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Without approximation the energy density in Poynting’s theorem for the generally dispersive and passive
dielectric medium is demonstrated to be a system tdtalamical energy density. Thus the density in
Poynting’s theorem is a conserved form that by virtue ofpitsitive definitenesgrescribes important quali-
tative and quantitative features of the medium-field dynamics by rendering the system dynamically closed.
This fully three-dimensional result, applicable to anisotropic and inhomogeneous media, is model independent,
relying solely on the complex-analytic consequences of causality and passivity. As direct applications of this
result, we show(1) that a causal medium responds to a virtual, “instantaneous” field spect@)nthat a
causal, passive medium supports only a luminal front velo¥ythat thespatial “center-of-mass” motion of
the total dynamical energy is also always luminal &hdthat contrary tq3) the spatial center-of-mass speed
of subsets of the total dynamical energy can be arbitrarily large. Thus we show that in passive media super-
luminal estimations of energy transport velocity for spatially extended pulses is inextricably associated with
incomplete energy accounting.
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[. INTRODUCTION “superluminal” nature of energy transport in dielectrics do
not have series representations that converge in large enough
Recently several groups have published the outcomes dfitervals to capture the cause of the anomalous behavior.
experiments in which superluminal electromagnetic pulseThis is because these effects are associated with medium-
propagation has been observed in various senses. TheBeld resonances that are given mathematically by singulari-
overages have varied from the moderilg to the extreme ties in the relevant constitutive relations. Thus, in order to
[2]. In most(but not al) of these recent works the authors establish an unambiguous notion of the global properties of
have freely expressed the conservative sentiment that notlenergy transport for finite energy medium-field excitations,
ing particularly disturbing has occurred with respect to rela-we introduce the moments of various components of the total
tivity. Indeed it is well known that all of the the predictions energy (analogous to a center of mas&nergy naturally
of the current classes of superluminal phenomenology haviends itself to this method since expectations are most in-
been inspired by classical theory, which is heavily circum-structive when the analog of a probability distributigr., a
scribed by the limitations of relativity. One of the purposespositive definite form is used. With regard to superluminal
of the theoretical work presented here is to point out ways irphenomena the evolutions of these various moments are not
which these conservative sentiments can be made precise.only enlightening and subject to concrete analysis, but also
To accomplish this, we address and clarify the centrabive the relevant and unambiguous generalization of group
issue of energy transport in dissipative/dispersive dielectricsvelocity for arbitrarily complicated puls€$].
(Here we limit to the passive case and address the active case The main results of this paper are given in a theorem and
elsewherg¢3].) We make these clarifications by introducing a a corollary. The first is given by Eq$48)—(50), and the
new theorem and an immediate corollary that address thsecond by Eqs(88) through(92). Most of this paper is de-
phenomena ofjlobal energy flow in causal media. It is only voted to their development, with only a limited amount of
in this global sense that the various authors have ventured &pace given to their application. In another publicatj8h
predict and, recently, to verify superluminal electromagnetiove show how the theorem can be used to precisedy,
pulse propagation, the local sense having been authoritajuantitatively explain both the Garrett and McCumbjs]
tively proscribed by the theorems of Sommerfeld and Bril-and Chiao[7] effects(as demonstrated through experiment
louin [4] almost 85 years ag@The global theory presented by Chu and Wond8] and Wanget al.[2], respectively. We
here also contains the main implication of the localalso discuss elsewhef@] how the traditional, local concept
Sommerfeld-Brillouin theory as an important corollary. of energy transport velocity and the global concept of the
In order to produce a notion of global energy transportvelocity of the energy’s spatial “center-of-mass” both pre-
that is unambiguous, we employ the method of moments oscribe upper bounds on the signal velocity.
expectationgmore often seen and used in quantum mechan- This paper is organized as follows: in Sec. Il we develop
ics and kinetic theory than in electromagnetic theomhese Poynting’s theorem for a passive dielectric. In Sec. Il A we
techniques allow one to pass beyond tbfien severgana- present Maxwell's equations and the assumptions that apply
lytic limitations of the local analyses usually employed in most generally to a passive linear dielectric. In Sec. Il B we
this area of research. For example, a commonly employethen show how this structure produces a positive definite
local tool is the Taylor series. Importantly, many of the ob-form for the total dynamical system energy density. Section
jects to which this local tool is applied when analyzing thell C discusses this form and shows how it implies luminal
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front speed without the usual recourse to path integrals, as With both the permittivity and permeability tensors non-
well as pointing out the crucial distinctions between the dy-trivial (i.e., not proportional to the identityand depending
namic total energy density and the quantti- D+ 3B-H, (locally) on the spatial coordinat@s well as nonlocally on
which is sometimes referred {d0]. In Sec. Ill we present time), we are prepared to analyze inhomogeneous and aniso-
the simple corollary to the theorem of Sec. Il B that aug-tropic media with both electric and magnetic effects. The
ments the local Sommerfeld-Brillouin theorems by showingdevelopment of the total energy density in the following sec-
that total energy transport is also globally luminal. Finally, intion can be greatly simplified leaving out anisotropy, but we
Sec. IV, and in contrast to the unsurprising results of Sec. llljnclude the more general derivation since interest has re-
we show that a certain subset of the total energy can havemerged recently in considering these eff¢dts 12.

superluminal global transport properties. As is obvious in these constitutive relations, we have
adopted the common practice of using the same symbols to
II. POYNTING'S THEOREM AND CONSERVATION denote the fields as well as their temporal Fourier transforms,
OF TOTAL DYNAMICAL ENERGY distinguishing the two sets only by explicit reference to ei-

_ ther timet or frequencyw: for F(t) any one of the original

A. Assumptions four fields, wedefineF(w) via
We start with Maxwell's equations for the foueal mac-

roscopic fields. These fields are the electric fiel,t), the 1 (*=
electric displacemer®(x,t), the magnetic inductioB(x,t), F(‘”)‘:\/? _ dteF), )
and the magnetic fielth(x,t). x andt denote, respectively, m
the spatial and temporal coordinates. We currently excludg,q then note the inversion formula
the possibility of macroscopic currents so that we are dealing

with a true dielectric. The dynamical equations are thian 1 (4w

the Heaviside-Lorentz system of units F(t)= — do e "“'F(w). (8)
d Vom)-
ED(U_CV XH(1)=0, @) Since the original fields are real, the transforms manifest the
symmetryF* (w) =F(— »*). Via Egs.(3) and(4), we then
d see that the permittivity and permeability tensors possess the
7t B(D+CVXE(1)=0. @ same symmetry: e.ge¥ (w) = e(— w*). In the following, we

