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Abstract: We examine the energy exchanged between an electro-
magnetic pulse and a linear dielectric medium in which it propagates.
While group velocity indicates the presence of field energy (the locus of
which can move with arbitrary speed), the velocity of energy transport
maintains strict luminality. This indicates that the medium treats the
leading and trailing portions of the pulse differently. The principle of
causality requires the medium to respond to the instantaneous spec-
trum, the spectrum of the pulse truncated at each new instant as a
given locale in the medium experiences the pulse.
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1 Introduction

It is well verified, both analytically and experimentally [1, 2, 3, 4, 5, 6], that electromag-
netic pulses can seemingly propagate through linear dielectric media at speeds greater
than c. In these situations, it is important to note that one is tracking the presence of
only the electromagnetic field energy when these superluminal observations are made.
Of course in a dielectric medium, field energy is only part of the energy picture. Energy
is also stored in the medium; the pulse continually exchanges energy with the medium
as it propagates. Thus, the overly rapid appearance of electromagnetic energy at one
point and its simultaneous disappearance at another point does not require superlumi-
nal transport of energy, but merely an exchange between energy forms at individual
locations.

In a companion article [7] we discussed how the group delay function tracks the
presence of field energy in dielectric media (irrespective of whether the field energy is
transported from point to point or converted to or from energy stored locally in the
medium). In this article, we examine the actual transport of energy and how energy
is exchanged between the pulse field and the medium. In section 2 we briefly review
Poyntings theorem and the concept of energy transport velocity. Section 3 demonstrates
that the global energy transport velocity is strictly bounded by c. We also show that
there is no such limit on the velocity at which the centroid of field energy (i.e., the
average position of the field energy density) moves, even though the velocity at which
field energy is transported from point to point is strictly bounded by c. This effect is a
result of the medium exchanging energy asymmetrically with the leading and trailing
portions of the pulse.

In section 4 we discuss the exchange of energy between the field of a pulse and a linear
causal medium [8, 9]. As was pointed out, it is this exchange which is related to the fact
that group velocity is not bounded by c. Exotic behaviors such as superluminal or highly
subluminal pulse propagation [10] have often been analyzed using the Lorentz oscillator
model (either uninverted [11] or inverted [4]), which is known to be consistent with the
principle of causality [3]. In the present work, rather than invoking a specific causal
model to intimate the general compliance of the exotic behaviors with causality, we use
the principle of causality itself to demonstrate how the exotic behavior is a direct and
natural consequence, independent of a specific model. We also demonstrate how the
exchange of energy between the field and the medium depends on the instantaneous
spectrum [12, 13, 14] of the field.

2 Poynting’s theorem and the energy transport velocity

By way of review, Poynting’s theorem is a direct consequence of Maxwell’s equations
and in a linear, non-magnetic, non-conducting medium, and can be written as

∇ · S (r, t) +
∂u (r, t)

∂t
= 0, (1)

where the Poynting vector is

S (r, t) ≡ E (r, t)× B (r, t)
µ0

(2)

and the total energy density is given by

u (r, t) = ufield (r, t) + uexchange (r, t) + u (r,−∞) . (3)

This expression for the energy density includes all relevant forms of energy, including
a non-zero integration constant u (r,−∞), which corresponds to energy stored in the
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medium before the arrival of any pulse. The electromagnetic field energy density is

ufield (r, t) ≡ B2 (r, t)
2µ0

+
ε0E

2 (r, t)
2

. (4)

The time-dependent accumulation of energy density transferred into the medium from
the field is given by

uexchange (r, t) ≡
∫ t

−∞
E (r, t′) · ∂P (r, t′)

∂t′
dt′. (5)

As uexchange increases, the energy in the medium increases. Conversely, as uexchange

decreases, the medium surrenders energy to the electromagnetic field. While it is possible
for uexchange to become negative, the combination uexchange+u (−∞) (i.e., the net energy
in the medium) cannot go negative since a material cannot surrender more energy than
it has to begin with. Both ufield and uexchange are zero before the arrival of the pulse
(i.e. at t = −∞). In addition, the field energy density returns to zero after the pulse has
passed (i.e. at t = +∞).

