An alternative and/or complementary way is to con-
sider the addition of a small amount of artificial dissipa-
tion (in a way that does not spoil the available discrete
energy estimates and numerical stability). Sometimes this
is enough to partially or completely rule out errors grow-
ing fast in time, and in addition it helps to control high
frequency modes.

There are other cases, in which a sharp estimate is not
available, and for which the addition of some artificial
dissipation does not rule out undesired growth in the
solution either. This happens quite often in evolutions of
Einstein’s equations in the strong field regime. One pos-
sibility in such a case is to realize that even though a
sharp energy estimate for the main evolution system
might not be available, an ideal one for the subsidiary
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system that describes how the constraints propagate is
trivially obtained [11]. Namely, at the continuum one
would like the constraints when perturbed to (for ex-
ample) remain constant as a function of time, or decay
to zero [12]. Similarly, at the discrete level one may want
constraint violations to remain close to their initial, dis-
cretization value. Once some desired estimate for the
constraints is chosen, one can enforce it in a number of
ways. One of them is to dynamically redefine the equa-
tions during evolution off of the constraints surface [11].

In this paper we present results obtained with a fully
nonlinear code that evolves Einstein’s equations in a
three-dimensional setting, analyzing implementations
of techniques that ensure some of the desired properties
just discussed. The particular formulation of the equa-
tions that we use is a symmetric hyperbolic one with a
dynamical gauge condition (more precisely, a slight gen-
eralization of the Bona-Masso slicing conditions) pre-
sented in Ref. [13], and summarized in Section II. In
Section III details on how free constraint-functions in the
formulation can be dynamically adjusted to ensure mini-
mal growth of some energy, or norm, associated with
constraints, is discussed in the context of the symmetric
hyperbolic formulation here used. Section IV briefly
summarizes the numerical techniques used in this paper,
already presented in Ref. [6], and the details of the test-
beds here studied. One of these test-beds is the study of a
periodic gauge wave, presented in Section V. There we
show that the use of a symmetric hyperbolic formulation
and a small amount of artificial dissipation suffices to
evolve this solution with rather large amplitudes and for
long times. The other test-bed that we study is a non-
spinning, stationary black hole with excision of the sin-
gularity and dynamic minimization of the constraints’
growth. A detailed analysis is presented in Section VI,
discussing several issues relevant to the constraint mini-
mization technique and the results of fully three-
dimensional simulations whose lifetime is considerably
extended by making use of this technique. Section VII
summarizes and discusses the main lessons of this work
and points out possible extensions of it.

IL. THE SYMMETRIC HYPERBOLIC
FORMULATION USED

In this paper we use the symmetric hyperbolic formu-
lation of the Einstein equations admitting a dynamical
lapse introduced in [13]. This system has 34 variables,
including: the three metric g;;, the extrinsic curvature
K;;, and the lapse N. Further, variables d;;; and A; are
constructed from the spatial derivatives of g;; and N,
respectively, and introduced as independent variables to
make the system first order in space. When all constraints
are satisfied these variables satisfy dy;; = d,g;; and A; =
N~'9;N. The evolution equations in this formulation are
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d0gij = —2K;j, (1)

1
80Kij = R” - NVIVJN - ZKIaK}l + KKI]

+y(x#)g;;C + L(x*) g™ Coiijypr )
dodyij = —20,K;; — 2A4K;; + n(xt)g (3
doN = —F(N, K, x*) + S(x*) “4)
OF(N,K,x*) 1 9F(N, K, x")
aoAi - _TAl - N Ta,K
1 9F(N, K, x1)
N e + E(x*)C,, )

where we define 9, = N~1(d, — L) . The Ricci tensor in
Eq. (2) is written as

1
R;; = Egab(_aadbij + 9.diijp + 9diaply) — 9idjyan)

1 1
+ 5 dPdja + 5 (d = 2001 ~ TR,
where b; = dy,;;8", dy = dy;;8", and
1
kK —
I =2

Finally, the second order derivatives of N that appear in
Eq. (2) are calculated as

gkl(2d(ij)z - dlij)-

1

The slicing condition, Eq. (4), contains two functions,
F(N, K, x*) and S(x*). The function F may be any func-
tion of the lapse, the trace of the extrinsic curvature, K =
g"K,;, and the spacetime coordinates, with the condition
that 9F /8K > 0. The function S is a gauge source func-
tion, and is specified a priori but in an arbitrary way as a
function only of the spacetime coordinates. This slicing is
a generalization of the Bona-Masso slicing conditions,
obtained by setting S =0 and F(N, K, x*) = f(N)K.
Moreover, choosing S = 0 and f = N gives the harmonic
time slicing condition, or a generalized harmonic condi-
tion if § # 0. The time-harmonic slicing condition, or its
generalized form, is the choice used for all runs in this
paper. Finally, the shift 8/(x*) must also be specified a
priori as an arbitrary function of spacetime.

The Einstein equations are a constrained system, and
the evolution equations here considered are not only sub-
ject to the physical constraints, the Hamiltonian and
momentum ones, but also nonphysical constraints that

come from introducing first-order variables. The
Hamiltonian constraint is
C=(R— K, K"+ K?)/2, 6)

where R = gin,-_,- and the Ricci tensor given by Eq. (6).
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The momentum constraints, C; = V?K,; — V,K, are

1
—d9K,,.

1
Ci = g"(9,Kp; — 9;K,p) + z(dk — 20N Ky, + 5 di
(N
Finally, the nonphysical constraints, C,, Cy;; and Cyj,
are defined as

CAi == Ai - NﬁlaiN,
Crij = diij = 9x8ij»
Cuij = Ipdpij-

The Einstein equations resulting from the 3 + 1
Arnowitt-Deser-Misner (ADM) decomposition are only
weakly hyperbolic. However, it is possible to manipulate
the principal part of the equations by adding the con-
straints in specific combinations to the evolution equa-
tions in order to obtain a strongly or symmetric
hyperbolic system of equations [14]. In the system here
considered, the constraints are added to the right-hand
side of Egs. (1)-(5), and the spacetime constraint-
functions {y, , m, x, £} are introduced as multiplicative
factors to the constraints. Requiring the evolution system
to be symmetric hyperbolic imposes algebraic conditions
on these factors, as discussed below, and they are not
treated as completely independent. Typically these factors
are taken to be constant parameters, however this re-
striction is actually not needed for strong or symmetric
hyperbolicity of the system to hold. Moreover, we wish to
exploit some freedom in choosing these constraint-
functions to minimize the effect of constraint violating
modes that may appear in the solution [11]. Thus, we
choose the factors to be functions of time but constant
in space (future work will concentrate in allowing for
space dependence): {y(1), (1), n(¢r), x(2), £(1)}. Therefore,
here we will refer to these factors as constraint-functions
rather than parameters.

The characteristic speeds of the system are 8in;, *N +
Bin;, *N/A; + Bin;, with

AL = 204,

1
/\221+X—§(1+§)77+7(2—77+2X),

1 1

1
Ay = _ZX_§(3§_ 1)77_55-

and Oeff = (8F/8K)/(2N)

There are two strongly hyperbolic multiple constraint-
function families with A, = 1 and A; = 1, which corre-
spond to propagation speeds along the light cone and the
hypersurface normal. One such family has three free
constraint-functions {y(z), £(¢), n(¢)}:
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Yy # Ty
_ 0+ Dn—2y2—m)
2(1 + 2y)

11
¢=—5x—;0-Dn-2

A second family has only two free constraint-functions

{£@), x(0)}:

1 1 1 1
= —— :_2’ = — _ + — ——.
4 > {n & XT3
In this paper we set { = —1 to simplify the calculation

of the characteristic variables needed to impose maxi-
mally dissipative boundary conditions. This gives a sym-
metric hyperbolic system with one free constraint-
function x(z),

Y="3
{=-1

Single constraint-function system { n = 2 ®)
i=
x#0

and another symmetric system with two varying
constraint-functions {n(z), y(r) # —1/2}:

[=-1
— _y2=n)
X ="'tz
Two constraint-function system{ ¢ = =4+ 5 —2
Y+ =3
. ©)

One can show that these families not only are strongly
hyperbolic as shown in [13] but, as mentioned above, also
symmetric hyperbolic [15].