refer to this symmetry ageal symmetry
Here and in much of the following we explicitly denote only  |n addition to assuming the validity of the macroscopic
the time coordinate since we assume aiyporallynonlo-  Maxwell’'s equations, we limit the constitutive relatiof®)
cal constitutive relations — i.e., we assume temporal but no&nd(4) to physically reasonable ones via the following three
spatial dispersion. We assume these relations are, neverthgssumptions.
less, local in the frequency domafstationary in time and (a) Causality.(w)—1 andz(w)—1 are rapidly vanishing

also finear: and analytiqtermwisé in the upper-half complew plane {
D(w)=&(w)E(w), 3 is f[he identity tensgr This implies the Kramers-Kronig re-
(@) =&(w)E(w) ® lations. Among these we will need that, for real
B(w)=pu(w)H(w). 4 .
()= p(@)H () 4 o 1pf+°°d e
e and u are, respectively, théelectrid permittivity and de(@]=1+7P| do o -
(magneti¢ permeability tensors. Since we currently exclude

nonlinear effectse andy are tensors of rank 2, and since we ) Sl (e Ima(e)]
can think of the fields as three-component column vectors, Re u(w)]=1 +—PJ do'———. (10
we can interpret these tensors as 3 matrices. The right T w
hand sides of Eqs(3) and (4) are then interpreted in the
sense of matrix multiplication.

Note that the permittivity and permeability tensors can
also dependocally on the space coordinate

Here the symbol P refers to the operation of taking the
Cauchy principal value

(b) Kinetic symmetry. In the absence of a strong, external,
static magnetic field, we have from near-equilibrium thermo-

= e(x,), (5) dynamic considerationsl 3] that
= (% ). ©6) €'(w)=e(w), (11)
We will suppress this dependence for the time being as it w ()= (o). (12)

does not enter the calculations immediately, but we empha-
size that this spatial dependence is important in the end tblere and in the following superscripitindicates the trans-
achieve finite and, hence, physical total energy. pose.
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(c) Passivity. We assume that the spegiré.e., the col- and dot the first of our Maxwell's equationd) into the
lection of eigenva|ue$f the imaginary parts 0% and/:L are electric field E(t), and add to this the result of dottlng the

positive for positive frequencies: second Eq(2) into the magnetic fieldH(t),
p{imle(w)]}>0, 13 E(t)~%D(t)JrH(t)-%B(t)+cV~[E(t)><H(t)]=0.
p{Im[ (w)]}>0. (14 (2D

Note that this assumption of passivity combined with theHere we have used the usual identity from vector
kinetic symmetry assumptiotb) shows that the imaginary calculus, namely that H(t) -V XE(t) —E(t)- VXH(t)

parts of the spectra of and,& are also positive for positive =V [E()x H(t).]' . , .
frequencieswhich property we call dissipation The goal of this section is to express the first two terms in

N Niccimati Eqg. (21) as the time derivative of a positive definite quantity
(') Dissipation. [quadratic in the electric and magnetic fiel&§t) andH(t) ]
Il of & >0, 15 under the assumptions made in the last section. We will iden-
[pie(w)}] A9 tify this quantity as the total dynamical energy density, com-
~ prising recoverable and irrecoverable mechanical energies as
ImLpinu(@)}]>0. (16) well as the energy stored solely in the electromagnetic field.

At first (¢’) might seem a more natural definition of passiv- 10 achieve this goal we temporarily introduce the polariza-
ity. (E.g., in a crystal the eigenvalues efgive the permit- tion P(t) and magnetizatioM(t). They are definedin the

tivity in the direction prescribed by the corresponding eigen_HeaV|S|de-Lorentz system of unitsQ) via

vectors. The imaginary parts of the eigenvalues then describe — _
absorption. However, we will eventually see th#&t) is the P():=D(t) ~E(V), 22)
more useful assumption from the complex-analytic point of M (1) :=B(t)— H(t). 23)

view. At any rate, in the case that these tensors encode the

electromagnetic properties of a crystal or an isotropic meUsing these to eliminat®(t) and B(t) from Eq. (21), we
dium, (c) and (¢) are equivalent since the eigenvectors Ofobtain '
these tensors can be taken to be feaj., the directions of

the crystal’s principle axgsFor a discussion of the relation- 1 1 J J

ship between what we have called dissipation and what we §||E(t)||2+§||H(t)||2 +E(1)- EP(I)+H(t)- EM(U
have called passivity see the Appendix.

Using real symmetry, we see that the imaginary parts of +cV-[E(t)XH(t)]=0. (24
and . are odd functions of real frequenay. Consequently,
according to the passivity propertg) [Egs. (13) and(14)],
we have that for all real frequencies

As the first term of this expression is manifestly the time
derivative of a positive definite quadratic form E{(t) and
H(t), we now need only to recognize the second and third

plo Im[e(w)]}=0, (17) terms in Eq.(24) as such. To that end we introduce and
define the electric and magnetic susceptibility tensors
plo M u(w)]}=0, (189  xe(w)=€(w)—1 and yy(w):=un(w)—1. The transforms of

the polarization and magnetization vectd®$w) andM (w),
with equality possibly holding only ab=0. We use the fact can be expressed locally in terms of the transforms of the
that these two tensors are non-negative in order to factoslectric and magnetic fields via
them and thereby make their spectral properties obvious:

there are tensor-valued functions:(w) and ay(w) such P(w)= xe(w)E(w), (25)
that
. . . M(w)=xn(o)H (o). 26
13) Im[e(w)]ZaE(w)aE(w), (19 (@)=xu(w)H(w) 26
. - . Note that from their definitions, and from the relevant prop-
o Imu(w)]=ay(w)ay(w) (200 erties of the permittivity and permeability tensppsoperties
) (a)—(c)], the susceptibility tensors are analytic and rapidly
for all real frequencies. vanishing in the upper halb plane, and also possess prop-
o _ _ erties (b) and (c). They also demonstrate real symmetry:
B. Derivation qf the tot_al dynamical energy density )‘(E(w):)‘(F(_ w*). (To avoid repetition, here and in the fol-
in Poynting’s theorem lowing F will stand for eitherE or H. Also, owing to the