Poynting’s theorem has the form of a continuity equation which, when integrated
spatially over a small volume V , yields∫

A

S · da = − ∂

∂t

∫
V

ud3r, (6)

where the left-hand side has been transformed into an area integral representing the
power leaving the volume. Let the volume V be small enough to take S to be uniform
throughout. The energy transport velocity (directed along S) is then defined to be the
effective speed at which the energy contained in the volume (i.e. the result of the 3-D
integral) would need to travel in order to achieve the power transmitted through one side
of the volume (e.g., the power transmitted through one end of a tiny cylinder aligned
with S). The energy transport velocity as traditionally written [15] is then

vE ≡ S /u . (7)

It is not essential to time-average S and u over rapid oscillations, although this average
is often made [11]. (One may choose to add the curl of an arbitrary vector function to
S. However, this possibility should not be injected into (7) since it cannot contribute to
the integral in (6).)

When the total energy density u is used in computing (7), the energy transport
velocity is fictitious in its nature; it is not the actual velocity of the total energy (since
part is stationary), but rather the effective velocity necessary to achieve the same energy
transport that the electromagnetic flux alone delivers. There is no behind the scenes
flow of mechanical energy. Moreover, if only ufield is used in evaluating (7), the Cauchy-
Schwartz inequality (i.e., α2 + β2 ≥ 2αβ) ensures an energy transport velocity that
is strictly bounded by the speed of light in vacuum c. We insist that the total energy
density u at a minimum should be at least as great as the field energy density so that
this strict luminality is maintained. In this we differ from previous usage of the energy
transport velocity in connection with amplifying media [3, 4, 5] where the constant
of integration u (−∞) was left at zero, resulting in the viewpoint of superluminal and
negative (opposite to the direction of S) energy transport velocities.

3 Average energy transport velocity

Since the point-wise energy transport velocity defined by (7) is strictly luminal, it follows
that the global energy transport velocity (the average speed of all relevant energy) is
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also bounded by c. This has been discussed for pulses propagating in vacuum [16]. The
analysis given here includes also the effects of a linear medium. To obtain the global
properties of energy transport, we begin with a weighted average of the energy transport
velocity at each point in space. A suitable weighting parameter is the energy density at
each position. The global energy transport velocity is then

〈vE〉 ≡
∫

vEud3r∫
ud3r

=
∫

Sd3r∫
ud3r

(8)

where we have inserted the definition (7), and the integral is taken over all relevant
space.

Integration by parts leads to

〈vE〉 =
∫

r∇ · Sd3r∫
ud3r

=

∫
r∂u

∂t d
3r∫

ud3r
(9)

where we have assumed that the volume for the integration encloses all energy in the
system and that the field near the edges of this volume is zero. We have also made a
substitution from (1). Since the continuity relation (1) is written with no explicit source
terms (i.e. zero on the right-hand side), the total energy in the system is conserved and
is equal to the denominator of (9). This allows the time derivative in (9) to be brought
out in front of the entire expression, giving

〈vE〉 = ∂ 〈r〉
∂t

, (10)

where

〈r〉 ≡
∫

rud3r

/∫
ud3r . (11)

Equation (11) represents the ‘center of mass’ or centroid of the total energy in the
system [8].

This precise relationship requires the total energy density u. If, for example, only
the field energy density ufield is used in defining the energy transport velocity, the time
derivative cannot be brought out in front of the entire expression as in (10) since the
integral in the denominator would retain time dependence. Although (10) guarantees
that the centroid of the total energy moves strictly luminally (since vE is pointwise lu-
minal), there is no such guarantee on the centroid of field energy alone. Mathematically,
we have 〈

S
ufield

〉

= ∂

∂t

∫
rufieldd3r∫
ufieldd3r

. (12)

While the left-hand side of (12) is strictly luminal (via the Cauchy-Schwartz inequal-
ity), the right hand side can easily exceed c as the medium exchanges energy with the
field. Moreover, it is the field energy that is typically “watched” in connection with
pulse propagation. In an amplifying medium that exhibits superluminal behavior, for
example, the rapid appearance of a pulse downstream is merely an artifact of not rec-
ognizing the energy already present in the medium until it converts to the form of field
energy[4, 5]. Traditional group velocity is connected to this method of accounting, which
is why it can become superluminal.

