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Scattering of intense laser radiation by a single-electron wave packet
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A quantum theoretical description of photoemission by a single laser-driven electron wave packet is presented.
Energy-momentum conservation ensures that the partial emissions from individual momentum components of the
electron wave packet do not interfere when the driving field is unidirectional. In other words, light scattering by
an electron packet is independent of the phases of the pure momentum states comprising the packet; the size of the
electron wave packet does not matter. This result holds also in the case of high-intensity multiphoton scattering.
Our analysis is first presented in the QED framework. Since QED permits the second-quantized entangled
electron-photon final state to be projected onto pure plane-wave states, the Born probability interpretation
requires these projections to be first squared and then summed to find an overall probability of a scattering event.
The QED treatment indicates how a semiclassical framework can be developed to recover the key features of the
correct result.
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I. INTRODUCTION

The quantum theory of scattering processes relies on the
concept of particle wave packets in order to describe the
incoming and outgoing quantum states. A wave packet is
localized both in coordinate and momentum space (within
the constraints of the Heisenberg’s uncertainty principle) and
is, thus, the quantum mechanical counterpart of a classical
moving point particle. In contrast, essentially all concrete
calculations in textbooks and the literature are done for
plane-wave states, which have definite momentum and are
spread over all space. We show how this traditional simplified
context has high relevance to the interaction between quantum
mechanical packets—a connection that has been underappre-
ciated.

Since the invention of the laser in 1960, many theoretical
studies have considered scattering of electromagnetic radiation
by particles (see [1] for a review). Due to its fundamental
significance, the first process investigated was photoemission
by an electron, which is kinematically allowed in the presence
of a laser field and proceeds via Thomson (or Compton)
scattering of laser photons; see [2] for early work and [3]
for more recent treatments. All of these quantum mechanical
treatments employ plane-wave electron states, following stan-
dard practice. The classical theory of photoemission by free
electrons in laser fields has been treated in a seminal paper by
Sarachik and Schappert [4] (see also [5]).

Early considerations of the dynamics of laser-driven
single-electron wave packets date back to the 1960s [6].
More recently, interesting effects have been revealed, such
as wave-packet spreading, deformation (tilting and Lorentz
contraction), shearing, and the formation of multiple peaks
when the wave packet spreads to the scale of the driving-field
wavelength [7–11]. In fact, a free-electron wave packet with
an initial spatial size on the scale of an atom undergoes
rapid spreading in a realistic laser focus, the electron packet
eventually reaching and even exceeding the scale of an optical
wavelength [12,13]. This raises the question of how a single-
electron wave packet radiates, especially when it undergoes
such highly nondipole dynamics, where different parts of

the same electron wave packet experience different phases
of a stimulating laser field. A classical charge distribution
oscillating in this way would exhibit pronounced suppression
of the scattered radiation field, owing to interference. The
question therefore arises as to whether, under these conditions,
quantum (path) interference similarly influences field-induced
photoemission by a single electron.

Theoretical efforts to answer this question have been
undertaken recently [12–16]. Cheng et al. performed a
one-dimensional (1D) quantum-field simulation showing that
scalar bosons emitted by a spatially diffuse fermion packet
exhibit no interference [16]. The problem is of growing
interest since single-atom and single-electron experiments are
becoming feasible where the behavior of the particle’s wave
function is relevant. Experiments on multiphoton Thomson
and Compton scattering from many-electron samples in
external laser fields have been performed in the past [17].

In this article, we extend our previous study [15] and
provide a more comprehensive theoretical discussion of
photoemission by a single-electron wave packet in a laser
field. Although the outgoing light constitutes a photon wave
packet, the probability interpretation of quantum mechanics
constructs probability amplitudes by projecting the final state
onto individual basis modes (such as plane waves). The
probabilities for individual outgoing modes are then summed
incoherently over the various possibilities [18]. We show
then that, if the scattered photon is measured to be in a
momentum eigenstate, the different momentum components of
the initial electron state do not interfere if the stimulating field
is unidirectional. This result is dictated by energy-momentum
conservation. (See [19,20] for a discussion of conservation
laws in the packet-packet context.) Only one momentum
component of the initial electron wave packet can contribute
to a given momentum component of the outgoing electron via
photoemission into a given plane wave. Consequently, we find
that the scattered light is insensitive to the spatial size of the
electron wave packet.

This article is organized as follows: In Sec. II, we discuss
the shortcomings of a first-quantized theory of radiation
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scattering by an electron. Section III computes the scattering
amplitude in a second-quantized framework and highlights
the requirement that the outgoing photon be projected onto an
eigenstate before summing probabilities. Section IV develops
a semiclassical theory where the first-quantized framework
is salvaged via an ad hoc procedure prescribed by quantum
electrodynamics (QED). Section V generalizes the analysis
to the multiphoton regime. In Sec. VI, we comment on the
scenario of multidirectional incident light and argue that
unidirectional light is the appropriate context to explore the
possibility of radiative interference in the emission from a
large electron packet.

