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The radiation emitted by a single-electron wave packet in an intense laser field is considered. A relation
between the exact quantum formulation and its classical counterpart is established via the electron’s
Wigner function. In particular, we show that the wave packet, even when it spreads to the scale of the
wavelength of the driving laser field, cannot be treated as an extended classical charge distribution, but
rather behaves as a pointlike emitter carrying information on its initial quantum state. We outline an
experimental setup dedicated to put this conclusion to the test.
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The availability of super-intense lasers has stimulated
interest in relativistic electron dynamics in strong driving
fields [1]. Experimenters have observed the effects of
ponderomotive acceleration, the Lorentz drift, and plasma
wake fields through direct detection of electrons ejected
from an intense laser focus. Photoemission from relativisti-
cally driven plasmas, in particular, nonlinear Thomson
scattering [2], has also been studied.

Much theory and computational effort has been devoted
to the dynamics of free-electron wave packets driven by
intense fields [3–5] and the associated scattered radiation
[4,6,7]. Coherent emission from many electrons can be
viewed in the forward direction with the emerging laser
beam. Here, we consider incoherent photoemission by free
electrons out the side of a focused laser, as a means of
studying electron dynamics.

A free-electron wave packet with an initial spatial size
on the scale of an atom undergoes natural quantum spread-
ing, which eventually reaches the scale of an optical wave-
length, as illustrated in Fig. 1 [5]. Moreover, an electron
wave packet born through field ionization is pulled from its
parent atom at a finite rate, typically emerging over mul-
tiple laser cycles. This, combined with the Lorentz drift
and sharp ponderomotive gradients found in a tight rela-
tivistic laser focus, can cause a single-electron wave packet
to be strewn throughout a volume several laser wave-
lengths across [7].

The question naturally arises as to how a single-electron
wave packet radiates, especially when it undergoes such
highly nondipole dynamics, where different parts of the
electron wave packet experience entirely different phases
of a stimulating laser field. Against the background of the
numerous successes of semiclassical strong-field physics,
the problem has been treated so far within an intuitively
appealing model [6,7] where the quantum probability cur-
rent is multiplied by the electron charge to produce an
extended current distribution used as a source in
Maxwell’s equations [8]. The intensity computed classi-
cally from the extended current distribution is then asso-
ciated with the probability of measuring a photon. Because

of interference, this approach can lead to dramatic sup-
pression of radiation for many directions and to a substan-
tial loss in the overall scattered-light energy (see Fig. 2)
[9]. It is interesting to note that A. H. Compton initially
proposed a ‘‘large electron’’ model to explain the decrease
in cross section with angle for Compton scattering of
harder x rays, which he later abandoned when the effect
of momentum recoil was understood [10].

In this Letter, we provide a fully quantum-mechanical
treatment of photoemission by a single-electron wave
packet in a laser field and relate it to a classical description
via the electron’s Wigner function. We show that no inter-
ference occurs between emission from different parts of an
initially Gaussian wave packet, even if spatially large. In a
plane-wave driving field, this result holds for wave packets
of any shape and size. The radiative response can be
mimicked by the incoherent emission of a classical en-
semble of point charges. We outline an experimental ar-
rangement able to probe the single-electron emission
behavior by combining methods from strong-field physics
and quantum optics.

Quantum electrodynamics provides the general frame-
work to calculate the radiation from a single-electron wave
packet. The radiated intensity is proportional to the expec-

FIG. 1 (color online). An electron wave packet via Klein-
Gordon equation after natural spreading from an initially
Gaussian-shaped size of 1 Å. The spreading takes places during
190 cycles in a plane wave with intensity 2� 1018 W=cm2 and
wavelength � � 800 nm.
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tation value of the correlation function of the current
density, rather than the expectation value of the current
density of the wave packet [11]. From the definition of the
spectral intensity of the emitted radiation d"k0 �
c
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Here, a superscript (�) indicates the positive (negative)
frequency parts of operators, R0 the distance to the obser-
vation point from the coordinate center, k0 and !0 the
radiation wave vector and frequency, respectively, d�0

the emission solid angle, e the electron charge, and c the
speed of light. Equation (1) can be represented in a more
familiar form via the transition current density Jp0i�x� in the
Schrödinger picture:
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In deriving Eq. (2), the relation between the
Heisenberg Ĵ���� �t� and Schrödinger ĴS� representation
via the time-evolution operator U�t� is used:
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S
�j i�t

0�i, and the nota-

tion h p0 �t�jĴ
Sj i�t�i � Jp0i�x� � � � p0 �x�� i�x��, where

�;� 2 f1; 2; 3g.  i�x� is the initial electron wave packet
in the driving field,  p0 �x� is a complete set of electron
states in the driving field with an asymptotic momentum p0,
and � are the Dirac matrices. Equation (2) indicates that
the total probability of photon emission should be calcu-
lated as an incoherent sum over the final momentum states
of the electron, even though in the experiment, the final
electron momentum could be undetected.