To see this connection, consider the centroid of field energy appearing in the right-
hand side of (12), which defines the pulse’s position (according to an “observer” who
sees only field energy):

〈rfield〉t ≡
∫

rufield (r, t) d3r

/∫
ufield (r, t) d3r . (13)
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As a pulse evolves from an initial time t0 to time t0 +∆t, the difference in the average
position of the field energy is given by

∆r ≡ 〈rfield〉t0+∆t − 〈rfield〉t0 . (14)

In the appendix we sketch how Eq. (14) can be rewritten as the sum of two terms with
intuitive interpretations:

∆r = ∆rG +∆rR. (15)

(This expression is very similar to Eq. (27) in our companion article [7] in which we
considered the time difference between the arrival of pulse energy at two points in space,
as opposed to the displacement of the field centroid at two points in time as done here.)

The first term, ∆rG (typically the dominant contributor to the total displacement
∆r) is a linear superposition of the group velocity given by

∆rG ≡ ∆t

∫
[∇k Reω (k)] ρ (k, t) d3k, (16)

where ρ (k, t) is a normalized k-space distribution of field energy density (see Eq. (40))
at the final time t ≡ t0 +∆t:

ρ (k, t) ≡ ufield (k, t)
/∫

ufield (k, t) d3k . (17)

Equation (16) explicitly demonstrates how the group velocity function ∇k Reω (k) is
connected to the presence of field energy. The velocity of the pulse is predicted by
an average of the group velocity function weighted by the k-space distribution of field
energy in the final pulse (i.e. the pulse at t = t0 + ∆t). To the extent that this k-
space distribution of the field energy is modified due to amplification or absorption, the
displacement of the centroid changes accordingly. Since, as is well known, the group
velocity function can be superluminal or negative, the displacement per time ∆rG /∆t
can take on virtually any value.

Note that in Eq. (16) we use real wave-vectors associated with complex frequencies.
Also, in writing (16) we made the restrictive assumption that ω (k) is single-valued. For
details, see the appendix

The term ∆rR in (15) represents a displacement which arises solely from a reshap-
ing of the pulse through absorption or amplification (without considering the dispersion
introduced by propagation). This reshaping displacement is the difference between the
pulse position at the initial time t0 evaluated without and with the spatial frequency am-
plitude that is lost during propagation (speaking as though the medium is absorptive).
The reshaping displacement is zero if the amplitudes of the spatial frequency compo-
nents are unaltered during propagation (i.e. if the imaginary part of ω (k) is tiny). The
reshaping displacement is also relatively modest (negligible) if the pulse is unchirped
before propagation. In addition, it goes to zero in the narrowband limit even if pulses
experience strong absorption or amplification. (In the narrowband limit, ∆rG reduces to
∇k Reω

(
k̄
)
, where k̄ is the central wave-vector in the pulse. This recovers the standard

group velocity obtained using expansion techniques.)
Because ∆rR is ususally small, the presence of field energy is generally tracked by

group velocity as shown in Eq. (16). Thus, while the velocity of the centroid of total
energy is strictly bounded by c (as demonstrated in Eq. (10)), the centroid of field
energy can move with any speed. This is not very mysterious when one recalls that in
our discussion of field energy we have made no mention of where this energy comes from.
Since a dielectric medium continually exchanges energy with the field of a pulse, the
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rapid movement of the centroid of field energy requires only that the medium exchange
energy differently with various portions of the pulse. For example, the centroid of the
field can be made to move extra fast if the medium gives energy to the leading portion
and takes energy from the trailing portion (very slow propagation requires the converse).

4 Energy exchange and the instantaneous spectrum

In this section, we turn our attention to the exchange of energy between the field and
the medium, which is responsible for the seemingly exotic behavior of superluminal
and highly subluminal pulses. For this purpose it is enlightening to consider uexhchange

given in Eq. (5) within a frequency context. The frequency domain and time domain
representation of the electric field E at a point r are related by

E (r, ω) =
1√
2π

∫ ∞

−∞
eiωtE (r, t) dt, (18)

E (r, t) =
1√
2π

∫ ∞

−∞
e−iωtE (r, ω) dω. (19)

(Here we return to the convention of real frequencies ω.) We assume a linear, isotropic
medium so that the polarization is connected to the electric field in the frequency domain
via

P (r, ω) = ε0χ (r, ω)E (r, ω) . (20)

Homogeneity need not be assumed here. We take all fields to be real in the time domain,
so that the following symmetries hold in the frequency domain:

E (r,−ω) = E∗ (r, ω) (21)
P (r,−ω) = P∗ (r, ω) (22)
χ (r,−ω) = χ∗ (r, ω) . (23)

The energy density (5), can immediately be written as

uexchange (r, t) =
∫ t

−∞

[
1√
2π

∫ ∞

−∞
E (r, ω′) e−iω′t′ dω′

]

·
[−iε0√

2π

∫ ∞

−∞
ωχ (r, ω)E (r, ω) e−iωt′ dω

]
dt′. (24)

With a rearrangement of integration order, the expression becomes

uexchange (r, t) = −iε0

∫ ∞

−∞
dωωχ (r, ω)E (r, ω) ·

∫ ∞

−∞
dω′E (r, ω)

1
2π

∫ t

−∞
e−i(ω+ω′)t′dt′.