II. FAILURE OF A SELF-CONSISTENT
FIRST-QUANTIZED THEORY

We consider a single electron interacting with an elec-
tromagnetic field. In the first-quantized picture, the electron
is treated as a wave on equal footing with the classical
electromagnetic field. Intuition suggests that the electron wave
packet described by �(r,t) gives rise to the source term J(r,t)
[and ρ(r,t)], which in turn is responsible for the scattered
light represented by an electromagnetic potential A(r,t) [and
�(r,t)]. For simplicity, we neglect spin effects and model
electron dynamics by the Klein-Gordon equation:

(
ih̄

∂

∂t
− e�

)2

� = c2
(
−ih̄∇ − e

c
A

)2
� + m2c4�, (1)

where the electron has charge e = −|e| and mass m. Similarly,
the vector potential satisfies the laws of electromagnetism,
expressed as

∇2A − 1

c2

∂2

∂t2
A = −4π

c
J and ∇2� − 1

c2

∂2

∂t2
� = 4πρ

(2)

in the Lorenz gauge. Throughout this article, we employ the
Gaussian system of units.

To follow a self-consistent picture, one solves the Klein-
Gordon equation (1) and Maxwell’s equations (2) with
coupling via the current density J = e

2m
�∗(−ih̄∇ − e

c
A)� +

c.c. [and charge density ρ = e
2mc2 �

∗(ih̄∂/∂t − e�)� + c.c.].
Under the initial condition of a light pulse directed toward the
electron wave packet, one expects the interaction to create a
classical scattered light field emerging from an altered electron
wave packet. Solving these coupled equations either analyti-
cally or numerically is extremely difficult, which necessitates
approximations. For long wavelengths, the equations can be
approximately decoupled by including only the incident field
in (1) and the expression for J (thereby forfeiting radiation
reaction).

Regardless of the exact approach for generating a solution,
this first-quantized approach leads to dramatic suppression of
radiation for many directions when the electron wave packet
becomes spatially large [12,13]. This is evident in the particular
solution to (2) [21]:

As(r,t) = 1

c

∫
d3r′ J(r′,t − |r − r′|/c)

|r − r′| . (3)

If the direction of J alternates across its distribution (i.e., owing
to different phases of a driving field), the spatial sum resulting
in As is severely suppressed for the majority of directions.

The straightforward sourcing of (2) by (1) gives an entirely
wrong result. While interference in the radiation field may
seem plausible, consistency requires that one also include ρ

and �, which leads to the absurd consequence of electron-wave
self-repulsion. Classical charge distributions exhibit this effect
when different regions of a single charge density repel each
other via Coulomb’s law. Interestingly, (1) and (2), as written,
are the launching point for QED. The process of second
quantization removes both single-particle self-repulsion and
radiative interference, as will be highlighted in Sec. III.
Moreover, it correctly describes radiation reaction.

Treating the electron as a classical point particle interacting
with the Maxwell field gives the correct scattering cross section
in the Thomson limit (which neglects radiation reaction). In
contrast, the self-consistent first-quantized picture described
above fails in this respect (unless the electron wave packet
happens to be small compared to the stimulating wavelength).
However, after a number of ad hoc procedures are imposed, the
results of the first-quantized picture can be brought into close
agreement with QED. We reserve the word “semiclassical”
to refer to this QED-informed first-quantized theory. The first
and obvious procedure is to drop single-electron self-repulsion
from �, as is routinely done when solving the hydrogen atom.
We describe further necessary modifications in Sec. IV.

III. SECOND-QUANTIZED SCATTERING AMPLITUDE

We begin by reminding the reader of a basic tenet of
quantum mechanics. When calculating probabilities for ob-
servable measurements, one projects the normalized state onto
an eigenstate of the measurement. These projection amplitudes
are first squared and then summed over a subset of the basis
eigenvalues. This principle does not change when the state
includes more than one species of particles (i.e., an electron
and photon).

When considering light scattered from electrons, we must
project onto a complete basis that includes both the electron
and the photon. In the subspace of states that include only a
single electron and a single photon, we can resolve the identity
as follows:

1 =
∑

p′

∑
k′λ′

|p′; k′λ′〉〈p′; k′λ′|, (4)

where we have chosen a momentum plane-wave basis (for the
sake of kinematic transparency in upcoming calculations). If
we insert this expression inside the normalization condition of
a single-electron–single-photon state |ψ(t)〉, we find that

1 = 〈ψ(t)|1|ψ(t)〉 =
∑

p′

∑
k′λ′

|〈p′; k′λ′|ψ(t)〉|2. (5)

This merely says that, for this state, the probability of
measuring a single electron (with any momentum) and a single
photon (also with any momentum and polarization) is equal to
1. Born’s probabilistic interpretation [18] states that summing
over subregions of {p′,k′λ′} yields a corresponding probability
of finding the particles in that subregion.
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We now proceed with a QED calculation of light scattered
from a single electron. If the incident beam of light contains
many photons, as is the case for this paper, the probabilistic
statement in (5) must be augmented so as to contain those
occupied states. Suppose that only modes parallel to ẑ (denoted
by Vkzλz