Here we derive the version of Poynting’s theorem rel-symmetry between the two pair®,E) and (M,H), in the
evant to the general assumptions made in the preceding seollowing we abbreviate by only presenting the derivation of
tion. To our knowledge, this is the first time that this generalthe quadratic form associated with the polarization and elec-
case has been handled correctly. We begin in the usual wayic field. In the end we present the results for both pairs.
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We next use Eq(25) to eliminate explicit reference to the . 1 [+ Im[)} (0]
polarization vector in Eq(24). To do this, we inverse Fou- Re xr(w)]= —Pf dw’—,F . (32
rier transform(25) to obtain T J-w o' —w

o We can use these relationships between the real and
p(t):f d7 Ge(t—1E(7), (27)  imaginary parts of the susceptibilities to show that the
- phaseandout-of-phase components the electric and mag-

netic convolution kernels are not independent. These two

where the convolution kernéE(t) is defined in terms of the components of the convolution kernels are defined in terms

susceptibility via of the real and imaginary parts of the susceptibilities via
A L[ ot? &r )= [ dwe ot Re xr(w)] (33)
Ce()=5—| dwe “xe(w). (28 AT Xeend
L
We need the time derivative of the polarization. Via Ey), G2U(t) :=|—f do e " Im[ yr(w)]. (34)
we see that this is obtained through the formula 27 ) o
P fe g Note thatGg(t) =G (t) + G2U(t).
EP(t)=f drﬁGE(t—r)E(r). (29 We now show that the in- and out-of-phase components

of the convolution kernels are identical for positive argu-

_ . - L ment, i.e.,GI"(t)=G2U(t), t>0. To that end we rewrite
(Note: The rapid vanishing of the susceptibilities at Iargeth. (33) via Eq.(32) and obtain

frequencies renders the kernels differentiable everywhere bu
at a single time where they are, fortunately, continuous. Thus _ 1 [+
the exchange of orders of the operations of integration and ég‘(t)::—J
differentiation is justified. 2m

We now use the various properties of the susceptibilities (35)
to reduce Eq(29) to an equivalent expression that can be
used to directly demonstrate the conserved energy. The fir
(and usual simplification is to note that the integré?8) can
be evaluated explicitly fot<<0. We use Cauchy’s integral 1 e o oot
theorem with contours constructed from great semicircles in Gin(¢)= _J' da)'( pJ do
the upper-haliw plane, closed along the real axis. Since the 272 ) - —o '

1 (= Im[ye(o’
dwe_""t;PJ dw'—[XF(w )]

—o 0 —w

—

Elxchanging the orders of the integratibiiand simplifying,
we obtain

Im[ xe(w')].

w —w
susceptibilities are analytic and rapidly vanish with increas- (36)

ing radius in the region enclosed by these contours, it is_ . ) ) ,
readily shown that fot<0 the integration over the real in- '€ inner integral can be evaluated via Cauchy’s theorem by
terval defining the convolution kernel gives zero: use of a large semicircular contour that extends into the

lower-half plane(for t>0) and that, for example, contains a
- N small semicircular dimple excluding the poleat w'. Al-
Ge(1)=0; t<0. (30 ternatively, one can recognize the integral as a Hilbert trans-
R form and consult a table. Either way the result is that
(0 indicates the zero matrix.The formula expressing the

time derivative of the polarization vector in terms of the +eo o grlet o't
electric field, Eq(29), then reduces to integration up to time Pf_m do o —w =lme ; t>0. (37)
=1

Using this result in Eq(36) gives
J t Jd .
EP(I)=[ Ood7'EGE(t—T)E(7'). (31

N i [t . R
G'F”(t)zﬂf” do’e @ tIm[ ye(0')]=:G2"(1); t>0,

The previous formula involves the convolution kernel (39
Ge, which is constructed from the susceptibility by E28). according to definitior(34).
In particular, it appears from that construction that both the Our formula allowing us to eliminate the polarizatit3t)
real and imaginary parts of the susceptibility are important an now be expressed as
We now show that the convolution kernel can be constructe&
entirely from the imaginary part of the susceptibility which,
in turn, will allow us to use passivityc) to deduce certain 1A rigorous exchange can be made by writing the Cauchy princi-
important properties of this kernel. To that end, we note thapal value operation as a limit and by restricting the fields to certain
in terms of a susceptibility, the Kramers-Kronig relations physically reasonable function spaces. Similar statements apply to
[causality(a)] can be expressed as much of what follows.
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’p —thd O geu E 39 ’p TE —1J+xd a Jtd iorg T
PO=2| droGRt-nE(n. (39 PO E)=—| do|ag(w) | dre'E(r)
The advantage of this expression over Egfl) is that the Xi &E(w)ft dre'“E(7) . (44)
auxiliary field is now related to the electric field only through a —o

the imaginary part of the susceptibility, about which we have ] ) S
the restrictions of passivityc). (Recall that we have no di- This expression would_bg an obvious perfect denvatlye if the
rect restriction on the real part of this tengor. vectors that are mquphgd were not complex conjugates.
We are trying to re-express the tef(t) - (3/Jt)P(t) in However, while the |nd|y|dual terms in the _frequency inte-

(24) so as to recognize it as the derivative of a positive defigrand are_complex, the integration clearly gives a real resu_lt.
nite quadratic form in the electric fielf(t). For uniformity ~ 1hus the integrand can be re-expressed in terms of only its
of notation between dot products and matrix/tensor productg€al part. We write this as

we will denote this scalar product by juxtaposition of ad-

joints ! 1 (+= - t . T
’ — _ lwT|
g P(t)} E(t) zﬂ_j_x dw( apg(w) f_xdre E(7)
d i 9 s ! 0 9 t
E(t)- - P(O)=E"() - P(t)=| - P(O)| E().  (40) <2 detw) J dr&9E() +C_C+_
In passing from the second to the third expression we have (45)

used that the fields are real. .
Using the third form of the expression in E¢0) and Eq.  Here c.c. denotes the complex conjugate. o

(39) to eliminate the auxiliary field, as well as definition This object is now clearly a perfect time derivative to

(34) to eliminate the out-of-phase component of the convoWhich the product rule has been applied, and so can be re-

lution kernel, we find that the dot product can be expressed/tten as

in terms of only the electric field and the imaginary part of

o . K] T g1 [+=
the susceptibility. The formula is — S _f a
e P(t)} E(t) pr [ 57l do| ag(w)
J T B 11 rt + t 2
Ep(t) E(t)_; Jlocd’Tfioc dow Xf dTeinE(T) ] (46)
_ R t
xe =g Im[ xe(w)]E(7) | E(t). (Here the norm symbol*| indicates that one takes the

length of its argument as a complex 3 vedtdrhis expres-

(41) sion is manifestly the time derivative of a positive definite
quadratic form in the electric field, albeit nonlocal in time.

We now remember that, from passivity) and real symme- Repeating the above steps for the pait,f) we get an

try,  Im[ ¥e(w)] is a non-negative tensor for all real fre- 2nalogous formula,

guenciedEqg. (19)] and so can be factored, P T (1 (i
(EM(U) H(t): E[EJ'_QC dw

t +
j dTJ dow .
) xf dre“™H(7)

xe 1Nl (w) ap(w)E(7)

&H(w)

d T 1
EP(t) E(t)—;

2
] . (47

)
E(1).