First, we examine the contributions to the emitted radia-
tion from the different momentum states of the initial
electron wave packet  i�x� �

R
d3p��p� p�x�. Then, we

consider contributions from different phase-space parts of
the electron wave packet to the radiation.

In the case of a plane-wave driving laser field, Eq. (2)
implies that there is no interference between the different
momentum states of the electron wave packet. Here,  p are
the well-known Volkov states. Consider for simplicity the
low-intensity case (i.e., one-photon Thomson scattering),
where the emitted intensity adopts the structure d"k0 /

j
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counting for scalar products of Dirac spinors and matrices.
The energy-momentum-conserving � functions stemming
from the space-time integral in Eq. (2), require a particular
initial electron momentum p for given final electron and
photon momenta p0 and k0 (i.e., there is a unique quantum
path). The emitted intensity thus becomes an incoherent
sum
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over the contributions d"k0 �p� emitted from a specific
initial p state [12]. One can show that this argument also
holds in the case of multiphoton Thomson scattering in a
plane-wave field.

The situation is more complicated in a focused laser
beam when the driving field contains a distribution of
initial photon momenta k. In this case, interference in
the emitted radiation in principle is possible. If, for ex-
ample, the initial electron is in a superposition of two
momentum states jp1i and jp2i, then the final electron state
jp0iwith emission of a photon of certain momentum k0 can
be reached by two indistinguishable paths: either from the
state jp1i or from jp2i by absorption of different photons
k1;2 � k0 � �p0 � p1;2�=@ from the external field, giving
rise to interference. However, in the case of a Gaussian
wave packet, interferences of different momentum states
are suppressed by the continuous spectrum of the initial
electron momenta, which allow for many paths whose
interfering contributions largely cancel out.

Although Eq. (2) shows the general way to calculate the
emission intensity, it is difficult to apply in a real experi-
mental situation, as the quantum eigenstates of the electron
in a focused laser beam are usually unknown. It is therefore
desirable to mimic the quantum electrodynamical result of
Eq. (2) by means of classical electrodynamical calculations

10
0 0.5 1.5 21

-6

10-5

10-4

10-3

10-2

10-1

100

em
is

si
on

 e
ffi

ci
en

cy
forward direction

overall

perpendicular
directionreverse

direction

FIG. 2 (color online). Efficiency of light scattering into differ-
ent directions as a function of size r0 of a laser-driven classical
Gaussian charge distribution associated with an electron wave
packet. k is the laser wave vector. The forward emission does not
vary from that of a single point oscillator with equal net charge.
In the perpendicular direction, the intensity drops by orders of
magnitude as the wave function grows to the scale of the
wavelength or bigger.
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(i.e., in the quasiclassical limit, when the photon energy is
much smaller than the electron rest energy and recoil
effects are negligible). We illustrate how to do this by
way of the example of one-photon Thomson scattering in
a focused laser beam. For the initial wave packet defined
by the momentum distribution coefficients ��p�, one can
express the quantum-mechanical formula for spectral in-
tensity of Eq. (2) via the Wigner function �W�r;p� �R
d3q��p� q=2����p� q=2�e�i=@�q�r of the initial elec-

tron wave packet as follows:
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p� @�~k� k�=2� k0, e�0 is the polarization of the emitted
photon, and A0�k� the Fourier component of the focused
laser beam. In the case of a plane-wave driving field,
Eq. (4) summed over the polarizations e�0 reduces to
Eq. (3) since Mk0�0 is r-independent then, andR
d3r�W�r;p� / j��p�j2.
When the Wigner function is non-negative (e.g., for a

Gaussian wave packet), it may be interpreted as the initial
electron distribution in phase space. The message of the
structure of Eq. (4) is that the total photoemission proba-
bility is an incoherent sum over the contributions of each
local phase-space element of the electron distribution. If,
for example, the phase-space distribution consists of two
separate parts: �W � ��1�W � �

�2�
W , then the intensities emit-

ted from each part incoherently add up to yield the total
radiation intensity. In the quasiclassical limit, the radiation
intensity Mk0�0 of an electron of momentum p can be
directly related to the known classical electrodynamical
result: Mk0�0 � jMk0�0 �r;p�j2, with Mk0�0 �r; p� �
2�@

R
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@!0�; in particular, in the nonrelativistic limit,
l�0 �p;p0;k;k0� � �e��0e�� with the polarization of the driv-
ing field e�. Thus, Eq. (4) describes the incoherent average
of the radiation intensity over the initial electron probabil-
ity distribution in phase space. The radiation can thus be
modeled by a classical ensemble of point emitters, taken
individually.

A different situation arises when the Wigner function is
negative in some phase-space region, indicating intrinsic
quantum behavior. For instance, this happens when the
initial electron is in a superposition of two momentum
states. As shown above, this leads to interference in the
emitted radiation. This effect is included in Eq. (4), but
cannot be modeled by classical means here.