III. DYNAMIC CONTROL OF THE
CONSTRAINTS’ GROWTH

The formulation of the Einstein equations summarized
in the previous section is made symmetric hyperbolic by
adding constraints to the evolution equations multiplied
by the time-dependent constraint-functions. Requiring
that the propagation speeds be along the light cones or t =
constant hypersurfaces normal, and a further simplifica-
tion obtained by setting { = —1, results in two families
of equations. The first has a single free constraint-
function, y, and the second has two constraint-functions,
{7, n}. Several papers have been presented showing that
the long-term stability of 3D numerical simulations is
extremely sensitive to these constraint-functions, even if
symmetric hyperbolicity is guaranteed independently of
the values these constraint-functions take [16]. Recently,
in [11] a method to dynamically choose these constraint-
functions by minimizing the constraint growth during
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the evolution has been presented. We here include a brief
summary of this method, and discuss its particular ap-
plication to the black hole runs presented later in this
paper.

Consider a system of hyperbolic equations with con-
straint terms C, written schematically,

g = AP 1, D)ayu, + By, 1, %) + > pacCelu, 9;u),
b c

(10)

where u,, B,, and C, are vector valued functions, and w
is a matrix (generally not square) that is a function of the
spacetime. (Note that in this section C, represents a
vector function of general constraint variables, and not
specifically the momentum constraint introduced in the
previous section.) Here the indices {a, b, c} range over the
size of each vector or matrix function, while the indices
{i, j, k} will label points on a discrete grid. We then define
an energy or norm of the discrete constraint variables,

e.g.,
1

2n.n.n ZZCC(Z)Q’

xlhy e 7 K

N (1) =

Y

where n,, ny, n. are the number of points in the x,y, z
directions, and where we have omitted the grid indices
{i, J, k} to simplify the notation. The time derivative of the
norm can be calculated using Eq. (10),

N = Jhom 4 Tr(uI#) (12)

and therefore can be known in closed form provided the
matrix valued sums

om C, oC, aC,
Ihom = Zznxnynz[aub * Z dDyu, Dk}

ik @b %
x [Z(Achuh) + B,,} (13)
C aC aC
Ik = « “ “ p.lc, (14
be %gnxnynz[aub gaDkub k:| e (19

are computed during evolution, where D; is the discrete
derivative approximation to 9;. We then use the depen-
dence of the energy growth on the free constraint-
functions to achieve some desired behavior for the con-
straints, i.e., solving Eq. (12) for w,.. For example, if we
choose [17]

N = —aN, a>0, (15)

any violation of the constraints will decay exponentially
N (t+ Ar) = N(t)e a4, (16)

As discussed in [11], one good option among many others
seems to be choosing a tolerance T value for the norm of
the constraints that is close to its initial, discretization
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value, and solving for u,. such that the constraints decay
to this tolerance value after a given relaxation time. This
can be done by adopting an a such that after time n, A ¢
the constraints have the value T. Replacing N (z + At) by
T in Eq. (16) and solving for a gives
1 T

—— In[ ——= .
n, At <.’N (t))

a(t) = — (17)

If one then solves

N = —aN = Jhom + trace(u X I#) (18)

for w, with a given by Eq. (17), the value of the norm
N(t + n, At) should be T, independent of its initial
value.

In principle, Eq. (18) has nonunique solutions, since the
equation is scalar and u,. is a matrix. As discussed in
Section VI B, this nonuniqueness is sometimes crucial for
making this a practical method for controlling growth in
the constraints.

We also note that the technique discussed in this sec-
tion can be implemented without affecting symmetric
hyperbolicity [11].

Finally, we now describe how 2\ is calculated for the
symmetric hyperbolic families of the Einstein equations
used in this paper. The time derivative of the energy for
the constraints is

N =Tm 4 3y TX + wI° + yI7 + €15 + 17, (19)

For the single-function family, Eq. (8),

= zrhomw(jX—%:rw)—éﬁ ~ 4o

That is,
N = Jhom 4 yJx, (20)
with
prom — Jhom 27— 7€ 4 o]
=1Ly
2

The evaluation of /N as a function of X is a two-step
process. In order to compute the quantities J"™ and JX,
so as to obtain the dependence of the time derivative of
the energy in terms of y, Eq. (20), two evaluations of N
are required to extract the individual contributions. For
example, the homogeneous term is obtained performing a
set of evaluations with y = 0,

Thom = (= 0),

Once this term is known, JX is obtained doing a set of
evaluations with an arbitrary but nonvanishing y = y,,
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_ N(xp) = Irom
X0 .

This involves at each step an evaluation of the right-hand
side of the evolution equations and of the spatial deriva-
tives of such right-hand side, and evaluation of the de-
rivatives of the constraints with respect to the main
variables and with respect to their spatial derivatives
(all of this at each grid point). The constraints, and there-
fore their derivatives, do not depend on the constraint-
functions. Therefore they need to be computed only once
at any given time.

Similarly for the two-function family (9), the time
derivative of the norm of the constraints is

Jx

N = Jhom 4y JX + y I + I 1)
with [cf. Eq. (9)]
)
1+2y

and
Jhom — —¢J¢€ —27°,

. 1~
X = JX —_J®
I I 2],
Ir=17,

Im =17+ 7

At any given time, four sets of evaluations are needed
to numerically compute the quantities 7™, JX, J7, I" in
Eq. (21). For example, as in the single-constraint-function
case, the homogeneous term is obtained through a set of
evaluations with n = 0 = vy,

'Ihom = Nc(n = 0: 7 = 0)

Once this is known, J” is obtained doing a set of evalu-
ations with an arbitrary but nonvanishing n = 7., and
y =0,
N.(1, y = 0) — Itom
7n_Nelnoy =0 _ 22)
Mo

Two more sets of evaluations are needed in order to
construct J” and J7?: given vy, and 7y, arbitrary but
different, y; # 7,, it is straightforward to see that

_ (y2 +27192IN:(y1) = (v2 + 27172)Ne(y1)
2y172(y1 = 72)

J7

5

(23)

_ (1 +2y)( + 2y,)
4y1y2(y1 — v2)

Ix [¥2Nc(y1) = 1N (y2)]

(24)

The quantities J7, JX, I” thus obtained are indepen-
dent of what values 71, y;, ¥, are used in Eqgs. (22)—(24).
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We make use of this fact to perform a nontrivial test of
self-consistency in our simulations. Namely, during evo-
lution we construct these quantities J7, JX, I” using, at
each time step, several different values of 7, v, v,, and
we check that the result is, indeed, independent of that
choice. We proceed in a similar way with the single-
constraint-function family.

IV. NUMERICAL METHODS AND
TEST PROBLEMS

In this section we introduce the numerical methods that
we use, and then outline two physical problems, the gauge
wave and a Schwarzschild black hole, that we will ana-
lyze in this paper. These spacetimes will be used in our
numerical implementation of Einstein equations written
in the first-order form detailed in Section II—Eqgs. (1)—
5).

A. Numerical method

We use numerical techniques based on the energy
method for hyperbolic equations [4]. This method allows
one to identify numerically stable discretizations by con-
struction for initial-boundary value problems for linear,
symmetric hyperbolic systems. While we focus here on
nonlinear Einstein’s equations, we note that some numeri-
cal instabilities in the Einstein system are also observed
in the linear regime. Methods that are known to be
numerically stable for the linearized Einstein equations
thus function both as a foundation and guide for moving
to the nonlinear problem. Our numerical scheme uses
second-order spatial difference operators that satisfy
summation by parts, as well as an extension of the
standard Kreiss-Oliger dissipation operator that takes
into account the presence of (inner and outer) boundaries.
This operator, which we call Q,, is added to the right-
hand side of the evolution equations, iz = (...) + Q, with
a free (non-negative) multiplicative parameter o. Paper
[6] describes in detail this operator; here to fix ideas we
include it for the nonexcision case. It is, on each direction,

Qo= —20AxD? uy,

Qquy =—oAx(D% —2D D )u,

Qqu;=—0o(Ax)*(D,D_)u;, fori=2,..,.N—2,
Quuy_1=—0Ax(D*> —2D D )uy_,,

Quuy = —20AxD? uy. (25)

Maximally dissipative boundary conditions are im-
posed numerically through projections that are orthogo-
nal in the linear case. We use third-order Runge-Kutta to
integrate the equations in time. The computational do-
main consists of a uniform Cartesian grid (Ax = Ay =
Az = A). The black hole simulations employ a cubical
inner boundary to excise the singularity from the com-
putational domain. Unless otherwise stated, the simula-
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tions presented throughout the paper use a dissipative
parameter o = 0.03 and Courant factor A = 0.5. This
choice for o is motivated by the fact that, at least for
the second-order wave equation written in first-order
form, it gives the maximum Courant factor allowed by
von-Neumann stability (see [6]). For additional informa-
tion on our numerical scheme see [6].