We can now express the dispersive, dissipative version of
(42)  Poynting's theorentin the absence of macroscopic currgnts
Emphasizing the spatial dependencies heretofore suppressed,

Interchanging the orders of integration and rearranging term&!s conservation law is

in a more symmetric fashion, we get the suggestive form au(x.t)

t ot

+cV-S(x,t)=0, (48)
T 1 [+ t .
E(t)Z;f ocdco fﬁmdfe'maE(w)E(r)

J
EP(U

where the energy flug(x,t) is the usual Poynting vector,
x e ag(w)E(1), (43 S(x,t) = E(x,t) X H(x,t). (49)

which is immediately recognized as a sum of the HermitianThe total energy density(x,t) is now somewhat more com-
products of various vectors with their derivatives: plicated than in the usual case,
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1 1 tant to establish ifu is to be interpreted as a meaningful
U(X,t)==§||E(X,t)||2+§||H(X.t)||2 dynamicalenergy density that not only has the units of en-
ergy but can also prescribe the qualitative features of system
+oo R 1 [t _ 2 dynamics. Such features include the bounded(essvell as
+f dw{ ag(X,0)—=| d7e'"“"E(X,7) existence and uniquengssf solutions for all time, the
- Vam) = asymptotic state of the solutions, and, since our dynamical

1t 2 equationg1) and(2) constitute a system of wave equations,
ap(x0)—| dre®H(x,7) (50  the “domain of dependence” of solutions, i.e., the classical
N2m) —= Sommerfeld-Brillouin result of vanishing of the fields out-
A side the light cone of compactly supported initial dpth
Here we remind the reader that over real frequenciesathe  In another publicatiofi3] we discuss in greater detail how

tensors are related to the susceptibilities and hence permithe structure of dynamical energy densi§0) suggests a

+

tivity and permeability as follows: mechanism for the Garrett and McCumHé&] and Chiao
effects[7]. For now we limit our discussion to demonstrating
al(x,0)ag(X,0)=o IM xe(X,0)]=o IM[ e(X,0)—1] that a causal medium responds to virtual frequencies and to
R giving a very geometric proof of the property of luminal
=wlIm[e(X,w)], (51)  front velocity. In addition, we discuss the connection be-
tween the dynamical energy dens{g0) and an approximate
al (X, 0) apy(X,0)=o IM xp(X,0)]= o Im[ x(X,0)—1] expression often employed.
=w Im[,&(x,w)]_ (52 1. The medium responds to a virtual, instantaneous spectrum

The form of Eq.(50) can be used to explain the phenom-
ena by which the leading portion of an electromagnetic pulse
exchanges energy with the causal medium differently than

These last two formulas should also remind the reader that
what is required in Eq(50) is the imaginary parts of the
spatially varying permittivity and permeablllty. Thus if, as in the trailing portion[3]. To see that this is possible, rewrite
[14], composite media are considered, long range effecE (50) as

tive” constitutive relations cannot be used to obtain E5f), q:

but rather recourse to the original, spatially resolved relations

must be made. It is only the latter that are guaranteed to y(x,t): :—||E x,)|%+ —||H(x t)[|2

satisfy all the requirements of causality. In particular the ef-

fective constitutive parameters mentioned in R&f] do not o A

satisfy the high frequency asymptotics of causdl#yensur- + f dw o[ ET(X,0;t)Im[e(X,0)]E(X, »;t)

ing luminal front velocity. This does not mean that the com-
posite media in such constructions are not ca(saysically
impossiblg, but only that the formulas for the effective con-
stitutive relations are approximate, applying only for the low . . )
frequencies associated with the long range spatial averagin\é(ihfre the Instantaneous - spectrum at time (X w:1),
that give rise to such formulasee alsd15]). =E or H) is defined by
We note that the expression for tharrenttotal dynami-
cal energy density(x,t) Eq. (50) contains the classical ex- F(x,w:t) = ! dre“F(x, ) (55)
pression for the(hea) energy eventuallydissipated to the \/_ — o
medium. Due to propagation, we expect the fields to eventu-
ally vanish at any given positioxas timet— *o. Thus via  The instantaneous spectrif(x, ;t) is just the spectrum of
Eq. (50) we expect the density of energy “left behindas a modified version of the “signal’F(x,7) truncated or
t— +) at any given position to be obtained only via the “turned off” at time r=t,
third, temporally nonlocal term,

+HT (X, ;) Im[ (X, ) JH(X, 0;1)], (54)

- F(x,7) ; —owo<r<t
u(X,+00)=f7 dww[ET(X,w)|m[AE(X,w)]E(X,w) 0 Do t<r<+4oo, (56)

[Note that in the limitt—«, the instantaneous spectrum is
simply the Fourier transform d¥(x,t) as per Eq(7).]

This formula is the well known classical expression for the 1hat the energy density in a physical system must depend

eneray eventually dissipated to the medilmd]. on the fields this way is made clear by causality: the energy
9y y P L] at a given time cannot depend on future values of the fields

producing it. It is also clear that the instantaneous spectra can
be much broader at certain finite times than at its asymptotic
Definition (50) demonstrates that the density representeqt— ) value. In particular it can be shown to be broadest at
by u in the conservation law Eq48) is a positive definite a given positionx when the signal achieves its peak value
quadratic form in the fields. The positivity property is impor- there—i.e., when truncation produces the greatest disconti-

+HT(X,0)Im[ 1(X, ) JH(X, ) ]. (53)

C. Discussion of the total dynamical energy density
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nuity in the truncated signdb6). In this sense, we may say
that the medium responds dynamically to “virtual” frequen-
cies, i.e., to frequencies that would be produced if the signal
were suddenly turned off. It is as if the causal medium must
be prepared for this possibility and responds accordingly.
The instantaneous spectra contribute in Esf) to the
total energy density of the medium-field system through
summation over all frequency contributions. Of course, the
imaginary parts of the permittivity and permeability are also
present in the integrand giving the energy density stored in
the medium. The energy reactively stored in the dissipative
medium is greatest, then, when the instantaneous spectrum
produces the most overlap with the medium resonances,
which resonances are given by peaks in the imaginary parts

of (the eigenvalues dpthe permittivitye and permeability..