(25)
The final integral in (25) becomes the delta function when t goes to +∞. In this case,
the middle integral can also be performed. Therefore, after the point r has experienced
the entire pulse, the total amount of energy density that the medium has exchanged
with the field is

uexchange (r,+∞) = −iε0

∫ ∞

−∞
ωχ (r, ω)E (r, ω) · E (r,−ω) dω. (26)

Finally, we use the symmetries (21) and (23) to obtain

uexchange (r,+∞) = ε0

∫ ∞

−∞
ω Imχ (r, ω) |E (r, ω)|2 dω. (27)
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The above formula is well known and appears in a textbook by Landau and Lifshitz
[17]. However, to our knowledge, the argument that follows is presented here for the
first time.

The expression (27) describes the net exchange of energy density after all interaction
between the pulse and the medium has ceased at the point r. We can modify this formula
in a simple and intuitive way so that it describes uexchange for any time during the pulse.
This requires no approximations; the slowly-varying envelope approximation need not
be made. The principle of causality guides us in considering how the medium perceives
the electric field for any time.

Since the medium is unable to anticipate the spectrum of the entire pulse before
experiencing it, the material must respond to the pulse according to the history of the
field up to each instant. In particular, the material at all times must be prepared for the
possibility of an abrupt cessation of the pulse, in which case all exchange of energy with
the medium ceases. If the pulse were in fact to abruptly terminate at a given moment,
then obviously (27) would immediately apply since the pulse would be over; it would
not be necessary to integrate the Fourier transform (18) beyond the termination time t
for which all contributions are zero. Causality requires that the medium be indifferent
to whether the pulse actually ceases at a given instant before that instant arrives.
Therefore, (27) in fact applies at all times where the spectrum (18) is evaluated over
that portion of the field previously experienced by the medium.

The following is then an exact representation for the exchange energy density defined
in (5):

uexchange (r, t) = ε0

∫ ∞

−∞
ω Imχ (r, ω) |Et (r, ω)|2 dω, (28)

where

Et (r, ω) ≡ 1√
2π

∫ t

−∞
E (r, t′) eiωt′ dt′. (29)

The time dependence enters only through |Et (r, ω)|2, the instantaneous power spectrum,
which has been used to describe the response of driven electronic circuits [12], the
acoustical response of materials to sound waves [13], and the behavior of photon counters
[14].

The causality argument presented above comprises a sufficient proof of (28) and (29).
It is essentially the same argument as that used to justify that the susceptibility has no
poles in upper half of the complex χ (r, ω) plane, which leads to the Kramers-Kronig
relations [18]. We have given formal proof starting from this more familiar context of
causality in Ref. [8], while including the possibility of both material anisotropy and
diamagnetism. A streamlined proof is given in Ref. [9] for an isotropic non-magnetic
dielectric.

The expression (28) reveals physical insights into the manner in which causal dielec-
tric materials exchange energy with different parts of an electromagnetic pulse. It is clear
from (28) that the magnitude of uexchange depends on the overlap that the instantaneous
spectrum has with the resonances in the medium (described by Imχ (r, ω)). Since the
function Et (r, ω) is the Fourier transform of the pulse truncated at the current time
and set to zero thereafter, it can include frequency components that are not present in
the pulse taken in its entirety. As a point in the medium experiences the pulse, the in-
stantaneous spectrum can lap onto or off of resonances in the medium, causing uexchange

to change accordingly. As discussed in section 2, as uexchange increases the medium ab-
sorbs energy from the pulse and as uexchange decreases the medium surrenders energy
to the pulse. Thus a point in the medium may amplify the pulse at one instant while
absorbing at another. As noted at the end of section 3, this allows for the possibility
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of dramatic superluminal or highly subluminal effects when observing the field energy
alone. In section 5 we discuss specific examples in which this exotic behavior occurs.