Boundary conditions are specified via maximally dis-
sipative boundary conditions where needed. These are
introduced by finding all the incoming modes and setting
the time derivative of these to zero. Maximally dissipative
boundary conditions can be written in the form

ut =Lu" + g(t, x*), (26)

where L is “sufficiently small,” such that an energy
estimate for the IBVP can be derived for symmetric
hyperbolic systems in more than one dimension (see,
e.g., [18]). The function g is an a priori but arbitrary
function of the spacetime coordinates in the boundary
and time. The combination of maximally dissipative
boundary conditions and a symmetric hyperbolic evolu-
tion system define a well-posed initial-boundary value
problem. However, these boundary conditions in general
are not constraint-preserving. For the evolutions pre-
sented here, setting the time derivative of all the incom-
ing modes to zero is consistent with preserving the
constraints at the boundary because the exact solution is
known. However, this will not hold in general, and future
work will concentrate on evolutions with constraint-
preserving boundary conditions.

B. Gauge waves

We first test our numerical method by studying a gauge
wave defined by

ds? = Amm0l(—df? + dx?) + dy? + dz?,  (27)

which corresponds to a coordinate transformation in the
(x, 7) plane, of flat spacetime. The analytic solution for the
gauge wave is obtained by setting the gauge source func-
tion to zero, S(x#) = 0, in Eq. (5): —N?K = 9,N and the
shift B/ = 0. We adopt periodic boundary conditions to
simplify the analysis by eliminating possible boundary
effects.

C. Black holes

We then examine in some detail tests with
Schwarzschild spacetime, which describes a static non-
spinning black hole. The singularity inside the black hole
is excised, which restricts the possible slicings (surfaces
of constant time) that we consider to those that smoothly
penetrate the black hole horizon, such that we can place
an inner boundary inside of the horizon. In the present
work we consider a Schwarzschild black hole in Kerr-
Schild (KS)—or ingoing Eddington-Finkelstein—coor-
dinates. In these coordinates, the metric of the spacetime
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is given by the line element

ds? = —N2dP* + g;;(dxi + Bidi)(dx/ + Bidr), (28)

where

N r_\2 29
_<r+2m> ’ 29

i 2m
B _r+2mx’ (30)

2m xix/
P S 31
8ij ij 2 (31)

The gauge source function S is read off from the exact
solution.

V. GAUGE WAVE SIMULATIONS

The gauge wave is a simple, nontrivial numerical test
problem, as it is free of boundaries, the amplitude of the
fields can be controlled by a single parameter, and it does
not lead to any singularity. This solution is used to com-
pare the performance of different implementations of
Einstein’s equations [19]. Despite its simplicity at the
analytical level, this test illustrates the challenges asso-
ciated with the numerical implementation of Einstein’s
equations [19-22]. In particular, it is often observed that
for amplitudes A = 0.01, the numerical solutions display
exponential growth and loss of convergence.

Since in the cases discussed in this paper the analytical
solution is known, the convergence factor can be defined
as

C(F) = ”FA - Fanalytical”Z/”FA/Z - Fanalytical||2y (32)

with F the variable under consideration, and F, and
Fanalyticar 1ts numerical (at resolution A) and analytical
solutions, respectively.

In the present context, the gauge wave is used for two
purposes. First, it allows us to probe the stability of our
numerical method, showing its advantages and present
limitations. Second, it sheds light on possible sources of
instabilities or spurious growth often encountered in
these tests. In particular, we are able to establish that
constraint violations, if any, grow quite slowly, allowing
one to accurately follow the system for thousands of
crossing times, even for large values of the amplitude
parameter A. We have ran our simulations for a wide range
of values for A, observing qualitatively the same results.

Note that one can readily show that the constraints, C,
C;, and C;jy;, for the gauge wave in this formulation are
satisfied to round-off level if the variables depend solely
on (£, x). That C, C; are satisfied follows directly from the
fact that g; = [f(x) — 1]6:8% + m;;, K;; = g(x)8:8%,
dijx = h(x)8%8%6%, with {g(x), f(x), h(x)} arbitrary func-
tions. Note that: (i) at any 7 = const hypersurface , g;;
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describes a flat metric and so R;; =0 analytically.
Furthermore, at the numerical level all terms in R;;
cancel, including those describing the truncation errors
in the derivatives. (i) K* — K;;K" and K;; — g;;K are
zero algebraically and so, coupled to (i), C, C; are sat-
isfied numerically to round-off level. (iii) C;;y is defined
by the commutator of two derivatives; since the only
nontrivial components are in the x direction, the only
surviving one is C,,,, = 9[,d )y, Which is trivially satis-
fied. Consequently, the value of the constraint-function
multiplying them in the right-hand side of the evolution
equations does not play a significant role. This observa-
tion holds for the variables depending solely on (¢, x), as
mentioned, this is indeed the case throughout our runs.
Therefore, for these tests we adopt the two-constraint-
function family formulation with fixed values for the
constraint-functions: n = y = 0.

We concentrate on two nonlinear cases with relatively
large amplitudes: A = 0.5 and A = 1. For example, when
A = 0.5, g, ranges over the interval [0.6, 1.7], and over
[0.37, 2.72] when A = 1. In [7], an independent analysis
and code for the linear equations around the gauge wave
was presented, illustrating the tendency of the numerical
solution to grow exponentially unless some small amount
of dissipation is added to the right-hand side.

The computational domain is chosen to be [—1, 1], and
is represented on a uniform grid with spacing A =
2/(N — 1). The gauge wave is really a one-dimensional
problem, with a nontrivial dependence only on (x, ¢). The
solution is constant in the (y, z) coordinates, thus only a
few points are needed to represent the field in these
directions. We therefore use n, = (80p + 1) points with
p = 1,2, 41in the x direction, and five points in each of the
(v, z) directions (though tests were performed with uni-
form grids, equally spaced in all directions obtaining
exactly the same results, as expected). In the gauge
wave tests, we chose a Courant factor of % so as to make
a more direct comparison with similar tests presented in
the literature (see for instance [19-22]).

1. Amplitude A = 0.5.—Figures 1-3 illustrate our re-
sults for the gauge wave with amplitude A = 0.5. Figure 1
shows for three different resolutions the logarithm of the
energy for the constraints as a function of time, for 1250
crossing times. The lowest resolution shows a slowly
growing behavior, but this is considerably diminished as
better refined ones are considered. Note that even for the
coarsest resolution, the energy remains smaller than
1076,

In these type of simulations, phase differences between
the numerical and exact solutions typically cause the
error to vary in an oscillatory way: the error going back
to a small value after some time, when the numerical
solution achieves a phase difference of 27 relative to the
exact one [3]. To give a phase-independent indication of
the errors with respect to the exact solution, in Fig. 2 we
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FIG. 1 (color online). This figure shows the logarithm of the
energy for the constraints, in simulations of the gauge wave
with amplitude A = 0.5. Three different resolutions are used,
the coarsest run exhibits a slow growth which is negligible at
higher resolutions.

show the relative error in the maximum attained by g,,,
compared to the exact value. A slow growth is observed.
In particular, the error in the maximum of the function is
=~ (.07 even after 1250 crossing times for the finest dis-
cretization. Figure 2 also explicitly shows that the amount
of dissipation is very small, as the amplitude is not
damped even in very long runs. The crossing of lines in
Fig. 2 does not imply lack of convergence, since one is not
necessarily comparing the field at the same points. (For
an explicit convergence illustration of the solution itself,
we present some results for the more stringent A = 1
case.) Figure 1 explicitly shows convergence of the con-
straints to zero, while Fig. 3 displays the associated con-
vergence factors for those simulations. The latter are
obtained by dividing the energy for different resolutions