Depending on the detuning of the incident radiation from

these resonances.e., depending on the asymptotie-c

value taken on by its instantaneous specirihis time of FIG. 1. The space-time “cone” of a spherical region of space

greatest energy storage can be before or after the peak of tHat is initially freg of energy. 'I'_hree-dlme_nsmnal space is repre-

propagating components of the pulsehich are given solely sented by the horizontal dimensions and time proceeds vertically.

by the fieldsE andH) have arrived at a specific position ) final ti i initial i

This “temporal” disparity of energy storage in the medium  GIven some final timé,,e,, we prescribe an initial time

(and subsequent retrieval from the medjucaused by the li(tli<tapey) @t whichu vanishes inside am ball of radius

medium’s response to virtual frequencies then leads to sp&(tapex—1i) centered at positioRapey:

tial redistribution of thefield energy giving rise to a(poten- _

tially anomalous global energy transport mechanism. UXt)=0,  xeBXapex C(tapex—1i))- (57
It can be shown, though, that when this spatial redistribu]_|ere the notation is defined by

tion of energy makes the pulse appear to move superlumi-

nally the redistribution does not constitute a signal in the B(Xo.T o) :={xX|||x—Xo|| <} (58)

direction of energy transport. Rather the redistribution is due

to a change in the form of the energy—a change from mefNote that in Fig. 1 the coordinates of the cone’s apex are

dium to field energy, for example. Thus no matter how fast(xapex,tapex) .] Given this initial state, we can now show that

the pulse may appear to move in a global sefesg., in the  the energy density, and thus the fields, vanish in the cone

sense of center of masshe associated signal velocities are depicted in Fig. 1, i.e., in the forward light cone defined by

always luminal[3,9]. In this sense, the anomalous speeds

apparently produced by these spatial redistributions are com- V(Xapexitapex) :={ 4D [[[X—Xapesdl

pletely analogous to the phenomena in which two detectors

can be made to “click” simultaneously regardless of their

separation simply by irradiating them simultaneously withthereby establishing luminal front velocity

the same source. The clicking of the two detectors in this To this end consider the energy in tﬁe variouballs

example does not, of course, constitute superluminal Coméomprising the cone. one for each tirhén the cone. Let

munication between those detectors, rather it merely constlg (t) denote these eﬁer ies and note thev are defiﬁed b

tutes simultaneous luminal communication between théV 9 y y

source and the detectors.

3D-space

SC(tapex— 1) tiSt<typey, (59

5V(t)==f ux,Hd;  t<t<tupe
B(Xapex:C(tapex—1)
(60)

2. A dynamical energy density implies a maximum front speed

In this section we show by looking at energy flow that the
support of fields satisfying the Maxwell equatioff§ and
(2), with constitutive relation$3) and (4) prescribed by as-
sumptions(a)—(c), can expand or contract no faster than
The velocity of the support is called tHmont velocity We EL(1)=0. (62)
begin by assuming that the total dynamical energy density

as given by Eq(50) is zero in some spherical region of space Now from Eq.(57) we learn that,(t) has the initial data
at a timet;. We then demonstrate that this initial condition

Note also that sincel is positive definite £,(t) is always
non-negative,

guarantees that is also zero on the space-time “cone” of Eti)=0. (62
slope ¢ with this initial sphere as its bagsee Fig. L In

other words, no energgand hence no signatan enter the We now show that(t) does not differ from this initial
initial sphere with a speed greater than(For a relevant value for as long as it is defined, i.e., for all tintein
similar derivation se¢16].) [ti ,taped- Differentiating&,(t) [using Eq.(60)] we get
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Et)= f u(x,t)d3x
B(Xapex:C(tapex—1))

u(x,H)d?;  t<t<tmpey

ﬁB(xapeX,c(tapex—t))
(63)

The boundary ternithe second integralappears since the
dimensions of the ball depend on timé 'he — ¢ multiplying
the boundary term appears since the ball's radiesreases
in size as time proceeds forward, and does so at thecrate
The boundarydB[ Xapex,C(tapex—1)] is the surface of the
ball embedded at time(dimension 2.

Using the conservation la48) to eliminateu,(x,t) in

PHYSICAL REVIEW &4 046610

Uapprod %, t) ::% E(x,t)-D(x,t)+ %B(x,t) “H(x,t).
(70)

Some texts on classical electrodynamics originally identified
Eqg. (70) as thetotal energy density, i.e., as the object con-
served in Poynting’s theorefd8). Subsequent editions have
clarified that the quantity70) is valid only for the time av-
erage of a single frequency. However, they have not demon-
strated that the correct object to be considereddgreamical
total energy densityi.e., a positive definite form indicating
the closed nature of the dynamjcs

To make a comparison with E¢0), we eliminateD(x,t)
and B(x,t) from the expression by way of Eq22), (39

the first integral, and then using the divergence theorem téwithout the time derivativesand(34) (and the “magnetic”
exchange the volume integral for a surface integral, one ge@nalogs of these relationsWriting the result as closely as

that £€V(t) is determined by the values of certain quantitie
only on the ball's boundary,

Et)=—c f (SO -n(x)

IB(Xapex:C(tapex—1))

+u(x,t)]d®;  tststgpex (64)
Heren(x) is the unit outward normal to the boundary of the
ball at positionXx e dB(Xapex: C(tapex—1)). In Sec. Il we
show that|u(x,t)|=|S(x,t)||. Sinceu is positive definite,

this establishes the more useful fact that

u(x, by =lu(x,t)|=[IS(x,t)[[=]S(x,1) - n(x)|=—S(x,t) - n(x),
(65

ie.,

S(x,t) - n(x) +u(x,t)=0. (66)

Thus the integrand in Eq64) is non-negative and so the

energy does not increase,
Et)=<0;

t gtgtapex-

(67)
Equation(67) together with the initial daté&62) demands that

(68)

apexs
which contradicts the non-negativity &f(t) Eq. (61) unless

5v(t)=5v(ti)zoi tigtgtapex- (69
Since u is positive definite in the fieldsE(x,t) and
H(x,t), &(t) vanishes for time in the indicated interval

only if those fields vanish in the cON&X,pextapen). This

gPossible to the form of Eq50), we get

uapprox(xat)

1 1
_ 2, 2
SIED2+ 5 H( ]

ET(X t)e_iwt &E(er)&E(Xlw)

i [+
+_
47TJ’_30 de

t A
X J dre'“"E(X, 1)

w

&L(X,w)&H(X,w)

+HT(x,t)e !

t
|

Clearly densitieg50) and (71) constitute different quadratic
forms in the fields. In particular, whereas the dynamic total
energy density(50) is manifestly positive definite for any
field history, the approximate total energy dengifyl) can
be shown to alternate sign for certain physically relevant
examples.