) are occupied by the initial pulse, and that a single
photon k′λ′ is radiated into a different mode. Then (5) becomes

1 =
∑

p′

∑
k′λ′ �∈Vkzλz

∑
{nkzλz }

|〈p′; k′λ′; {nkzλz
}|ψ(t)〉|2, (6)

where {nkzλz
} is the set of occupation numbers for modes

belonging to Vkzλz
. To simulate an incident laser pulse, we

choose the initial photon state to be a multimode coherent state
|{αkzλz

}〉, which is an eigenstate of the annihilation portion of
the quantized photon field operator:

Â(+)(x)|{αkzλz
}〉

=
[∑

kλ

(
2πh̄c

V k

)(1/2)

âkλεkλe
i(k·x−ckt)

]
|{αkzλz

}〉

=
⎡
⎣∑

Vkzλz

(
2πh̄c

V kz

)(1/2)

αkzλz
εkzλz

eikz(z−ct)

⎤
⎦ |{αkzλz

}〉

≡ A(+)
{αkzλz }(x)|{αkzλz

}〉. (7)

The expectation value of the photon field operator Â(x) =
Â(+)(x) + Â(−)(x) in the state |{αkzλz

}〉 is equal to the c number
A(+)

{αkzλz }(x) + c.c., which could be a pulse. (Note the absence
of the hat for the classical-field function.)

For the packet-packet problem that we wish to address in
this paper, we take the initial state of the system to be

|ψ(−∞)〉 =
(∫

d3pβp|p〉
)

⊗ |{αkzλz
}〉

=
∫

d3pβp|p; {αkzλz
}〉. (8)

The electron wave packet might, for example, be a Gaus-
sian with βp = (p0

√
π )−3/2 exp[−p2/(2p2

0)], where the wave
packet is normalized to ensure 〈�|�〉 = 1. To compute
scattering probabilities based on (6), we are interested in
objects of the form

|〈p′; k′λ′; {nkzλz
}|Ŝ|ψ(−∞)〉|2. (9)

The scattering operator Ŝ maps the initial state to the final state.
Figure 1 depicts the bra and ket of (9). We approximate Ŝ by
its lowest-order nonvanishing term in the Dyson expansion,
given in scalar QED [22,23] by the normally ordered operator

Ŝ(1) = − ie2

h̄c

∫
d4x : Â(x) · Â(x)φ̂†(x)φ̂(x) : , (10)

where the scalar field operator (representing the spinless Klein-
Gordon electron) is given by

φ̂(x) =
∫

d3p
1√

2(2πh̄)3Ep

× [
b̂(p)ei(p·x−Ept)/h̄ + d̂†(p)e−i(p·x−Ept)/h̄] . (11)

p

k

pkz

nkz
{ }

FIG. 1. (Color online) Light pulse (comprised of a range of kz)
incident on an electron wave packet (comprised of a range of p). We
consider scattering into a state |p′; k′λ′; {nkzλz

}〉.

The operators b̂, d̂, and their adjoints satisfy the usual
bosonic commutation relations: [b̂(p),b̂†(p′)] = δ3(p − p′),
[d̂(p),d̂†(p′)] = δ3(p − p′), with all other commutators van-
ishing.

A straightforward calculation shows that

〈p′; k′λ′; {nkzλz
}|Ŝ(1)|ψ(−∞)〉

= − i

2mc2h̄
〈{nkzλz

}|{αkzλz
}〉
∫

d3pβp

∫ ∞

−∞
dt

∫
d3r�∗

p′Vint�p,

(12)

where

�p(r,t) =
√

mc2

(2πh̄)3Ep
e

i
h̄ (p·r−Ept) (13)

and

Vint = 〈k′; {nkzλz
}|e2 : Â · Â : |{αkzλz

}〉
〈{nkzλz

}|{αkzλz
}〉

= 2e2A(+)
{αkzλz }(x) ·

(√
2πh̄c

V k′ ε∗
k′λ′e

−i(k′ ·x−ck′t)

)
. (14)

Although the final state |ψ(∞)〉 ∼= Ŝ(1)|ψ(−∞)〉 represents
an electron-photon packet, it is first projected onto our basis
plane-wave states before squaring and then summing in (6).
This is key to the fact that the outgoing scattered light does not
interfere.

When computing probabilities in the state space of
{p′,k′λ′}, we should sum over the unobserved, forward-
scattered photons. In this case, the factor 〈{nkzλz

}|{αkzλz
}〉 in

(12) disappears because

∑
{nkzλz }

|〈{nkzλz
}|{αkzλz

}〉|2 = 1, (15)

owing to completeness. Henceforth in this analysis, we ignore
this factor with the understanding that the sum over {nkz

} has
already been performed.