0 T T T T T . . ‘ i
E Vs = ~vvm\\w/,\wy\wmmw«~ =
- , Wi heests ,,,v-
< % 2 ERS _
o [T A
= | :
8 4ih- i : : |
_E -t .
0 A
=
' O |
= | — A=002 | |
c? —- A=0.0125
< 8 - A=0.00625| |
k=)
Q B
-10 ' 1 . | . | . | .
0 250 500 750 1000 1250

time/(crossing-time)

FIG. 2 (color online). The logarithm of the relative error in
the maximum value attained by g, (compared to its exact
value) versus number of crossing times for the simulations of
Fig. 1.
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FIG. 3 (color online). Convergence of the constraints energy
to zero as a function of the number of crossing times, for the
simulations of Fig. 1 and 2. This figure shows the convergence
factors obtained by dividing the energy found at different
resolutions in consecutive pairs. The oscillations observed are
a product of phase velocities differing at different resolutions.

in pairs (i.e., N (A)/N(A,) and N (A,)/ N (A3)). Fora
second order accurate code this convergence factor should
be two in the convergent regime. Figure 3 shows that
second-order convergence is lost after some time, but
this is expected for such long simulations, owing to
accumulation of truncation error. However, the conver-
gence factor gets closer to two when computed with the
two highest resolutions.

2. Amplitude A = 1.—Increasing the amplitude of the
gauge wave introduces some complications when compar-
ing to lower amplitude runs at the same resolutions. For
example, at the coarsest resolution (A = 0.025) the fields
and the energy grow considerably: after 750 crossing
times the energy is of order 10*. Clearly, even in the
convergent regime, errors of this magnitude mean the
numerical solution is of little use. Simulations with errors
below 10% last until about 600 crossing times for this
particular grid resolution. To demonstrate the effect of
resolution on the quality of the solution, we take 750
crossing times as the end-point of our simulations.
Figures 4-6 illustrate the results. The energy of the con-
straints, as shown in Fig. 4, shows marked exponential
growth, with a large growth rate for the coarsest resolu-
tion. However, increasing the resolution diminishes the
growth rate considerably, and simulations can be ex-
tended for at least 1500 crossing times (at which point
we simply stopped the simulations, with small errors).

Figure 5 shows the relative error in the maximum
attained by g, for the high amplitude gauge wave A =
1. Again, a rapid rise in the error is clearly seen for the
coarsest resolution, but this effect is less noticeable at
higher resolutions. At 750 crossing times, the error in the
maximum of the function is less than 10%. Finally, the
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FIG. 4 (color online). Logarithm of the energy for the con-
straints for the A = 1 gauge wave simulations. The coarsest
resolution exhibits a marked growth after 600 crossing times,
though with higher resolutions this effect becomes negligible.

convergence of the code is explicitly illustrated in Fig. 6,
which shows the convergence factors obtained by taking
the energy for the constraints at different resolutions and
dividing them in pairs. The order of convergence of the
constraints to zero is close to two for some time, and the
length of this time increases with resolution. Finally, to
illustrate the overall quality of the obtained numerical
solution for different resolutions, Figs. 7-9 display ex-
plicit comparisons between the exact solution and the
middle and fine resolutions (p = 2, 4). Figure 7 presents
snapshots of the solution at 280 and 560 crossing times,
clearly both drifts in phase and amplitudes are observed
for the middle resolution while for the finer one the
difference is mainly observed in the phase. Despite these
differences, the solution obtained is converging to the
exact one. Figure 8 provides the convergence factor cal-
culated with the two resolutions. As before, the factor
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o ]
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time/(crossing-time)

FIG. 5 (color online). The logarithm of the relative error in
the maximum attained by g, for the simulations of Fig. 4. The
errors exhibit a slow growth which diminishes with resolution.
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FIG. 6 (color online). Convergence of the constraint energy
to zero, for the simulations of Figs. 4 and 5, obtained by
dividing the energy for each resolution in consecutive pairs.
As in Fig. 3, after some time the convergence factors deviate
from the expected value of two, but this difference diminishes
when the two highest resolutions are used to compute the
convergence factor.

deviates from its expected value after a while, but this
improves with resolution. Finally Fig. 9 shows the L,
norm of the difference between the exact and numerical
solutions. Clearly even after 600 crossing times, the fine
resolution stays close to the exact solution and does not
exhibit growth faster than the expected linear one.

A. Observations

As mentioned above, the constraints C, C;, and C;j; are
initially satisfied to the level of round-off in the gauge
wave tests. For grids with at least n, = 161 points, these

4 , I , I , I ,
q_i L 4
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o3 — Yexact PEGERLN —
@ r == Gac00125 s 1
< =+ 9a-0.00625 T
= |
C |
5 N,

1oy |
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6-1 . 0‘5 . ? — Of5 . 1
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STt — OGexact i AN k
84% . N |
0 == 900125 // AN 4
:%3* = Ox-0.00625 7 - o]
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ol S >

0

-1 -0.5 0 0.5 1

X

FIG. 7 (color online). Snapshots at 280 and 560 crossing
times displaying the exact solution and the numerically calcu-
lated ones for the middle (A = 0.0125) and fine (A = 0.00625)
resolutions. Convergence to the exact solution is evident as
resolution is increased.
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FIG. 8 (color online). Convergent factor calculated with the
numerical solutions for the middle and fine resolutions. At late
times accumulation of errors makes the obtained value deviate
from its expected one.

constraints remain quite small throughout the runs, even
for the high amplitude case, A = 1. This has several
consequences:

(i) First, most hyperbolic formulations differ, among
other things, in how the constraints are added to
the right-hand side of the equations [14]. Since the
constraints themselves stay negligibly small, we
expect the conclusions found with this test should
be applicable to most hyperbolic formulations with
the same choice of lapse and shift. Namely, that
the use of symmetric hyperbolic systems and nu-
merical techniques guaranteeing stability at the
linear level, plus the addition of a small amount
of dissipation, stabilizes the problem. For instance,
without the use of dissipation, for the case A = 1

S
o5k — | 9r-00125 ~ Fexact 1, |
’ 1940 00625 ™ Feact |2
2 — —
1.5+ =
1% —
0.5 |
0 AR D A N B B
0 100 200 300 400 500 600

time/(crossing-time)

FIG. 9 (color online). L, norm of error in the numerical
solution. Although a faster than linear growth is observed
for the middle resolution, this effect converges away as a finer
resolution is considered.
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and n, = 161 points we can follow the system for
about ten crossing times before the errors in the
numerical solution become of order one. With a
small dissipative term, on the other hand, the sys-
tem after 1200 crossing times does not yet exhibit
errors of order one.

(i1) Second, the minimization technique presented in
Section III explicitly makes use of nonhomogene-
ous terms (in the free constraint-functions) in the
expression for the energy growth in order to mini-
mize it. However, in the current case these non-
homogeneous terms are considerably smaller than
the homogeneous contribution. Therefore, one
would need to use huge constraint-function values
for them to play a role in minimizing the growth,
which would require the use of an extremely small
Courant factor. Note that the formulation used
employs the addition of the constraints C, C;, and
Cijkl but not Cijk and CAi = G,N/N - Ai' The lat-
ter ones are not satisfied to round-off level but just
to truncation level initially. As a result one could
have considered a constraint energy which in-
cludes them or a modification of the formulation
employed by the addition of these constraints in a
suitable manner. We have not explored these op-
tions in the present work as in the black hole case
the nonhomogeneous terms in the constraint en-
ergy are not negligible as in the gauge wave case.
Indeed, this is what would be expected for generic
scenarios.

VL BLACK HOLE SIMULATIONS

We now turn our attention to the Schwarzschild black
hole spacetime.