To illustrate this effect, we here consider the simple case
of monochromatic electric fields given by

(O]

dre“™H(x,7) | +c.c. (71)

E(x,t)=Eq(x)e” ' +c.c. (72

(In this example we examine only the electric contribution.
Also, it is useful to recall the distributional identities

together with the causal relationship of the other two fields to

these fields then demands that all four fields vanish in the

cone, thereby establishing luminal front velocity.
3. The relationship between the dynamical energy and the
traditional approximate kinematic energy

From definition(50) it is clear that the dynamical energy
density differs from the approximate energy density,

. , 1
dre'@ @)= |im —————
cot€ti(o—ow")

e—i(w—w')tft

1
o—o']

(73

Iwﬁ(w—w’)—ip(
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1 (+=  Im[e(w)]
1+;Pj7x dw—w_o )

Here BPl/(w—w')] indicates the Cauchy Principal value 1
distribution centered atv= ', and 5(w— ') indicates the  u(x,t) =§|| Eo(x)+Eg (x)?
Dirac é function (distribution also centered ab=w’. In-

serting the field$72) into (71), using the relevant versions of 1

the distributional identitieg73), and finally the Kramers- = Z||Eo(x) + E% (x)|°Re €(0)]
Kronig relations(32) in reverse, we getsimplifying to the 2
isotropic casg

€(0)
2

[E(x,t)

2, (80)

- EQ(X)Eg(X) ...
Uapprod %) =[[Eo(X)|*Re e(Q) ]+ ————e~#*e(Q) : , . .
2 the second equality following from Kramers-Kronig for this
isotropic case.
ELOEX(X) .
e AN Q). (74)

Ill. GLOBAL ENERGY TRANSPORT VELOCITY

We investigate the two extreme values of E@4) (at In previous work, we investigateq a certain “temporal
each poink) by limiting Eq. (74) to the set of times at which center-of-mass” of an electromagnetic pu[§¢. We found,

the kinematic density is stationary. At those tin{denoted ~among other things, that this formalism provided a frame-
t_) we find that work wherein the classical notion of group velocity was

meaningful even for broad-band pulses. The following rep-
resents the spatial analog of that work. As is evidenced by
e*Z‘QTE(Q) the weight of recent works on superluminal electromagnetic
’ phenomendfor a “small” sampling seg17]), this issue of
(75  the nature of global energy transport that we and others have
addressed is clearly not the local one addressed byothe
Note that both of these quantities are real at those times. THYWise very satisfying classical Sommerfeld-Brillouin re-
extreme values of the density4) are then sult. Nevertheless, in the following one will see that, in con-
trast to the “temporally oriented” view of the properties of
— o global total energy transport reported [i], the “spatially
Uapprox(X, 1) = [ Eo(X)[“Re €(€) ] oriented” view is very much a global generalization of Som-
T ot merfeld and Brillouin’s local result.
+Eo(X)Bo(x)e €(€2). (76 We begin by defining the position of the total dynamical
energy as the normalized, first spatial moment of the total
Using the fact that the second quantity in E@6) is real at  dynamical energy density,
these times, we realize that

ES(X)ES (%)
—2 e

Eo(X)Eo(X)

+2iQT;*(Q): 5

o d3x x u(x,t)
zini_, EAEE (0 (D) % x(1) ==J 81
T |ES(OEg(x)e()] f d3x u(x,t)
in which casg(76) becomegafter simplification
=5*1f d3x xu(xt). (82

Uapprod X t) = [Eo(¥) [{Re () ]+ [e(Q)[}.  (78)
The integrals are over all space and we have defined the total
In Eq. (78) it is now clear that the approximate density does€n€rgy

not have definite sign so long as [IE(Q)] is not zero.
Note that in the limit of static fields, however, the dy- g::f d3x u(x,t). (83
namical and approximate results agree: Using real symmetry,

whereby InﬂE(Q)] goes to zero whet) does, we see that

Eq. (74) becomedafter some simplification Having defined the position of the total energy(t), we

then define the velocity of the total energy(t) in the natu-
ral way, i.e., by time differentiation of the position

Re €(0 0
appran )= S 5 4 5 00)2= 2 [EC ) i

2

as expected. Using identiti€83) the dynamical energy den- Making use of the definition of the positid82) and by use
sity (50) becomes, for the fields given in E(/2) at (2=0, of Poynting’s conservation law48) we find that
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au(x,t) IV. SUPERLUMINAL GLOBAL TRANSPORT OF
N (85 SUBSETS OF THE TOTAL ENERGY:

vu(t)=5‘1f d3x x
THE LORENTZ MODEL

o1 43 While the global notion of energy transport defined by
=-cé fd XXV-S(x0). (86) center-of-mass motion of the total dynamical energy in a
. ) passive media is always luminal, global energy transport is
Integration by parts then gives not so constrained when only a subset of the total dynamical
energy is considered. This indicates that in the global sense,
vu(t)=c£*1f d3x S(x,1). (87) the root of superlumin'al behavior is gssociated with incom-
plete energy accountingNote that via the Sommerfeld-

, . i . Brillouin theorems, it is only in a nonlocal sense that super-
The fact that the magnitude of the velocity so defined is;minal phenomena are not strictly prohibited.

always bounded by is now straightforward. Ostensibly it In order to simplify the discussion, we consider the
amounts to no more than a statement of the fact that thﬁbraham-Lorentz model of a nonmagneti€H(x,t)

magnitude of the Poynting vect&(x,t) =E(x,t) XH(x,) IS _p(x t)] homogeneous, isotropic dielectric with a single
always less than or equal to the energy dens{ty,t), resonance frequency, and consider only one-dimensional so-
lutions of the original three-dimensional system. In one

[vy(D]=c&~L f d3x E(x,t) X H(x,t)‘ (89) space dimension, we can write the equations as a system of
first order partial differential equations,
sceflf d3x|| E(x,t) X H(x,1)]| (89) E 0 —-c 0 0\ /E
J| B x) N 0 0||B xt)
1 1 — X, )= — X,t
scg‘lf d3x[5||E(x,t)||2+§||H(X.t)||2] 9 P x| o 0 0 0fP
Q 0 0 0 0 1\Q
scE‘lf d3x u(x,t) (91 0 0 0 -—wy) [E
0O 0 O 0 B
_ —“le_ + .
=c&te=c. (92) 0 o wo || P XY
In passing from Eq(89) to Eq. (90) we used Lagrange’s wp 0 —wy —v Q
ident@ty, and in passing from .EQQO) to Eq.(91) we used the (96)
definition of the total dynamical energy densiigx,t), EQ.
(50).