Before proceding, we briefly note that the expressions (28) and (29) manifestly con-
tain the Sommerfeld-Brillouin result [11, 19] that a sharply defined signal edge cannot
propagate faster than c. If a signal edge begins abruptly at time t0, the instantaneous
spectrum Et (ω) clearly remains identically zero until that time. In other words, no
energy may be exchanged with a material until the field energy from the pulse arrives.
Since, as was pointed out in connection with Eq. (7), the Cauchy-Schwartz inequality
prevents the field energy from traveling faster than c, at no point in the medium can a
signal front exceed c.

5 Discussion

In this section we discuss several specific examples which illustrate the concepts dis-
cussed above. We begin with a situation in which a pulse propagates superluminally
(as reckoned by observing the centroid of field energy) in an amplifying medium. We
choose the pulse so that the spectrum of the entire pulse is in the neighborhood of
an amplifying resonance, but not on the resonance [3, 4, 5]. The instantaneous spec-
trum during the leading portion of the pulse is wider than the entire spectrum, and
can therefore interact with the nearby gain peak. The medium accordingly amplifies
this perceived spectrum, and the front of the pulse grows. During the latter portion of
the pulse the instantaneous spectrum narrows and withdraws from the gain peak and
energy is absorbed from the trailing portion. The net result is that the centroid of field
energy moves forward at a speed greater than c. The effect is not only consistent with
the principle of causality (as has been previously demonstrated via the Lorentz model
[3, 4, 5]), but it is in fact a direct and general consequence of causality as demonstrated
by Eqs. (28) and (29).
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Fig. 1. (a) The imaginary part of χ (ω) (b) Spectrum of the initial pulse in units of
(E0 /γ )2

To illustrate this effect, we employ the Lorentz model with a single resonance at ω0

and a damping frequency γ. (Note that the results derived above are independent of any
specific model.) In this model, the linear susceptibility is χ (ω) = fωp

2
/(

ω0
2 − ω2 − iγω

)
,

where ωp is the plasma frequency and f is the oscillator strength, which is negative for
an inverted medium. We have chosen the medium parameter values as follows: ω0 =
1×105γ, fωp

2 = −100γ, and consider propagation through a thickness of 1.9 (c /γ ). Fig-
ure 1(a) shows the imaginary parts of χ (ω) obtained using these parameters. The electric
field of the initial pulse is chosen to be Gaussian, E (0, t) = E0exp

(−t2
/
τ2

)
cos (ω̄t),

with the following parameters: τ = 2 /γ and ω̄−ω0 = 10γ. Thus, the resonance structure
is centered a modest distance above the pulse carrier frequency, and there is only minor
spectral overlap between the pulse and the resonance structure. Figure 1(b) shows the
total spectrum of the initial pulse.
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Fig. 2. (a) Animation of energy densities for the Gaussian pulse traversing the
medium (distances are in units of c /γ and energy densities are in units of E2

0 /ε0 )
(b) Instantaneous spectrum of the pulse at the point where it enters the medium
(1.5 MB)

Figure 2(a) shows an animation of the energy densities associated with the pulse
as it propagates through the medium. The solid rectangle in the middle represents
the medium with vacuum on either side. The solid red line indicates the field energy
density. The purple line in the medium represents the combination uexchange + u (−∞)
(energy density in the medium). We have assigned u (−∞) to be the same value at each
point in the medium, chosen such that the energy density in the medium never becomes
negative at any point. For reference, the dashed line represents the field energy density of
a pulse that propagates exactly at c (i.e. as if the medium were not there). The actual
pulse exiting the medium is ahead of this pulse, indicating that the centroid of field
energy moved superluminally through the medium. Figure 2(b) shows the instantaneous
spectrum for the first point in the medium. Notice that as this point experiences the
leading portion of the pulse, the amount of overlap of the instantaneous spectrum with
the resonance (at ω0) increases and the medium surrenders energy to the leading portion
of the pulse. As this point experiences the entire pulse, the instantaneous spectrum
withdraws from the resonance, and energy is returned to the medium from the trailing
portion of the pulse (notice that the energy in the medium rebounds slightly at the end
of the pulse).