053831-3
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We express the positive-frequency component of the inci-
dent light pulse as

A(+)
{αkzλz }(z − ct) =

∫ ∞

0
dkzεkz

Akz
eikz(z−ct), (16)

which allows for an arbitrary electromagnetic pulse traveling
in the z direction. For example, the (positive-frequency)
Fourier components for the Gaussian waveform Ai(z −
ct) = A0εe

−(z−ct)2/(2z2)+ikzo(z−ct) + c.c. are given by εkz
Akz

=
A0z/

√
2π [εe−z2(kz−kzo)2/2 + ε∗e−z2(kz+kzo)2/2].

After plugging (16) into (12), we arrive at

〈p′; k′λ′; {nkzλz
}|Ŝ(1)|ψ(−∞)〉

= −i

√
(2π )3h̄ce4

V

∫ ∞

0
dkz

∫
d3p

Akz
βpεkz

· ε∗
k′λ′√

Ep′Epk′

× δ3(p + h̄kzẑ − p′ − h̄k′)δ(Ep + h̄ckz − Ep′ − h̄ck′).
(17)

The arguments of the delta functions above enforce momentum
and energy conservation between the initial and measured
states.

The delta functions in (17) allow us to perform all
integration (a benefit of having restricted the analysis to
unidirectional incident light). After performing the momentum

integration, the expression reduces to

〈p′; k′λ′; {nkzλz
}|Ŝ(1)|ψ(−∞)〉

= −i

√
(2π )3h̄ce4

V

∫ ∞

0
dkz

Akz
βp̃εkz

· ε∗
k′λ′√

Ep̃Ep′k′

× δ(Ep̃ + h̄ckz − Ep′ − h̄ck′), (18)

where p̃ = p′ + h̄k′ − h̄kzẑ so that Ep̃ must now be considered
to depend on kz. The remaining delta function may be rewritten
as

δ(Ep̃ + h̄ckz − Ep′ − h̄ck′)

= Ep̃δ(kz − k̃z)

h̄c[Ep′ + h̄ck′ − c(p′ + h̄k′) · ẑ]
, (19)

where k̃z = (k′Ep′ − ck′ · p′)/[Ep′ + h̄ck′ − c(p′ + h̄k′) · ẑ].
Then (18) collapses to

〈p′; k′λ′; {nkzλz
}|Ŝ(1)|ψ(−∞)〉

= −i

√
(2π )3e4Ep̃

h̄cV Ep′k′
Ak̃z

βp̃ε k̃z
· ε∗

k′λ′

[Ep′ + h̄ck′ − c(p′ + h̄k′) · ẑ]
. (20)

For a given mode of scattered light k′λ′, the delta functions
ensure that there is only one set of inputs (electron momentum
component and incident photon energy) that gives rise to (20).
The probability of a scattering event occurring is

P =
∑
λ′=1,2

V

(2π )3

∫
d3k′

∫
d3p′|〈p′; k′λ′; {nkzλz

}|Ŝ(1)|ψ(−∞)〉|2 = e4

h̄c

∑
λ′=1,2

∫
d3k′

∫
d3p′ Ep̃|Ak̃z

|2|βp̃|2|ε k̃z
· ε∗

k′λ′ |2
Ep′k′[Ep′ + h̄ck′−c(p′+h̄k′) · ẑ]2

.

(21)

Taking the limit of large V , we have replaced the summation
over discrete modes by an integral:

∑
k′ → V

(2π )3

∫
d3k′.

In Appendix A, we recover the traditional single-mode
cross section as a suitable limit of the above packet-packet
formula.

The important thing to notice is that (20) contains only one
term, which is squared in (21) before the integrations over
d3k′ and d3p′ take place. This means that the probability
is insensitive to the complex phases of βp̃ and Ak̃z

, as is
immediately appreciated in (21). This feature is significant in
that the initial wave packet may experience an arbitrary amount
of free-particle spreading (described, say, by time T ) before
the stimulating field arrives, as this spreading is determined by
relative phases of the form

βp → βpe
−iEpT/h̄. (22)

Thus, the spatial extent of the packets does not impact the
likelihood of scattering. We have developed this result in a
packet-packet context, as opposed to standard pedagogy which
delocalizes the incident photon and electron with single-mode
initial states.

IV. SEMICLASSICAL RADIATION SCATTERING

We now return to the first-quantized picture and inject the
attributes necessary to bring it into alignment with QED. It
is standard practice simply to neglect J (and �) in (2) and
to prescribe the form of both the incoming and scattered
portions of the vector potential. This has the virtue of not
only decoupling and thus greatly simplifying the equations,
but, as it turns out, also brings the result into agreement with
perturbative QED.

The total vector potential is decomposed as

A = Ai + As , (23)

where Ai and As are the incident and scattered vector
potentials, respectively. We choose the real-valued incident
field to be A(+)

{αkzλz } + c.c., where we have defined A(+)
{αkzλz } in (16).

We assume that As is small. To the extent that As is ignored,
the Klein-Gordon equation (1) can be solved exactly if the
incident field has the form Ai(z − ct). In this case, a solution
may be constructed from Volkov states �V

p (r,t), which satisfy
(1) and are parametrized by asymptotic momentum p. For the
reader’s convenience, a brief description of Volkov states is
provided in Appendix B.