‘We note in passing that since the eigenvalues of the first

Lastly we show that the total dynamical energy’s center . . . ) .
of-mass velocity just derived is a spatial average of the tramatrix on the right of equat|_o(96) (less _the spatial deriva-
tive) are real, the system is hyperbolic. Furthermore, the

ditional energy transport velocity. Denote and define the . . . . ) .
“ u-average” of a measurabl®(x,t) by theory of hyperbolic partial differential equations dictates

that these eigenvalues give the limiting speeds at which sin-

gularities propagate so that for this model we already have
J’ d3xO(x,t)u(x,t) the (luminal) Sommerfeld-Brillouin result for the front ve-
(O(X,1) )= (93  locity [18].
J d3xu(x,t) The scalar permittivitye(w) for this model can be calcu-
lated to be the usual prototypical exampl®] possessing all

_ ) _ of the relevant requirements of causality and passivity,
Then, with this notation, we see that

S w2
u —w —lyo+ wj
where v¢(x,t) is the traditional energy transport velocity. . . .
Note that in Eqs(88) through(91) we also effectively dem- Using the fact that the operator on the right of E3f) is
onstrated that the traditional energy transport velocity is lu&/'€ady in a form in which it can be written as a sum of an
minal for passive dielectrics, operator that is skew symmetric and one that is negative
definite with respect to the usual inner produete see that
[ve(x,t)[|=<c. (95  Eq.(96) dictates a law oflissipation[similar to the law of

conservation(48)] simply by expressing the time evolution
By more complicated arguments, in REB] we also show of the particular positive definite quadratic form associated
that the same is true for active dielectrics. with the (relevanj identity matrix,
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1 the densityug, and then use integration by parts to eliminate

0 0O
010 0 E spatial derivatives on the fluB. After some simplification
B we obtain
(EB PQlo 0 1 offp|D
000 1/\g J dx E(x,t)B(x,t) J dx Q*(x,t)
2, p24 p24 02 vug(t)=C Ty N
=(E“+ B+ P+ Q%) (x,1). (98) f dx ug(x,t) f dx Ug(X,t)
We will denote this form(divided by 2 by ug(x,t) and, -
in order to distinguish it from the total energy density that f dX X Us(X,t) f dX Us(X,t)
obeys a conservative law, will call it tHeee-energydensity % _

(or distribution. Though we do not engage in a statistical
mechanics treatment, we justify the use of this term as fol-
lows. We can interpret Eq96) as a phenomenological de- -
scription of a system in whichg(x,t) has the interpretation f dx x QA(x,t)
of being the sum of the densities associated with energy % (102
stored in the macroscopic fields and that stored in the coher- '
ent motions of the molecular dipoles of the dispersive me- i f dX U(X,1)
dium (mechanical energy densjtyin this phenomenological
treatment, clearlyig(x,t) cannot be interpreted as containing where
energy deposited irreversibly in the medium via incoherent 1 1 1 1
motions and their associated degrees of freedom. e TA2_TE2.TR2.Tp2

The law of dissipation associated with this particular qua- Uri=Ur— 5 Q°=5E "+ 5B 5P (103
dratic form, or energy projection, is

I fdx Ug(X,t) fdx Ug(X,t)

In Eq. (102 the velocity is expressed as having two com-
a(1_, ) , 1 ) a 1, ponents, the first not dependent on system parameters explic-
1|5 ETH5 BT PTHSQ7 +— (CEB) = —2y| Q7). ity and the second explicitly dependent upon the damping
(99) ratey. For each time the two terms are functionals of func-
tions of positionx. The first functional can be shown to pos-
Here we have suppressed the coordinatasdt. sess extrema: c. This is done by showing that the absolute
Note that if wedefinethe free-energy density’s velocity to value of the integrand of its numerator never exceguls
be the ratio of thésuitably averagediux cEB to the(simi-  can be equal fothe integrand of its denominatéwhich is
larly averagedl density ug=(1E2+ 1B2+ 1P2+1Q?), we non-negative mu!tiplied by c. .Below we will show thgt the
are guaranteed to get a luminal result since second term, Wh'f:h IS m“'t'p"ed by the d?mp'”g rates an
unbounded functional in a relevant function space. Thus, in
|cEB]| this function space, the center-of-mass velocity functional is
<c. (100  unbounded when damping is present but is bounded lumi-
nally when damping is absent. Note that we do not presently
address the issue of tleiration of superluminal behavior in
the free-energy’s center-of-mass motion, but only the issue
energy distributiorug because the evolution of the free en- of superlu.mina}l system pr_epgrations, I.e., of whether the sys-
tem can, in principle, be initially prepared so as to demon-

ergy is dissipative. If one simply views the results of a nu- ) L X
merical simulation of Eq.(96) by watching a movie of strate superluminal behavior in the motion of the free-energy
' center of mass.

ugr(x,t) passing by, the perceived speed of the pulse can b . : .
arbitrarily large, depending on the system preparation. In the To that end we Cons'der the velocitytat 0.’ and consider
following, we make this observation concrete by showinga two-parameter family of system preparations, all members

analytically that a pulse’s free energy “center—of—mass”Of which correspond to t_he same initial free energy. We then
: show that, when damping is present, the initial center-of-
Xy (1), defined as o . . .
R mass velocity increases without bound as the difference in
the two parameters increase. In order to motivate how this is
f dx X Ug(x,t) accomplished we pause to comment on which details of the
- structure of the second functional in Ed.02) suggest that
XU (t) b 1 (101) - . . .
R q this can be done. We have tried to make this structure evi-
X Ur(X,1) dent by parallel uses of parenthesis and square brackets. The
two terms in large square brackets have units of position.
(with the integration over alk) can move with any speed. The left term in square brackets measures the center of mass
The velocity corresponding to this definition of position is (as normalized by the free enejgyf the energy stored in the
obtained by time differentiating the center of mass. We usdields and in the displacements of the dipoles from equilib-
the law of transporf99) to eliminate the time derivative of rium (dipole potential energy The right term in square

Ur

Unfortunately this definition of the velocity generically has
almost nothing to do with the gross motion of the free-
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brackets measures the center of m@ssnormalized by the this initial velocity we choose initial data for which the total
free energy of the kinetic energy associated with the motion initial kinetic energy is equal to its complement. On the other
of the dipoles. Note that the two energy projections just dishand, if we choose the associated distributions to be identical
cussed sum to the free energy. Consequently we will speathen the differences in the associated centergreduced

of them as being compliments with respect to the free enmass will be zero. The simplest way to get a nontrivial and
ergy. In contrast to the terms measuring positions, the twainteresting result is to choose the two distributions to be
terms in large parenthesis are homogeneous and so are uritanslates of each other: For some even and square integrable
less. They measure the relative amounts of energy associatéshction f(x) different from 0 and for some positions and

with the two centers of mass just described. As such they, definem?(x) andm3(x) by

may be described as weights for the associated “masses.”