In Fig. 2 we have examined the instantaneous spectrum of the first point in the
medium, so that at large t the instantaneous spectrum withdrew from the resonance.
However, at points farther in the medium (after the pulse has experienced modifica-
tion), the spectrum of the pulse taken in its entirety acquires significant on-resonance
spectral components. Therefore, as the pulse propagates farther into the medium the
instantaneous spectrum does not withdraw entirely from the resonance during the trail-
ing portion of the pulse. Because the instantaneous spectrum has a greater overlap with
the resonance in the trailing portion than the leading portion, the trailing portion of the
pulse tends to be amplified to a greater extent than the leading portion. This explains
why superluminal propagation in an amplifying medium does not occur over indefinite
lengths. (For the pulse shown in Fig. 2, the transition from superluminal to subluminal
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transit times occurs when the medium thickness is increased from 1.9 (c /γ ) to 2 (c /γ ).)
The recent Wang experiment [6] in which superluminal propagation is observed in an

amplifying medium is similar to the example just discussed. In this experiment the pulse
spectrum is centered between two amplifying peaks, so that the broad instantaneous
spectrum in the early portion of the pulse accesses the resonances on both sides and
then withdraws in the later portions. In their report of this experiment the authors
specifically deny that the superluminal effect was associated with amplification of the
front edge of the pulse since the pulse taken in its entirety contained essentially no
spectral components resonant with the nearby gain lines. However, the instantaneous
spectrum reveals how the leading portion of the pulse may be amplified even in this
circumstance.

In the Wang experiment, the time required for a 4µs pulse to traverse a ∆r = 6cm
amplifying medium was ∆t ≈ −63ns, meaning the pulse moved forward in time by
about 1% of its width. The strength of the wings in the instantaneous spectrum can be
approximated as Et (ω) ∼ E (t) /(ω − ω̄) , where ω̄ represents a carrier frequency and
E (t) is the strength of the field at the moment the pulse is truncated. The imaginary part
of the susceptibility in a low-density vapor is approximately Imχ (ω) ≈ cg /ω , where g
is the frequency dependent gain coefficient (in the Wang experiment, g ≈ 0.1cm−1 at
a spectral shift of δω ≡ ω − ω̄ ≈ 2π (2MHz)). A crude approximation to the integral
(28) renders uexchange = ε0E

2 (t) cg /δω . This suggests that in the case of the Wang
experiment the front of the pulse extracts about 250× ε0E

2 (t) in energy density from
the medium (i.e. 250 times the energy density in the electromagnetic field of the pulse).
This energy density (extracted from the 6cm vapor cell) is distributed over about a
kilometer, corresponding to the duration of the front half of the pulse. Thus, the the
electromagnetic field energy on the forward part of the pulse is enhanced by several
percent and similarly the field energy diminishes on the trailing edge. This is consistent
with the data presented in the paper. (The traditional group velocity analysis used
by Wang is perhaps a more convenient way to predict the transit time of the pulse.
The utility of (28) lies primarily in its interpretation of how the pulse and the medium
interact. Neither analysis substitutes for the full solution to Maxwell’s equations, but
rather indicates some features of the solution.)

Superluminal behavior can also result when the spectrum of the overall pulse is
centered on an absorption resonance (i.e., Garret and McCumber effect [1]). The in-
stantaneous spectrum during early portions of the pulse is broader and laps off of the
absorption peak so that there is less attenuation. During the trailing portion of the
pulse, its instantaneous spectrum narrows onto the resonance peak and the back of the
pulse experiences greater attenuation. Subluminal behavior is the converse of the su-
perluminal examples given above. It occurs when the spectrum of the pulse (taken in
entirety) is just off of a near-by absorption resonances or if it centered on an amplifying
resonance. We have illustrated all of the scenarios discussed here in another work [9].
Our explanation of the asymmetric absorption using the instantaneous spectrum is con-
sistent with the explanation given by Crisp [20], who considered the time dependence
of the polarization for the Lorentz model. He described a kind of delayed response by
the oscillator to the stimulus of the pulse field.

As a final example, we consider a dielectric medium constructed with a narrow ab-
sorbing resonance superimposed on a wide amplifying resonance (both centered at the
same frequency). This type of resonance structure is generally chosen because of group
velocity considerations, but it is also interesting to consider in the present context. A rel-
atively narrowband pulse whose spectrum is centered on-resonance can be sent through
this medium with relatively little spectral modification. During the early portions of
the pulse, the wide wings of the instantaneous spectrum spread away from resonance
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to access the broad amplifying resonance. During the latter portion of the pulse, the
spectrum narrows and the trailing edge is attenuated by the absorbing resonance.
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Fig. 3. (a) Animation of energy densities for the Gaussian pulse traversing the
medium (distances are in units of c /γ and energy densities are in units of E2