The quantum interference effects above have to be
clearly distinguished, though, from the classical inter-
ference effects arising in the coherent part of the ra-
diation mentioned in the introduction. The latter is cal-
culated employing an ensemble average of the current
operator hJ�x�i as a source for the expectation value of
the radiated field hEi (i.e., the scattering amplitude is
first averaged over the initial electron distribution,
and afterwards squared). This way, the incoherent field
with a random phase is excluded [13]. Under such a
scenario, different spatial parts of an electron wave
packet give strongly interfering contributions to the co-
herent radiation (see Fig. 2). Regarding its interference
structure in momentum space, we examine the coher-
ent part of one-photon Thomson radiation from an elec-
tron wave packet in a plane laser wave, which reads
d"�coh�
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tions p! ~p 
 p� @�k� k0�, which fulfill the energy-
momentum conservation with the initial and final mo-
mentum states available in the initial wave packet, to
interfere in the coherent radiation. This is in contrast to
the total emitted radiation in Eq. (3), which is free from
interference in a plane-wave driving field. The coherent
radiation thus qualitatively differs from the total radi-
ation. In the case of a single electron that we are inter-
ested in, the coherent radiation represents only a small part
of the total radiation, but it becomes dominant in the case
of N � 1 radiating electrons that simultaneously interact
with an applied field. As in the case of radiation from an
N-atom ensemble [11], the intensity of the phase-matched
coherent radiation is multiplied by a factor of N�N � 1�,
while the incoherent radiation by N, which becomes neg-
ligible. Therefore, the main contribution in nonlinear
Thomson scattering in plasma [2] comes from the coherent
radiation. The same holds for high-harmonic generation
from many atoms (see, e.g., [14]). Note that, in fact, the
‘‘single-atom response’’ which is usually calculated using
the expectation value of the electron acceleration, accounts
for the coherent part of the high-harmonic radiation only
[11,15].

Finally, we suggest that the radiation scattered from a
single free electron in a laser is detectable by modern
experimental techniques. The feasibility of seeing scat-
tered light depends crucially on whether the electron
wave packet radiates with the strength of a classical point-
like electron, as argued above. For linear Thomson scat-
tering, the rate of emitted photons is proportional to the
stimulating intensity. A longer pulse duration, therefore,
can compensate for lower intensity. Nevertheless, relativ-
istic intensities can aid in spectral-discrimination: The
Lorentz drift pushes the electron in the forward direction
of the laser, causing the scattered fundamental light to be
redshifted when viewed from the side.

We envision an electron ionized from an atom during the
driving pulse or prepared by a suitable prepulse (e.g., the

PRL 100, 153601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2008

153601-3



second electron stripped from He at �2� 1016 W=cm2).
Electrons given up by atoms during the leading edge of the
pulse tend to be pushed out of the focus by the pondero-
motive gradient. The density of donor atoms can be chosen
such that on average one electron experiences the highest
intensity with the accompanying forward drift and red
shift. Keying in on this spectral signature may be critical
for differentiating authentic scattered photon events from
other noise sources. Fast timing in the photon-detection
electronics can also suppress false signals, for example,
delayed light scattered from the walls of the experimental
chamber.

We computed a representative single classical electron
trajectory in a tightly focused vector laser field with a peak
intensity of 1019 W=cm2, duration 35 fs, and wavelength
800 nm. Figure 3(a) shows the total radiated energy in the
far field emitted from the electron as it is released on the
rising edge of the pulse. The electron trajectory eventually
exits the side of the focus due to ponderomotive gradients.
Much of the scattered radiation emerges out the side of the
laser focus. The total radiated energy (all angles and fre-
quencies) from the single-electron trajectory is only
�0:24 eV, indicating less than one photon per laser shot.

Figure 3(b) shows the spatial distribution of light with
wavelengths falling between 850 nm and 950 nm. This
accounts for approximately 20% of the total emitted en-
ergy. Assuming 10% collection efficiency, this would
amount to an average 0.005 eV per shot, or one photon
per 300 shots. This can of course be increased if more
electrons are used, where the light radiated out the side of
the focus adds incoherently for a random distribution.
Intensities above 1019 W=cm2 are not ideal for this experi-
ment; a strong Lorentz drift redirects the photoemission
into the far forward direction.

In conclusion, we have studied the amount of light that
an electron scatters out the side of a laser focus. We have

shown that individual electrons radiate with the strength of
point emitters. The electron’s initial quantum state is im-
printed on the radiation spectrum via its Wigner function.
In special cases, interference of different electron momen-
tum components can arise, but it is qualitatively distinct
from the classical interference in the coherent radiation of
an extended charge distribution. Our results can be tested
in an experiment that combines for the first time the
sensitive techniques of quantum optics (e.g., single-photon
detectors) with the traditionally incompatible discipline of
high-intensity laser physics.
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FIG. 3 (color online). (a) Far-field intensity (at 100 �m dis-
tance) of light scattered from a single electron trajectory born on
axis during the early rising edge of an intense (1019 W=cm2)
laser pulse. Light (dark) [red (blue), respectively] scale indicates
regions of high (low) intensity. The laser beam (mesh) has waist
w0 � 3�. The total scattered energy is 0.24 eV. (b) Far-field
intensity between 850 and 950 nm with total scattered energy
0.05 eV.
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