053831-4



SCATTERING OF INTENSE LASER RADIATION BY A . . . PHYSICAL REVIEW A 84, 053831 (2011)

An arbitrary electron wave packet under the influence of
only the incident field may be constructed as

�(r,t) =
∫

d3pβp�
V
p (r,t). (24)

If we also include the scattered light As , with its arbitrary
direction, we may still use a superposition of Volkov states
since they form a complete basis, but the coefficients now
acquire time dependence. We can write this as

�(r,t) ∼=
∫

d3p
[
β(0)

p + β(1)
p (t)

]
�V

p (r,t). (25)

We will allow the initial wave packet to be dictated by the time-
independent coefficients β

(0)
p , which might have a distribution

of the example following (8). The time dependence is then
carried by β

(1)
p (t), taken to be zero at t = −∞, which can give

rise to scattering phenomena.
The evolution of β

(1)
p (t) is governed by the Klein-Gordon

equation (1). If β
(1)
p (t) is approximated by a first-order

correction in a perturbative expansion, one arrives at (see
Appendix B)

β
(1)
p′ (t = ∞)

= − i

2mc2h̄

∫
d3pβ(0)

p

∫ ∞

−∞
dt

∫
d3r�V ∗

p′ Vint�
V
p . (26)

Notice the resemblance between (26) and (12).
Since (26) involves the integration of Volkov states, we can

greatly simplify the analysis if we limit the strength of the
incident field such that eAi

h̄ω
� 1. This restricts the intensity

to I � 8 × 1018 W/cm2( nm
λ

)4. At low intensities, the Volkov
wave functions (B1) reduce to the plane-wave states defined
in (13). The high-intensity case is considered in Sec. V. For

initial packets whose constituent momenta satisfy p � mc,
the essential interaction term works out to be

Vint = 2e2Ai · As . (27)

The first term in (B4) vanishes at this lowest order of
perturbation theory when the integration in (26) is performed
(although it would contribute in the next perturbative iteration
if we had not assumed p � mc).

Aside from needing to choose a specific initial electron
packet via the coefficients β

(0)
p , the scattered field As must be

specified in (27). This is a key ingredient where QED is needed
to guide the semiclassical approach. We want (26) and (27) to
match the QED formulas (12)–(14). Within the semiclassical
framework, we are tempted to use the real-valued field

As(r,t) =
√

2πh̄c

V k′ εk′λ′ei(k′ ·r−ck′t) + c.c., (28)

where εk′λ′ is either of two orthogonal polarizations for k′
(λ′ = 1,2). This describes a plane wave with an amplitude
chosen such that a large normalizing volume V contains the
energy of one photon, h̄ck′. However, it is only the second
term in (28) (represented by c.c.) that gives rise to the correct
QED result. We keep the extraneous term for now to better
appreciate the problem that it causes.

Introducing the single-mode potential (28) as a perturbation
in the electronic wave equation is typical [24], and it produces
the effect of the projection discussed below (5). Keep in mind
that by choosing the scattered field, we have overwritten what
(2) sourced by J would dictate. In a technical sense, referring
to (28) as the “emitted photon” is somewhat of a misnomer.
Prior to the measurement, many k vectors may be present
in the scattered field. Projecting onto a basis mode (in this
case a monochromatic plane wave) allows one to connect
measurements with calculable probabilities.

After plugging (27), (28), (16), and (13) into (26), we
arrive at

β
(1)
p′ (∞) = −i

√
2πc

h̄V

e2

(2πh̄)3

∫ ∞

0
dkz

∫
d3p

β
(0)
p√

EpEp′k′

∫ ∞

−∞
dt

∫
d3re− i

h̄
[(p′−p)·r−(Ep′ −Ep)t]

×[
εkz

· εk′λ′Akz
eikz(z−ct)+i(k′ ·r−ck′t) + ε∗

kz
· εk′λ′A∗

kz
e−ikz(z−ct)+i(k′ ·r−ck′t)

+ εkz
· ε∗

k′λ′Akz
eikz(z−ct)−i(k′ ·r−ck′t) + ε∗

kz
· ε∗

k′λ′A
∗
kz
e−ikz(z−ct)−i(k′ ·r−ck′t)]. (29)

The integrations over time and space yield energy-momentum
delta functions for each of the four terms in (29). One of
the four terms produces the lowest-order QED result (17).
Two of the four terms yield products of incompatible delta
functions that vanish, as dictated by the constraints Ep =√

p2c2 + m2c4 and Ep′ =
√

p′2c2 + m2c4. Another term is
proportional to δ3(p − h̄kzẑ − p′ + h̄k′)δ(Ep − h̄ckz − Ep′ +
h̄ck′), describing energy-momentum conservation for the
wrong process. This problematic term does not arise if we

keep only the complex-conjugate term in (28), as mentioned
earlier.