In this case discretization errors (that is, due to finite
grid spacing) make the constraints start off at non-
negligible values and so the minimization technique
can be used to pick up preferred formulations for this
problem. Before applying the minimization procedure we
examine the system with fixed constraint-functions with
the goal of understanding some specific issues. As in the
rest of the paper, the simulations of this section are done
with the two-constraint-function family of formulations
discussed in Section II (the reason for not using the
single-constraint-function family is explained in
Section VI A1); and the fixed values for y and 7 here
used are, in the absence of any other obvious choices, y =
0 = 7. Recall that this two-constraint-function family is
symmetric hyperbolic for any values of 7 and vy, in
particular, for y = 0 = 7.

Next we study the influence of the position of the inner
boundary; the outer boundaries (their influences being
discussed later in the paper) are kept at the same position,
*5 M. The outer boundaries are chosen quite close on
purpose, to make the turn-around time for the runs
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shorter for this rather detailed analysis. However, it
should be clear that the points here made are quite inde-
pendent on the particular position for the outer bounda-
ries chosen. Later, when applying the minimization of the
constraints, we will choose several different values for
the position of the outer boundary.

1. Inner boundary and the outflow condition.—Black
hole excision is usually based on the assumption that an
inner boundary (IB) can be placed on the domain such
that information from this boundary does not enter the
computational domain. The boundary is supposed to be
contained inside the black hole and also to be purely
outflow, i.e., all modes propagate off of the grid at the
boundary. This requirement places strenuous demands on
cubical excision for a Schwarzschild black hole in Kerr-
Schild, Painlevee-Gullstrand, or the Martel-Poisson [23]
coordinates: the cube must be inside 0.37 M in each
direction. This forces one to excise very close to the
singularity, where gradients in the solution can become
very large, requiring very high resolution near the ex-
cision boundary to adequately resolve the solution.
Finally, we note that this requirement follows directly
from the physical properties of the Schwarzschild solu-
tion in these coordinates, and is independent of the par-
ticular formulation of the Einstein equations [7].

With our current uniform Cartesian code, we are not
able to provide the resolution required to adequately
represent the Schwarzschild solution close to the singu-
larity. While we are actively working on solutions to this
problem, currently our only practical alternative is to
place the inner boundary inside the event horizon, but
outside the region specified by the outflow condition, i.e.,
the solution has incoming modes on the inner boundary.
One could attempt to provide data for the incoming
modes on the excision boundary. However, there is no
general theory proving well posedness of problems for
which the rank of the principal part, i.e., the number of
zero speed modes on the boundary, is not constant.
Moreover, ill-posed problems for such configurations
are known. Thus we simply do not apply boundary con-
ditions to the incoming modes on the inner boundary,
resulting formally in an ill-posed problem [24]. In this
section, however, we argue that errors from this incon-
sistency do not prevent us from learning much about the
numerical properties of our formulation for black hole
spacetimes.

Figure 10 shows the results of simulations with differ-
ent positions for the inner boundary, with A = M/5,
obtained without imposing boundary conditions at the
IB. The IB at 0.3 M (i.e., half the length of a cube centered
at the origin) corresponds to a purely outflow boundary.
At the other extreme, the inner boundary at 1.3 M gives
an inner boundary that penetrates outside the event hori-
zon. The cases between 0.3 M and 1.3 M correspond to IB
inside the black hole, with inflow portions. All runs
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FIG. 10 (color online). Black hole simulations, with fixed
outer boundaries (at 5 M), and different position for the inner
boundary (IB). The resolution is A = M/5.

shown in Fig. 10, except the first with IB at 0.3 M, should
have convergence problems, since not giving boundary
conditions is inconsistent with the structure of the char-
acteristic modes. However, one also sees that at this
resolution, placing the inner boundary so close to the
singularity causes the code to run a factor of 10 less,
presumably because of lack of resolution.

Figure 11 shows a convergence test for a configuration
test with an excision boundary at 1.1 M with resolutions
A= M/5, M/10, M/20. From here on the errors shown
in the plots are those of the numerical solution u,, relative
and with respect to the exact one u,; more precisely, the

L, norm of
Z(un _ ue)2 -1/2
> ug ’

Convergence test, fixed constraint-functions (y=0, n=0)
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FIG. 11 (color online).
5 M, respectively.
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where the sum is over the components of the vector
valued functions u.

This test can give some indication of possible numeri-
cal stability problems. While the solution diverges in all
cases, the fact that the code appears to converge in the
short term indicates that at these resolutions, and for
these run times, the expected instability owing to im-
proper boundary placement appears to grow slower than
other unstable modes in the solution. Thus we can still
obtain valuable information about the solution and its
numerical properties. Finally, we emphasize that the in-
consistent inner boundary probably leads to convergence
difficulties that could be detected with more extensive
tests, such as performing a Fourier decomposition of the
numerical solution, and a convergence test frequency by
frequency likely would make the numerical instability
manifest (see, for instance, [3]).

A. Dynamic minimization: preliminary discussion

In this section we examine several issues that arise in
the constraint energy minimization procedure.

1. Why one should use the two-constraint-function
SJamily

We consider only the two-constraint-function family
of formulations of the equations for all constraint-
minimization runs. The single-constraint-function for-
mulation is inadequate because, as mentioned above, the
free constraint-function y may not equal zero. Thus y
may only be negative or only positive during an entire run
to be a continuous function of time. This considerably
limits the power of the dynamic minimization technique,
since in order to control the constraints one might need at
some time a positive value of y and at some other time a
negative one. Indeed, this occurs as Fig. 12 shows. For this
resolution and location of inner and outer boundaries the

Convergence test, fixed constraint-functions ( y=0, n=0)
Errors with respect to the exact solution
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Two-constraint-function family, with fixed values v = 0 = 7, inner and outer boundaries at 1.1 M and
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initial discretization error for the constraints leads to a
value of the energy of

N (0) = 0.99925 X 1074 (33)
Figure 12 thus shows two evolutions, one with a negative
seed value, y = —1.0, and a tolerance value 107°. The
second run has a tolerance value of 1074, and a seed value
x = L.0. In both cases n, = 1. In both cases y changes
sign, indicating that this can be expected in general, and
that there is no continuous interpolation for y(z) in the
limit A = 0 such that y # 0.

2. The accuracy of a semidiscrete picture

The constraint-minimization method, as described in
Section III, is based on semidiscrete equations, where the
spatial derivatives are discrete, but time continuous.
While a fully discretized method could be developed,
we simply use the semidiscrete analysis here. In the limit
At — 0, one naturally expects this semidiscrete analysis
to be a perfect description of the fully discrete scheme.
Here we verify that the fully discrete evolutions are,
indeed, very well approximated by the semidiscrete
analysis, cf. Equation (12), even for rather large
Courant factors, such as A = 0.5 that we use for the black
hole runs of this paper.

Figure 13 shows results of an evolution with inner
boundary at 1.1 M, A = 0.5, o = 0.03, outer boundaries
at *5M, and A = M /5. There are two curves for the time
derivative of the energy N'. The first curve is obtained
via the semidiscrete prediction, Eq. (19), with the matrix
valued integrals (J"™, J#) computed during evolution.
The second curve is obtained from second-order, cen-

Dynamicy and its sign change
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time [M]

FIG. 12 (color online). Generally y would need to change
sign in order to achieve certain control on the constraints.
Therefore, it would not have a continuous limit when Ar—
0. For this reason, the two-constraint-function formulation is
used throughout this paper.
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tered differences of the energy JN. Both curves agree
remarkably well, which indicates that the semidiscrete
expression for N captures the dynamic constraint behav-
ior in the fully discrete simulation with a Courant factor
of A =0.5.

As another illustration of this, Fig. 14 shows the results
obtained for one of the gauge wave tests presented above:
A = 0.5, 161 points, and A = 0.25. For a clean visual-
ization of the agreement we show here a period of time
between 30 and 50 crossing times. The agreement of the
curves is evident.

3. Practical questions regarding
constraint-minimization

We now consider some practical questions that arise
when performing the constraint-minimization method,
namely: how often should the minimization be per-
formed, and how fast should the constraint-functions
multiplying the constraints in the right-hand side be
allowed to change? The minimization procedure can be
computationally expensive, making it advantageous to
perform the analysis infrequently if possible. (Note that
the evaluation of the constraint energy requires knowl-
edge of the right-hand side of the equations, so each
evaluation takes about as much computer time as is
required in a time step).