0 /ε0 )
(b) Instantaneous spectrum of the pulse at the point where it enters the medium
(1.5 MB)

We employ a double resonance Lorentz oscillator so that the linear susceptibility
is χ (ω) = f1ωp

2
/(

ω0
2 − ω2 − iγ1ω

)
+ f2ωp

2
/(

ω0
2 − ω2 − iγ2ω

)
. For this example we

choose the medium parameter values as follows: ω0 = 1 × 105γ1, ωp = 10γ1, f1 = 0.02,
f2 = −0.1, and γ2 = 5γ1. Figure 3(a) illustrates the imaginary part of χ (ω) for these
parameters. The pulse is Gaussian as before, with parameters as follows: τ = 70 /γ1

and ω̄ = ω0. Figure 3(b) shows the spectrum of the initial pulse.

Fig. 4. (a) Animation of a Gaussian pulse traversing an amplifying medium. (b)
Instantaneous spectrum of the pulse as it enters the medium (1.5 MB)

Figure 4(a) is an animation of the energy densities associated with this pulse as
it traverses a medium of thickness 30 (c /γ1 ). Again, the purple line in the medium
represents the combination uexchange + u (−∞). Figure 4(b) shows the instantaneous
spectrum for the first point in the medium as it experiences the pulse. In this case, the
enhancement of the leading portion and the absorption of the trailing portion causes
the exiting pulse to emerge from the medium before the incoming pulse enters.

There has been some discussion about whether the pulse exiting the medium in
superluminal situations arises solely from the leading portion of the incoming pulse.
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Fig. 5. Animation of a truncated Gaussian pulse traversing an amplifying medium,
linear scale in the upper frame and logarithmic in the lower frame (2.0 MB)

This issue becomes clear in light of expression (28). Since the energy exchanged between
the pulse and the medium can only depend on the portion of the pulse that a given point
has already experienced, later portions of the pulse can have no influence on forward
portion. In Fig. 5 we animate the spatial profile of a pulse with a leading edge identical
to the pulse of Fig. 4 and the trailing edge set to zero after the peak of the Gaussian
profile. The medium is the same as in Fig. 4. The top graph in Fig. 5 shows the pulse on
a linear scale while the bottom graph shows it on a logarithmic scale. The field energy
density of this truncated pulse is plotted with a solid line. The dashed line shows the
untruncated pulse of Fig. 4. Because the truncated pulse taken in its entirety contains
a large amount overlap with the amplification resonance it experiences a great deal of
amplification in the trailing portion. However, it is clear from the plots that the leading
portions of both pulses are identical as causality demands. The entering peak and the
exiting peak are not causally connected [21]. The Gaussian appearance of the exiting
peak has no connection with the shape of the latter portion of the incoming pulse.

6 Summary

We have discussed energy transport in dielectric media. We examined the centroid of
total energy and found that its velocity of transport is strictly luminal. We also pointed
out that the velocity at which field energy transported from one point to another is
strictly bound by c. The centroid of only field energy density can move at any speed,
as predicted by group velocity. The overly rapid motion of the centroid of field energy
can occur when the medium exchanges energy asymmetrically with the leading and
trailing portions of the pulse. The principle of causality requires this asymmetric energy
exchange as governed by the instantaneous power spectrum used in Eq. (28).

A Appendix

In this appendix we sketch the derivation of expression (15) which connects group veloc-
ity with the presence of field energy. To accomplish this, we solve Maxwell’s equations
by selecting an instant in time and considering the spatial distribution of the pulse at
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that instant. This is in contrast to the more common method in which one chooses a
point in space and considers the time behavior of the fields at that point. Since the spa-
tial method of obtaining solutions is less common (owing to the fact that the material
polarization P enters into Maxwell’s equations through a time derivative as opposed to
a spatial derivative) we take a moment to review how the solutions are obtained.