The semiclassical result hinges crucially on the ad hoc
treatment of the scattered light as a single mode, with summing
over modes k′ coming only after the probability is computed.
This rightly seems at odds with the fact that the outgoing
photon is undoubtedly some kind of packet. If the stimulating
light has compact temporal support then, depending on dis-
tances involved, one would expect a photodetector monitoring
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CORSON, PEATROSS, MÜLLER, AND HATSAGORTSYAN PHYSICAL REVIEW A 84, 053831 (2011)

scattered photons to click within a certain time interval (in the
event that there is a click). On the other hand, a single-mode
plane wave is unable to specify a time window. Nevertheless,
if we tried to represent an outgoing photon with some sort
of plausible packet (i.e., a superposition of modes) within the
semiclassical framework, we would get a result inconsistent
with QED.

V. SEMICLASSICAL MULTIPHOTON SCATTERING

We have shown in the previous sections that interference
is kinematically forbidden in the low-intensity limit (single-
photon absorption). One might suspect that this conclusion
changes at high intensity of the driving laser field which allows
for multiphoton Thomson scattering. However, we show below
that this is not the case. The QED treatment in Sec. III
treats the incident field perturbatively; second-quantizing in
the Furry picture [25] upgrades the free-particle states in
(12) to Volkov states, improving the agreement between (26)
and (12).

We have to evaluate the amplitude (26) with the initial
and final states given by Volkov functions (B1). To simplify
the analysis, we consider the incident field to have the
form

Ai(η) = A0ε cos(kzη), (30)

where η ≡ z − ct . In this case, the Volkov states defined by
(B1) read

�V
p (r,t)=

√
mc2

(2πh̄)3Ep
exp

[
i

h̄
(q · r − Eqt) − ieA0p · ε

h̄kz(Ep − cpz)

× sin(kzη) + ie2A2
0

8h̄ckz(Ep − cpz)
sin(2kzη)

]
, (31)

where we have introduced the dressed energy and momentum

q ≡ p + e2A2
0

4c(Ep − cpz)
ẑ,

(32)

Eq ≡ Ep + e2A2
0

4(Ep − cpz)
.

By inserting these wave functions and the first two interaction
terms of (B4) into (26), we obtain

β
(1)
p′ (∞) = −i

mc2h̄

∫
d3pβ(0)

p

∫
dt

∫
d3r�V ∗

p′ �V
p

×As ·
[
−ecq + e2A0

(
ε + cp · ε

Ep − cpz

ẑ
)

cos(kzη)

− e3A2
0

4(Ep − cpz)
cos(2kzη)ẑ

]
(33)

for the scattering matrix.
The standard method to evaluate matrix elements involving

Volkov functions exploits the fact that the periodic part of these
functions can be expanded into a Fourier series. To this end,
we write

�V ∗
p′ �V

p = mc2

(2πh̄)3
√

Ep′Ep
e

i
h̄ [(q−q′)·r−(Eq−Eq′ )t]

× ei[β1 sin(kzη)+β2 sin(2kzη)], (34)

where we define

β1 ≡ eA0

h̄kz

ε ·
(

p′

Ep′ − cp′
z

− p
Ep − cpz

)
,

(35)

β2 ≡ e2A2
0

8h̄ckz

(
1

Ep − cpz

− 1

Ep′ − cp′
z

)
.

The generating function for Bessel functions may be used to
produce the following series expansions:

ei[β1 sin(kzη)+β2 sin(2kzη)] =
∞∑

n=−∞
Bne

inkzη,

cos(η)ei[β1 sin(kzη)+β2 sin(2kzη)] =
∞∑

n=−∞
Cne

inkzη, (36)

cos(2η)ei[β1 sin(kzη)+β2 sin(2kzη)] =
∞∑

n=−∞
Dne

inkzη,

where the Fourier coefficients

Bn = Jn(β1,β2),

Cn = 1
2 [Jn+1(β1,β2) + Jn−1(β1,β2)] , (37)

Dn = 1
2 [Jn+2(β1,β2) + Jn−2(β1,β2)],

can be expressed in terms of ordinary Bessel functions via
Jn(β1,β2) = ∑

l Jn−2l(β1)Jl(β2). Combining (36), (33), and
the complex conjugate term of (28) [in the spirit of (14)] yields:

β
(1)
p′ (∞) = −i2π

√
2πh̄c

V k′

∫
d3p

β
(0)
p√

EpEp′

∑
n

δ(Eq′ + h̄ck′ − Eq − nh̄ckz)δ
3(q′ + h̄k′ − q − nh̄kzẑ)

×εk′λ′ ·
[
−ecqBn + e2A0

(
ε + cp · ε

Ep − cpz

ẑ
)

Cn − e3A2
0

4(Ep − cpz)
ẑDn

]
. (38)
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This quantity must be squared and then summed in the sense of
(5). The arguments of the energy-momentum delta functions
indicate that a nonperturbative treatment of the incident field
allows for the absorption and reemission of many photons.