The second question relates to how fast the constraint-
functions are allowed to vary by setting n,, which is used
to estimate how many steps are required for N to relax
to the tolerance value 7. Furthermore, can one trade the
frequency of the constraint-minimization with different
values of n,? For example, is performing the minimiza-

Energy and its time derivative: black hole simulation
Comparison between semi and fully discrete behavior

1><10'2:‘HHHH“HHHH“HHHH“HHHH“: T
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4x10°F

2107

N Lo
[&)]
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FIG. 13 (color online). Energy for the constraints and its time
derivative, JN', computed through the semidiscrete prediction
and through numerical differentiation. The remarkable agree-
ment between the two indicates that the semidiscrete analysis
used to calculate the constraint-minimization is faithful rep-
resentation of the fully discrete evolution.
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Energy and its time derivative: gauge wave simulation
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FIG. 14 (color online). Time derivative of the energy of the
constraints computed through the semidiscrete prediction and
through numerical differentiation for the gauge wave case. The
agreement of the two curves is evident.

tion at every iteration with a large value of n, equivalent
to performing the minimization every certain number of
steps with a smaller value of n,? We will see that it is
preferable to perform the minimization at every time
step.

Figure 15 shows the results of runs with the same
numerical constraint-functions as in the previous subsec-
tion: outer boundaries at =5 M, inner boundary at 1.1 M,
o = 0.03, A = 0.5, 513 points, and a tolerance value T =
10~#, performing the minimization at every time step,
but now with different values of n,. The constraint-
function 7y is fixed to y = 0, and the minimization of
the constraints is applied using 7, as described in
Section III. The constraint energy, N is shown in the

Dynamic minimization every one iteration
Fixed vy, dynamic n
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FIG. 15 (color online).
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left panel, and 7(¢) in the right panel. With a fixed
Courant factor, small values of n, are problematic be-
cause large and fast variations in 7(z) are allowed and, as
shown in the figure, do occur. On the other hand, large
values of n, can let the energy grow too much. Compare
now Fig. 16, where the minimization is now applied every
ten time steps. As can be seen, it is better to apply the
minimization at every time step. Otherwise the energy
appears to grow too fast between recalculations of the
constraint-functions. Finally, we note that this behavior
may be model dependent, and in other scenarios it may be
possible to use the minimization less frequently. In this
paper, however, we perform the minimization after every
time iteration [25].

4. Sensitivity to the tolerance value

We choose constraint-functions in the constraint-
minimization procedure such that the energy N decays
to a tolerance value T after a certain number of time
steps, n,. In this section we discuss reasonable choices for
T, and discuss its influence on the final solution. There are
some reasons to believe that a value close to the initial
discretization error is a good choice [11]. Here we present
additional evidence for this by comparing simulations
with different values of 7" and n,.

Figs. 17 and 18 show /N as a function of time, for T =
1072,1073,1074, 107 respectively, each one with n, =
1,10, 10% 103 10* Tt can be seen that one can indeed
perform similarly choosing a tolerance value that is below
the discretization error by using an appropriate value for
n,. But notice that the longest runs are obtained when N
naturally has a value near the initial discretization error.
Even if T is very small, a large value for n, allows the
constraints-functions to change only very slowly, result-

Dynamic minimization every one iteration
Fixed v, dynamic n
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The plots in this figure and those in Fig. 16 show the effects of varying the frequency of performing the

constraint-minimization, as well as the dependence on n,. The constraint-function 7 for n, = 10* is not shown as the run crashes
very early and the scale in the time axis for the associated plot is not logarithmic.
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Dynamic minimization every ten iterations
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FIG. 16 (color online).
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Dynamic minimization every ten iterations
Fixed vy, dynamic n
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This plot shows simulations as those of Fig. 15, except that here the minimization is done every ten

iterations. Comparing it with the previous plot, it seems clear that performing the minimization at every iteration seems a better

option.

ing in slow changes of /N towards 7. In summary, a
combination of T and n, that keeps /N near the initial
discretization error appears to give the best results.

5. Limitations of the constraint-minimization
procedure

Figure 15 shows that even though the constraint-
minimization gives an improvement of 5 to 10 times in
the lifetime of the simulations, compared to the results
shown in Fig. 10, the method does not prevent the even-
tual code crash when N is very large. Given that the

Tolerance=1 0_'2
Fixed v, dynamic n

10'F T T T
i n_=1 i ! s
ol  a N i i
10 F - n,=10 i i
F 2 | i E
AL —m =10 ; i i
10 g . na:103 | i, E
) . 4 : ; 1]
S o - n=10 ! i 1]
g 107k ! P
L E =t e - =
Lo- ”’/,— [ '
0% -7 T - o
L T e ]
10-4;__._—.».—_::: —————————————— é
5[ ! ! o
107 10 100

time[M]

FIG. 17 (color online).

constraint-minimization method is designed to prevent
this, we consider possible reasons why the method even-
tually fails. Operationally, the failure seems to occur
because large scale variations of 7 on ever-decreasing
time scales are required at late times. It is not possible for
the code to resolve such variations in the fields with a
fixed Courant factor. This was partly analyzed in
Section VI A 3, where we discussed the dependence of
7(t) on n, (see Fig. 19). Furthermore, when n,, is large,
N does not return immediately to a value near T, but
changes are affected slowly. Thus, if N grows on time
scales of a large number of steps, the minimization

Tolerance=10"
Fixed vy, dynamic n

10 T T Ty
*— n =1
10° n =10
2
""" n,=10
n=103

-5
1070 1 10
time[M]

100

This figure and Fig. 18 demonstrate the influence of the tolerance value T on the results of the constraint-

minimization. The two-constraint-function formulation is used, with y = 0 and 7(¢) chosen dynamically. The results are not
sensitive to the chosen tolerance value, provided that one avoids large variations in 7(f) by using appropriate values of n,. However,
notice that “appropriate’” values of n, naturally keep the value of the energy close to its initial, discretization value (here given by
0.99925 X 107*. Therefore, keeping the constraint energy near its initial discretization value appears to give the best results. This
figure shows runs with 7 = 1072 and T = 1073, Figure 18 shows runs with 7 = 10"* and T = 1077,
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Tolerance=10"*
Fixed vy, dynamic n
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FIG. 18 (color online). This figure compares results for T

method is unable to halt the growth. Having evidence of
why the code crashes, we now can attempt improvements
on the method, as discussed in the next section.

B. Two-dimensional minimization and
numerical results

In this section we exploit the freedom in the two-
constraint-function family to extend the lifetime of black
hole simulations. The tolerance value for the energy is
chosen to be a value roughly 1 order of magnitude larger
than the initial discretization error, and n, is set to either
10? or 10%. The boundaries are placed at 5 M, as in the
runs discussed previously, and also at 10 M and 15 M.

We exploit the fact that there are two free constraint-
functions to achieve not only a given tolerance value, but
also to minimize the change in the constraint-functions

Minimization every one thousand iterations

4 , ‘ , ‘ , ‘ , ‘

I . I . |
0 20 40 60 80
time [M]

FIG. 19 (color online).
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Tolerance=10"°
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107* and T = 107°. See Fig. 17 for additional information.

7(2), (1), to prevent fast variations in these constraint-
functions, as explained below. Thus, with two constraint-
functions to achieve the desired tolerance value, we can
impose an additional condition to minimize the variation
in the constraint-functions from one time step to the other
one. The motivation for this condition comes from the
discussion in the previous section on the limitations of the
constraint-minimization technique, where large oscilla-
tions in the constraint-functions were needed in order to
keep the constraints under control. Therefore, it seems
reasonable at this stage to conjecture that the lifetime
would be extended even more if one was able to apply the
constraint-minimization in a way such that fast varia-
tions in the constraint-functions are not needed. As
shown below, this conjecture seems to be correct.
Therefore, within all the constraint-functions that
achieve the desired energy growth for the constraints,

Minimization every one iteration

60—

40

20

20+

40+

-60

2
time [M]

These plots show the associated 7(z) for the n, = 1, 1000 cases of the previous plot, in more detail. Notice

the scale in the n, = 1 case; 1 changes a lot per time step. On the other hand, notice how in the n, = 10* case 1(z) changes slower
but still changes, and eventually it needs to take very large values in order to control the constraints.
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we choose at time step n + 1 the pair that minimizes the
quantity

Ar=[nn+1) = 9P +[y@n+1) -y

To apply this condition, consider that Eq. (21) indicates
that N is nonlinear in y but linear in 7, allowing one to
solve for 7 such that N = —a N,

_ —(aN + Jhom 4 TV (1 + 2y) + 2y IX
K I7(1+2y) + yIx

(34)

(35

where, as in Section III, a is given by Eq. (17).