Note that the weights are pairdglia multiplication with mi(x):=f%(x—x;), and (107)
their complement centers. Thus, since the notion of comple- o
ment is with respect to the free energy, and since the free mMy(X) :=F(X—Xy). (108

energy is the distribution used to normalize the two centers 0 0 )
of mass, the two products of these four objects give the cenlhen we geM;=M;= fdx f*(x)=M>0, and then

ters ofreducedmass of the two complimentary energy pro-

jections. Thus we see that the second functional in(E@Q2) f dxxm(x)=xM, i=1,2. (109
gives a measure of thdifference in the centers of reduced

mass of the kinetic energy and its free-energy complement
Thus the “additional” velocity of the free-energy distribu-
tion (i.e., the component of its velocity that is attributable to
damping is just the damping rate multiplied by a difference J dx E(x,0)B(x,0)
in (representativepositions of two complementary distribu- UUR(O):C

tions. . . . J dx ug(x,0)
To make these connections more obvious we introduce

some notation. Relabel the kinetic energy denglfyx.t)/2 In order to make this expression more explicit we can, for

as my(x) and relabel its complementiz(x,t)=Ur(X,Y)  example, further decompose the initial energy densities as
—Q?(x,t)/2 asm}(x). Also relabel the corresponding ener- fgjiows. ChooseE(x,0)=B(x,0)=f(x—x,) and P(x,0)=0
gies(the integrals of the densitieby the same symbols but 5 Q(x,0)= \2f (x—X,)]. With this two-parameter family
with capital letters and, of course, without reference to theyf choices for the initial data, the initial velocity of the free

Then Eq.(106) reduces at=0 to

+ E(xz—xl). (110

positionx, energy center of magd10 reduces to
c
Mt i f dxm(x), and (104) V(0= 5 + %Ax. (111

; (Here we have expressed the difference in the centers of
M ‘:f dx mh(x). (105 reduced mass of the kinetic energy and its complement,
—X4, asAx.) It now becomes clear that i is not zero, the
Then the center-of-mass velocity of the free energy can bepeed of the free-energy center of mass can be increased

expressed as arbitrarily, as long as the “position” of the kinetic energy
distribution can be made to leddr lag that of its free en-
M{mb(x) ergy complement by arbitrarily large distances. Furthermore
f dx E(x,t)B(x,t) f X Xm this notion of position becomes more natural and precise as
v, (t)=c +2y 1 2 the variance of (x) reduces. In fact there is nothing to keep
R f dx U X,) MY+ M) us from considering the limit in which(x) — \/8(x): in this
AN limit we still get the(not lumina) result(111) for the initial
center-of-mass velocity of the free energy.
t t
f my(X)M3
dX X———
|\/|t1+ Mt2 V. SUMMARY
- . (106
MY+ M} In this paper the luminality of both local and global no-

tions of total energy transport in very generg@nisotropic,

Here we see that the integrands used to define the centersiohomogeneous, passivenedia was established. In lieu of
mass appear analogous to the classical expression for repecific microscopic models, these results were established
duced mass in the two-body problem. using only the macroscopic limitations of causality and pas-

We now consider the velocity &= 0 and a corresponding sivity. Specifically these estimates were obtained Hyde-
class of system preparations or initial conditions that showeloping total dynamical energy densities for these media
that the velocity at this instant can be arbitrarily large if and(i.e. conserved, positive definite, quadratic foyrasd then
only if v does not vanish. To find the simplest expression foby (2) considering the time evolution of their associated fi-

046610-12



POYNTING'S THEOREM AND LUMINAL TOTAL ENERGY ... PHYSICAL REVIEW E64 046610

nite and infinite volume energies, respectively. We also | et v, be an eigenvector of for eigenvaluex e p. The

showed how a total dynamical energy density demonstratesigenvalue can be expressed in terms of the eigenvector and
that a causal media responds to a virtual, instantaneous f|e{ﬂe real and imaginary parts éfvia the formula

spectrum weighted by system resonances, that this density

gives the heat energy eventually dissipated to the medium, vi Re €]v, vi Im[ ]v,
but that this density is not the same as the one derived from =2 T i T
kinematic arguments. V) Vy V), V)

The connection between the local concept of energy trans- .
port velocity and the global concept of total energy center-The kinetic symmetryb) of e implies this symmetry of its
of-mass velocity was also established, and the importance é¢¢al and imaginary parts, which, since they are each real,
avoiding subsets of a total energ'ye_, forms that are not shows that they are each tr|V|a”y Hermitian. Tak|ng the Her-
conservell in establishing the global notion of luminality Mitian conjugate, then, of our formula, and using the Hermit-
was emphasized. For the Lorentz mo¢®lspecific example ian properties(just establishedof the real and imaginary
of the general media considered at the onsetertain subset parts of e shows that the imaginary part of can be ex-
of the total energy was shown to have the potential for dempressed as
onstrating what appeats the center of mass picturé be
an arbitrarily fast global energy transport mechanism. It was
emphasized, however, that this appearance of high velocity
does not constitute energy transport from one detector to
another, but simply indicates that other energy already downa; this point it is already obvious that [n]>0 since Infi]
stream has been converted to the type being observed. This positive definite , but we make the proof even more ex-
illustrates the general principle that classical “superluminal”p”cit since we will use a certain notation that these details
effect_s are intimately linked with an incomplete energy ac'provide in the main textSec. Il B where we derive the total
counting. energy of the system: since we assufog i.e. since we

assume that Ifre] is a positive definite tensor, and since, as

we have just shown, If&] is trivially Hermitian, this tensor
can be factored and expressed as

A=At viim[e]v
Im[A]= =2 &

2i viv,

APPENDIX: KINETIC SYMMETRY AND PASSIVITY
IMPLY DISSIPATION

We prove(c) and (b)=c’ for e. That the converse (} Al age
and (b)=c) is false (without invoking more structujeis Im[e]=p"8

verified _by specifi_c counter examples. However, as is disyg that the imaginary part of is then expressed as
cussed in the main text, if we invoke the structure that the

eigenvectors of the tensors can be taken as real, it is then true VI ET ,ABVA I BV)\HZ
that (¢') and (b)=(c). Physically this extra structure means Im[A]= T = > =0,
that the eigenvectors of the tensors can correspond to ViV vl

bonafide directions in real 3 space, the principal axes, say, of dl f the relationshin of the ei fototh
a crystal. Otherwise these eigenvectors correspond to “dired©9ardiess of the relationship of the eigenvestoor € to the
tions” only in complex 3 space, but whose real and imagi-tensor Infie]. However, since equality is achieved onlyvif

nary parts in real 3 space can be made to correspond teappens to be a nullvector @ and, hence, of lie], and

directions together with rotation angles. since we assume that [ has no null vectors, the result is
In order to avoid needless repetition, we state here once
that in the following paragraph all statements about the per- | Bv,|I2
mittivity tensor e are valid when it is evaluated at real posi- Im{A]= ['NE >0,
tive frequenciesw, i.e., when the restrictions of assumption »
(c) are enforced. which is (c).
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