A careful analysis of (38) indicates that the momentum
integral indeed collapses. One may substitute from the p(z)

delta function into the energy delta function, yielding

δ(Eq′ + h̄ck′ − Eq − nh̄ckz)

→ δ(Ep′ + h̄ck′ − Ep − cp′
(z) − ck′

(z) + cp(z)). (39)

This final constraint, along with the delta functions for p(x) and
p(y), uniquely determines p in terms of k′ and p′—parameters
that are fixed before (38) is squared. As before, we see that the
relative phases of β

(0)
p have no influence on the emission of

radiation. Even for high-intensity light beams, the size of the
electron wave packet does not matter.

One should not confuse (the lack of) spatial interferences
with the type of strong-field interference studied by Narozhny
and Fofanov [26], where the quantum electron experiences a
bichromatic laser field of commensurate frequencies. In this
case, interferences occur between the different constituents of
incident light pulse.

VI. MULTIDIRECTIONAL STIMULATION

In demonstrating that the probability of a scattering event
(21) is independent of the phases of both βp and Akz

, we
used an incident pulse (16) traveling strictly in one direction.
Since the spatial size of the initial electron packet can be made
arbitrarily large by simply adjusting the phases via (22), one
concludes that the strength of photon scattering is independent
of the packet size of the scattering electron. On the other hand,
if the stimulating light is multidirectional, the scattering of the
radiation does depend on the phases of both βp and Akz

. In this
case, the size and shape of the electron wave packet and the
electromagnetic pulse do matter. This, however, is expected
and altogether ordinary. It does not negate the aforementioned
conclusion.

Multidirectional light exhibits interference fringes, which
means that different regions of space can host dramatically
different amounts of fluence. For example, multiple-direction
modes can be used to create a focused laser beam, where a
small lateral translation in position can make the difference
between being inside or outside of the beam. The phases on
β

(0)
p determine not only the initial size of an electron packet, but

also its location and, in particular, the amount of overlap with
regions of high fluence. As illustrated in Fig. 2, the Fourier
translation theorem can move the electron entirely out of the
focus via phase adjustments.

In the same way, scattering by a classical point electron
shows a similar sensitivity to position under multidirectional
stimulation. It is therefore appropriate that we have addressed
the question of whether scattering is sensitive to the size of
the electron wave packet under a scenario of unidirectional
stimulation. In this way, it is guaranteed that the entire electron
wave packet experiences the same incident light pulse.

FIG. 2. (Color online) Electron may be inside or outside of a laser
focus depending on the phases of βp.

VII. CONCLUSION

In this analysis, we have investigated the possibility of
radiative interference from a laser-driven single-electron wave
packet. Born’s probability interpretation of quantum mechan-
ics coupled with energy-momentum conservation predicts
that radiative interference does not occur. We have outlined
the various ingredients required to make the lowest-order
semiclassical amplitude (for a single electron) exactly match
the lowest-order QED amplitude (for a single-electron–single-
photon system). The ad hoc prescription for this, as evidenced
by (14), is to stimulate the first-quantized electron with the
complex-conjugate piece of the single-mode scattered field
(28). We then interpret the inherently single-particle scattering
amplitude as a two-particle amplitude, intended to be first
squared and then summed over the two-particle phase space in
the sense of (6). Importantly, we find that sourcing Maxwell’s
equations with the single-particle probability current gives a
result that disagrees with QED.

Measurements of Compton or Thomson scattering provide
an indication that electrons do not radiate as extended charge
distributions. For example, >10 keV photons scattered from
electrons bound to helium corresponds to a scenario where the
size of the electron wave packet is larger than the wavelengths
involved. In this case, the scattered photons have energy well
below the electron rest energy, and the forward-versus-back
scatter is symmetric (i.e., Thomson limit) [21,27]. It is
interesting to note that A. H. Compton initially proposed a
“large electron” model to explain the decrease in cross section
with angle for harder x-rays, which he later abandoned when
the effect of momentum recoil was understood [28].

In conclusion, we have studied the amount of light that an
electron scatters out the side of a laser focus. We have shown
that individual electrons radiate with the strength of point
emitters. Our results are soon to be tested in an experiment
that combines the sensitive techniques of quantum optics (e.g.,
single-photon detectors) with the traditionally opposite and
incompatible discipline of high-intensity laser physics.
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APPENDIX A: SCATTERING CROSS SECTION

In this appendix, we derive the traditional scattering
cross section, applicable to plane waves, starting from the
packet-packet formulation (21). Our approach sidesteps the
usual representation of the interaction time as T = 2πδ(0),
which appears in the traditional derivation. We simply take a
narrowband limit on the incident light pulse and the electron
momentum spread. For example, we may let p0 and z,
defined in the example Gaussian distributions accompanying
(8) and (16), be arbitrarily small positive numbers. In this case,
we may approximate the momentum distributions by

|βp̃|2 = δ3 (p̃) and
∣∣Ak̃z

∣∣2 = �

k2
zo

δ(k̃z − kzo), (A1)

where � is the fluence of the incident light pulse (i.e.,
Poynting vector integrated over time, and units of en-
ergy per area). Recall that p̃ = p′ + h̄k′ − h̄k̃zẑ and k̃z =
(k′Ep′ − ck′ · p′)/[Ep′ + h̄ck′ − c(p′ + h̄k′) · ẑ].