A set of values for vy is chosen within some arbitrary,
large interval. For each 7y the corresponding 7 given by
Eq. (35) is computed, and the pair (7, y) that minimizes
A defined in Eq. (34) is chosen. As explained in
Section I, the constraint-functions (v, ) can take any
value, except for y = —1/2 for which the equations are
singular. Therefore, there are two ‘“‘branches;” we have
only explored the one associated with y < —1/2, by
using as seed values n = 0, v = —1 and restricting the
minimization procedure to values y < —1/2. As dis-
cussed next, almost an extra order of magnitude in the
lifetime of the simulations can be obtained, and the run
that initially lasted for 10 M without the minimization of
the constraints, now runs for around 700 M-1000 M
(without any symmetry—bitant, octant, or of any other
type—imposed).

1. Boundaries at 5 M

Figure 20 shows the results of a simulation with reso-
lution A = M/5, T = 1073 (close to the initial discreti-
zation error value, given by Eq. (33) ), and n, = 10°. The
figure shows that as the code crashes the constraint-
functions start having large and fast variations. A natural
question that this raises is whether these variations are a

Dynamic minimization, boundaries at 5M
Energy for the constraints and errors with respect to the exact solutic

'IO1 E T T T T T T I 3
; z

10 E

107 E

107 T E
E E
: E
i ]

10° *K/ 3

10-4 ! | ! | | | 1
0 200 400 600 800

time [M]

FIG. 20 (color online).
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Dynamic minimization, boundaries at 5M
Keeping the constraint-functions fixed after t=750M

10°F \ ‘ \ ‘ ¥ 3
- |— C. functions kept fixed after 750M ,z'
- |-~ C. functions not kept fixed | ,
10"F i E
F ! ]
> L ]
2 2
g 10°F E
w F ]
10%E 3
10-4 | | |
700 750 800 850 900
time [M]

FIG. 21 (color online). Same as previous figure, but keeping
the constraint-functions constant after 750 M. The figure com-
pares the resulting energy for the constraints with that of the
previous figure (shown at late times only, since because of the
setup the runs are identical up to r = 750 M).

cause or consequence of the code crashing. For reasons
discussed below, they appear to be a consequence.
Figure 21 shows the same run as that shown in Fig. 20,
except that the minimization is stopped at 750 M (at
which point the constraint-functions are nearly constant),
and from there on the last value of the constraint-
functions is used, namely,

n=—-188  y=—L100. (36)

The code still crashes at roughly the same time.
Therefore, the variations in the constraint-functions ob-
served in Fig. 20 do not cause the code to crash, but
appear to be a consequence of other instabilities.
Figure 22 shows a convergence test with two resolutions

Dynamic minimization, boundaries at 5M
Resulting constraint-functions

T T T T T T T T
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| -- @) i |
L
2 4" ]
S t o
= =|
|5} |
57 ]
I Gk |
g OL |Ill' —
% i
S Moger o
_2»- ———————————————————————————————— —

A
T

L

| |
400 600
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Dynamic minimization done with boundaries at 5 M, A = M/5, T = 1073, and n, = 10°.
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Dynamic minimization, boundaries at 5M
Convergence test, energy for the constraints
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FIG. 22 (color online).

(A =M/5, A =M/10), and keeping the constraint-
functions (obtained from the A = M/5 resolution run)
fixed after 750 M.

Another measure of the error in the solution is the mass
of the apparent horizon. Figure 23 shows this mass using
the dynamic constraint-functions obtained from the
simulation of Fig. 20 and by running at each iteration
Thornburg’s apparent horizon finder [26]. For the coarsest
resolution, the initial value of the mass, as given by the
horizon finder, is 1.007 M. Compared to this value, the
initial oscillations have a relative error of less than 1%.
After some time, the mass approximately settles down to
a value that is around 1.009, which corresponds to an
error of the order of 1 part in one thousand. For the higher
resolution, the initial value of the mass as given by the
horizon finder is 0.999 51. With respect to this value the

Apparent horizon mass, boundaries at 5M

R 3 -
—= AX=M/5 ]
i — Ax=M/10
]
1.01& -
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covv v b v v b b v b
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time [M]

FIG. 23 (color online). Apparent horizon mass, with dynamic
constraint-function values. The run with higher resolution ran
out of computing time (in the equivalent plots of the previous
figure an apparent horizon was not searched for).
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Dynamic minimization, boundaries at 5M
Convergence test, errors with respect to exact solution
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___________________________________
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Convergence test, with dynamic constraint-functions kept constant after 750 M.

initial oscillations are at most of the order of 1 part in one
thousand, and at late times the apparent horizon mass
settles down to 0.999 53, which corresponds to a relative
error of one part in 10°.

Even though the constraint-functions do not settle
down completely to a stationary value, they oscillate
very little. One question that this raises is, how does the
code perform if one fixes these values given by Eq. (36)
from the very beginning? The plots in Fig. 24 make this
comparison. Interestingly, the run with dynamic minimi-
zation runs slightly longer, even when the constraint-
functions after some time are essentially constant, and
even though the solution being evolved is stationary at the
analytical level. This shows that the dynamic minimiza-
tion not only requires little experimentation but also
seems to be effective in that it naturally allows for var-
iations in time that accommodate to the variations of the
numerical solution.

2. Boundaries at 10 M

We now examine data from a configuration equivalent
to that of the previous section, except that now the
boundaries are at 10 M. The initial discretization value
for the energy is N'(0) = 1.2845 X 1073, and T = 10™*
and n, = 10 are chosen. As seen in the previous case, the
constraint-functions eventually settle into oscillations
about fixed values,

n=-296x10"", y=-248 37)

as shown in Fig. 25. These steady-state values are quite
different from the previous configuration with boundaries
at 5 M (see Eq. (36)). This raises the question of what
would happen if one ran with boundaries at 10 M, and
fixed-constraint functions given by Eq. (37) in one case
and Eq. (36) in the other. Figure 26 makes this compari-
son. As expected, the constraint-functions obtained from
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Comparison between dynamic and fixed, fine tuned constraint-functions
, Energy for the constraints
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FIG. 24 (color online). Comparison between dynamic and
fixed, fine-tuned constraint-function values given by the
asymptotic values to which they approach [cf. Equation (36)].

Dynamic minimization,boundaries at 10M
Energy for the constraints
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Fixed, fine tuned constraint-functions, boundaries at 10M
Energy for the constraints

10 °F ‘ T T ‘ T

— Using c. functions from run at 5M
—- Using c. functions from run at 10M

400 800

time [M]

FIG. 26 (color online). Running with boundaries at 10 M,
using fixed, but fine-tuned constraint-functions, obtained
from runs with boundaries at 5 M and 10 M.

the run with dynamic minimization and boundaries at
5 M do not perform as well as those obtained with
boundaries at 10 M. However, even using the constraint-
functions obtained from the simulation with boundaries
at 5 M is much better than using a naive choice (say, y =
n = 0, which for the resolution of Fig. 26 runs for less
than 30 M, as shown in Fig. 11).

Figure 27 shows the apparent horizon mass, for the
simulations of Fig. 25, and one simulation from Fig. 26
with constraint-function values given by Eq. (37). In both
cases the resolution is coarse, A = M/5. As for the case
with boundaries at 5 M and with the same resolution, the
errors are less than 1% when compared to the mass given
by the initial data. From Fig. 27 one can also see that the
oscillations in the mass do not seem to be caused by the
time variation of the constraint-functions, as they are still

Dynamic minimization, boundaries at 10M
Resulting constraint-functions
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FIG. 25 (color online).