The k-space and spatial distributions of the electric field at an instant t are related
by

E (k, t) =
1

(2π)3/2

∫
e−ik·rE (r, t) d3r, (30)

E (r, t) =
1

(2π)3/2

∫
eik·rE (k, t) d3k. (31)

Analogous expressions for B and P give the k-space representation for the magnetic
and polarization fields. We take E (r, t), B (r, t), and P (r, t) to be real functions, so
that the following symmetry holds for their k-space representations:

E (−k, t) = E∗ (k, t) (32)

with analogous expressions forB (k, t), andP (k, t). In a homogeneous, isotropic medium,
Maxwell’s equations have as a solution

E (k, t0 +∆t) =
∑
m

Em (k, t0) e−iωm(k)∆t. (33)

The initial pulse form E (k, t0) is chosen at the instant t0 for each frequency associated
with the wave number k. The solution renders the pulse form E (k, t0 +∆t) (in terms
of the initial pulse form) after an arbitrary time interval ∆t. The magnetic field is
connected to the electric field via

B (k, t) =
∑
m

k × Em (k, t) /ωm (k) , (34)

and the spatial profile of the pulse at the later time is obtained using (31).
The connection between the frequency ωm and wave number k is:

ω2
m

c2
[1 + χ (ωm)] = k2. (35)

We choose real values for k and solve Eq. (35) for ωm. The subscript m and the summa-
tions in (33) and (34) reflect the fact that the solution to (35) is in general multi-valued.
We take this degeneracy to be countable and therefore use a summation rather than
an integral. (For example, a single Lorentz oscillator is four-fold degenerate with two
distinct frequencies for a given k which can each propagate forwards or backwards.)
This degeneracy reflects the physical reality that in the presence of a complex linear
susceptibility χ (ω), different frequencies can correspond to the same wavelength. As
mentioned in the text, we make the simplifying assumption that only a single frequency
ω is associated with each k, so that we can write the solution to Maxwell’s equations
as:

E (k, t0 +∆t) = E0 (k, t0) e−iω(k)∆t. (36)

If this assumption is not made one can still derive expressions with the same interpre-
tation as those obtained here. However, the sums involved make the expressions more
complicated.
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The viewpoint of real k leads to the use of complex frequencies ω. The meaning of
complex frequencies is clear. The susceptibility of a complex frequency is determined by
the medium’s response to an oscillatory field whose amplitude either decays or builds
exponentially in time. If the susceptibility χ (ω) is known (measured) only for real values
of ω, its behavior for complex frequencies can be inferred through a Fourier transform
followed by an inverse Fourier transform with complex frequency arguments. Given the
real k vectors, the complex frequencies correspond to uniform plane waves that decay
or build everywhere in space as a function of time. (This is in contrast with the time
picture where the pulse is comprised of waves that are steady in time but which decayed
or build as a function of position.)

We now consider the average position of field energy at an instant and consider the
displacement at a later time. As mentioned in the text, we use the centroid of field
energy to define the pulse’s position (see (13)):

〈rfield〉t ≡
∫

rufield (r, t) d3r

/∫
ufield (r, t) d3r . (37)

Motivated by a desire to make a connection with group velocity, we rewrite (37) in
terms of the k-space representation of the fields:

〈rfield〉t = R [E (k, t)] , (38)

where

R [E (k, t)] ≡ i

∫
d3k

∑
j=x,y,z

[
ε0
2 E∗

j (k, t) · ∇kEj (k, t) + 1
2µ0

B∗
j (k, t) · ∇kBj (k, t)

]
∫

ufield (r, t) d3r
.

(39)
The k-space representation of the energy density is

ufield (k, t) =
ε0E (k, t) · E∗ (k, t)

2
+

B (k, t) ·B∗ (k, t)
2µ0

. (40)

We have included only the electric field in the argument of the displacement R since
the magnetic field can be obtained through (34).

The expression (39) is not very useful in itself. Its usefulness comes when applied to
the difference in the pulse’s average position at two different instants in time. Consider
a pulse as it evolves from an initial time t0 to time t0+∆t. The difference in the average
position at these two times is

∆r ≡ 〈rfield〉t0+∆t − 〈rfield〉t0 = R [E (k, t0 +∆t)]− R [E (k, t0)] (41)

Using the solution (36), the displacement can be written as the sum of two intuitive
terms (see (15)):

∆r = ∆rG (t) + ∆rR (t0) . (42)

The first term in (42), the net group displacement, is given in Eq. (16) and discussed in
the text. The second term in (15), the reshaping displacement, is given by

∆rR (t0) ≡ R
[
eIm ω(k)∆tE (k, t0)

]
− R [E (k, t0)] . (43)

The reshaping displacement is the difference between the pulse position at the initial
time t0 evaluated without and with the spatial frequency amplitude that is lost during
propagation. Dispersion effects due to propagation are not included since E (k, t0) is
used in both terms of Eq. (43).
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