Substituting the above distributions into (21) and integrat-
ing over momentum [aided by setting k̃z to kzo, as enforced by
δ(k̃z − kzo)], we arrive at

P = mce4�

h̄k2
zo

∑
λ′=1,2

∫
d�k′

∫
k′2dk′

× |εkz
· ε∗

k′λ′ |2δ(k̃z − kzo)

k′Eh̄kzo ẑ−h̄k′
[
Eh̄kzo ẑ−h̄k′ + h̄ck′ − ch̄kzo

]2 . (A2)

The remaining delta function can be manipulated as follows:

δ(k̃z−kzo) = k′Eh̄kzo ẑ−̄hk′

kzomc2
δ

(
k′−

[
1

kzo

+ h̄

mc
(1−cos θ)

]−1
)

.

(A3)

The argument of this delta function equivalently enforces
Eh̄kzo ẑ−h̄k′ + h̄ck′ − h̄ckzo = mc2, as evidenced by (19). The
integration over k′ in (A2) is then easily performed.

The well-known cross-section formula is then obtained by
dividing the probability by the number of incident photons per
area:

σ = P

�/(h̄ckzo)
= e4

m2c4

∑
λ′=1,2

∫
d�k′

∣∣εkz
· ε∗

k′λ′
∣∣2 k′2

k2
zo

,

(A4)

where 1
k′ = 1

kzo
+ h̄

mc
(1 − cos θ ).

APPENDIX B: S MATRIX

When the vector potential has (unidirectional) functional
dependence Ai(z − ct) and in the absence of a scalar potential
�, the Volkov states

�V
p (r,t) =

√
mc2

(2πh̄)3Ep
exp

{
i
p · r − Ept

h̄
+ i

h̄(pzc − Ep)

×
∫ z−ct

−∞

[
ep · Ai(�) − e2

2c
A2

i (�)

]
d�

}
(B1)

satisfy the Klein-Gordon equation (1). These states, which
form a complete solution basis, are parametrized by asymptotic

momentum p and energy Ep =
√

p2c2 + m2c4. The Volkov
states (B1) are normalized according to∫

d3r
[
�V ∗

p (r,t)�̇V
p′ (r,t) − �V

p′ (r,t)�̇V
p (r,t)

]
= 2mc2

ih̄
δ(p − p′). (B2)

When the complete vector potential A(r,t) = Ai(z − ct) +
λAs(r,t) is inserted into the Klein-Gordon equation (1), we
have

−h̄2 ∂2�

∂t2
= [(−ih̄c∇ − eAi)

2 + m2c4]� + λVint� + λ2V
(2)

int ,

(B3)

where the interaction terms are given by (assuming ∇ ·
As = 0)

Vint ≡ 2ieh̄cAs · ∇ + 2e2Ai · As and V
(2)

int ≡ e2A2
s . (B4)

Here, λ is the usual expansion parameter of perturbation theory
that will later be set to one.

We construct a wave packet comprised of Volkov states
using the form (24). Since the full vector potential A(r,t)
is no longer unidirectional, the coefficients must carry time
dependence, which we write as

βp(t) = β(0)
p + λβ(1)

p (t) + · · · . (B5)

We take β
(0)
p to be time independent, specifying the initial

state [implying β
(1)
p (t = −∞) = 0]. Installing (B5) into the

Klein-Gordon equation (B3) and keeping terms up to order λ

leads to

−h̄2
∫

d3p
(
β̈(1)

p �V
p + 2β̇(1)

p �̇V
p

) =
∫

d3pβ(0)
p Vint�

V
p . (B6)

Terms that do not involve a power of λ cancel identically, since
by definition −h̄2 ∂2

∂t2 �
V
p = [(−ih̄c∇ − eAi)2 + m2c4]�V

p .
Next we multiply both sides of (B6) by �V ∗

p′ and integrate
over r and t . The first term that results on the left-hand side
can be rewritten by performing an integration by parts:∫

dt�V ∗
p′ β̈(1)

p �V
p

= β̇(1)
p �V ∗

p′ �V
p

∣∣+∞
−∞ −

∫
dtβ̇(1)

p

(
�̇V ∗

p′ �V
p + �V ∗

p′ �̇V
p

)
. (B7)

The boundary term is zero because we may assume β̇
(1)
p (t =

±∞) = 0 if the electromagnetic disturbance has a beginning
and end. This yields

−h̄2
∫

dt

∫
d3pβ̇(1)

p

∫
d3r

(
�V ∗

p′ �̇V
p − �̇V ∗

p′ �V
p

)
=

∫
d3pβ(0)

p

∫
d3r

∫
dt�V ∗

p′ Vint�
V
p . (B8)

The spatial integral on the left can be performed using (B2),
and the resulting delta function collapses the momentum
integral. The time integration becomes trivial, immediately
yielding (26).
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