Dynamic minimization done with boundaries at 10 M, A = M/5, T = 1074, and n, = 10
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Apparent horizon mass, boundaries at 10M
Comparsion between fixed, fine tuned, and dynamic constraint functions
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FIG. 27 (color online). Apparent horizon mass for the simu-
lation of Fig. 25 and the simulation of Fig. 26 with constraint-
functions given by Eq. (37). A logarithmic scale in time is used
in order to show the oscillations in more detail. The oscillations
are not caused by time variations in the constraint-functions,
since they are also present in the fixed-constraint-functions
case.

present in the case in which fixed constraint-functions are
used.

3. Boundaries at 15 M

Finally, we consider a configuration with boundaries at
15 M, though with less detail than before. Figure 28
shows results data equivalent to those discussed for
Figs. 20 and 25, except now the boundaries are at 15 M.
The initial, discretization value for the energy is
7.6459 X 1076 and T = 1073, n, = 100 were used. The
minimization of the constraint-functions is stopped at
450 M, at which point the constraint-functions are ap-

Boundaries at 15M
Energy for the constraints
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>
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FIG. 28 (color online).
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proximately constant, and equal to

n=-135x10"", 5= —330. (38)

Figure 28 shows that the dependence of the lifetime on
the location of the outer boundaries is not monotonic, as
for this case the code runs for, roughly, 1000 M, while
with boundaries at 10 M and 5 M it ran for around 700 M
and 800 M, respectively. A detailed analysis of such
dependence would be computationally expensive and be-
yond the scope of this work, and may even depend on the
details of the constraint-minimization, such as the values
for T and n,,.

VIL FINAL COMMENTS

This paper presents a number of new techniques ap-
plied to the simulation of Einstein equations, namely: (1)
a symmetric hyperbolic formulation with live gauges; (2)
a numerical discretization based on the energy method
with difference operators that satisfy summation by parts
and a projection method to apply boundary conditions; (3)
a constraint-minimization method for dynamically
choosing constraint-functions that multiply the con-
straints in the evolution equations without requiring spe-
cial knowledge of the solution [27].

We use a generalization of the Bona-Masso slicing
conditions, and to date, this is the only formulation of
Einstein’s equations with these slicing conditions known
to be symmetric hyperbolic (for symmetric hyperbolic
formulations with other dynamical gauge conditions see
[32]). There are strongly hyperbolic formulations with
this gauge (see, for example, [33] and references therein),
though, recall that contrary to some common belief,
strong hyperbolicity does not automatically define a
well-posed initial value problem (IVP). A well-posed

~ Boundaries at 15M )
Dynamic constraint-functions obtained

1r T T T T T T T T T T E
— () ;
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2 ]
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Dynamic minimization done with boundaries at 15 M, A =M/5, T =107, and n, = 10%>. The

constraint-functions are constant for r = 450 M, where they are n = —0.135, y = —3.389; thus, there is no response of the

constraint-functions when the code is about to crash.
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I'VP for strongly hyperbolic can be found by requiring the
existence of a smooth-symmetrizer. However, this
smoothness is a nontrivial condition and it is usually
not studied in formulations of Einstein’s equations.
Some algebraic conditions do imply the existence of a
smooth-symmetrizer [34], but for the Bona-Masso slic-
ings these conditions can only be a priori guaranteed for
the time-harmonic subcase [13]. In the presence of
boundaries the situation is even more complicated: there
are examples in the context of Einstein’s equations ex-
plicitly showing ill posedness of certain strongly hyper-
bolic equations which do have smooth-symmetrizers,
when maximally dissipative boundary conditions are
used (while for symmetric systems such a problem is
known to be well-posed) [35]. While we use time-
harmonic slicing in this paper, the freedom to use other
slicing conditions could prove useful in other scenarios
[36].

Finite difference discretizations based on the energy
method [4,6,7] exploit results that rigorously guarantee
linear numerical stability of IVPs as well as IBVPs. In
particular, stable simulations of the gauge wave with
periodic boundary conditions are obtained for large val-
ues of amplitude, A, for at least a thousand crossing times.
These simulations show that the constraints remain well
behaved throughout the evolution, indicating that con-
straint violations, if any, grow very slowly in time. For
the black hole cases, where both inner and outer bounda-
ries are present, these numerical techniques allow for a
clean handling of particularly delicate issues. For in-
stance, defining the difference and dissipative operators
at these boundaries, and how boundary conditions are
imposed (in particular, in nonsmooth boundaries) are
addressed in a completely systematic way.

Numerical stability guarantees that errors do go away
with resolution, but at fixed resolution they can still grow

Boundaries at 10M

10° [T

— Octant symmetry
-+ Full 3D

10 10 10 10 10 10 10
time [M]

FIG. 29 (color online). This figure shows a fully 3D run with
fixed and fined-tuned parameters, given by Eq. (37), compared
to the same run in octant symmetry, which was stopped at
18000 M.
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quickly in time. These fast growing errors can be intro-
duced by the continuum instabilities, triggered by nu-
merical errors, by the numerical scheme, or any
combination of the above. The technique explored here
[11] automatically adjusts the formulation of Einstein’s
equations in such a way that the discrete constraint vio-
lations follow some prescribed behavior (for example,
their norm remains close to the initial, discretization
value). There are a number of lessons learned from the
application of this dynamic minimization procedure in
this paper, which are worth highlighting:

(1) The semidiscrete picture describes what happens in
the fully discrete case remarkably well, even for
cases that are highly nonstationary. Here by semi-
discrete one means a picture that assumes time to
be continuous, but space to be discretized with an
arbitrary (not necessarily small) grid spacing.

(2) The technique of [11] can be used not only as a
practical tool for extending the lifetime of the
simulations, but also for gaining conceptual insight
in the problem of constraints violations in free
evolutions. Sometimes very large adjustments
must occur on short time scales in order to control
the constraints, which may become too fast or
large for a fixed Courant factor. There are two
issues related to this observation:

(a) Very likely this same feature is present in
many other cases, where different formula-
tions of the equations and numerical tech-
niques are used. It clearly points out a
limitation in adjusting the equations so as
to minimize the constraints growth, inde-
pendently of what the adjustment technique
is.

(b) Nevertheless, the identification of this limi-
tation points out a way to proceed with the
technique of [11]. Namely, to take advantage
of many-constraint-function formulations
by redefining the equations in a way such
that not only a given behavior for the con-
straints is achieved, but also the adjustment
varies as little as possible between two time
steps, as done in Section IV B.

The results of Section IVB confirm to a good
extent the validity of the previous discussion.

As a practical matter the lifetime of the full 3D black
hole simulations are extended from around 20 M up to
700 M-1000 M. This is achieved without employing
symmetry restrictions (like octant, bitant, or any other),
or previous knowledge of the expected solution. When
employing symmetries the code actually runs much lon-
ger. For example, Fig. 29 shows a fully 3D simulation
with boundaries at 10 M, using the values around which
the parameters settle down after a while, given by
Eq. (37) (that is, one of the simulations of Fig. 26),
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compared to the same simulation in octant symmetry,
which for convenience was stopped at 18 000 M.

At this point it is not clear why the fully 3D simula-
tions crash after 700 M—1000 M. One possibility could be
the presence of a numerical instability caused by the
inconsistency of having an inner boundary that is not
purely outflow, but is treated as if it was. Although we
have done some convergence tests, numerical instabilities
are sometimes subtle, and very detailed and careful con-
vergence tests have to be done in order to detect them,
especially when the initial data has few and low frequen-
cies (as is here the case) [3]. However, an important
feature of all the simulations here presented, including
those of Section 1V B, is that large values of n, had to be
used in order to prevent large and quick variations in the
constraint-functions. Therefore, one is not completely
controlling the constraints—for that a value of n, of
order 1 would have to be used—and they do grow.
Therefore, one possibility for achieving small values of
n, without large and quick variations in the constraint-
functions would be to introduce more free constraint-
functions and to make use of this extra freedom as in
Section IV B. The results of Section I'V B strongly suggest
that this should extend the lifetime even more, but more
work must be done in order to explicitly study this.
Finally, the constraint-minimization method is designed
to dynamically control the constraints growth without
any a priori knowledge of the solution. Therefore, a
natural next step also seems to be an application to
dynamical spacetimes.
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