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Energy flow in angularly dispersive optical
systems
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Light-pulse propagation in angularly dispersive systems is explored in the context of a center-of-mass defini-
tion of energy arrival time. In this context the time of travel is given by a superposition of group delays
weighted by the spectral content of the pulse. With this description the time of travel from one point to the
next for a pulse is found to be completely determined by the spectral content, independent of the state of chirp.
The effect of sensor orientation on arrival time is also considered. © 2001 Optical Society of America
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1. INTRODUCTION
Angularly dispersive optical systems are routinely em-
ployed in short-pulse lasers to control the temporal profile
of pulses and to mitigate unwanted dispersion.1–3 Such
systems include grating pairs, prism pairs, and material
slabs that are angularly dispersive (within the material)
under oblique incidence. An interesting aspect of pulse
propagation within an angularly dispersive system is the
time that it takes for the energy of a pulse to traverse the
system. Indeed, arguments based on the energy trans-
port’s taking place at the group velocity have been used to
produce the required form of the frequency-dependent
phase delay in such systems.4 Until recently the concept
of group velocity has been associated with a narrow-band
context. However, as laser pulses are made to have in-
creasingly shorter durations it becomes interesting to
consider these issues in a general broadband context. In
another paper5 we introduced a theorem placing group ve-
locity into a general broadband context and applied it to
the problem of anomalous dispersion in the case of collin-
ear propagation. In the present paper we apply the theo-
rem to angularly dispersive systems.

As the frequency components composing a pulse travel
in different directions within an angularly dispersive sys-
tem, dispersion can cause the pulse shape and duration to
evolve in complicated and asymmetric ways. This makes
the concept of energy transport time somewhat vague un-
less pulse arrival time is carefully defined. In this paper
we use a temporal expectation integral of the energy
reaching a sensor at a chosen location to specify the pulse
arrival time. Within this context the pulse propagation
time is closely connected to a linear superposition of
group delays (inverse of group velocity) weighted by the
spectral content of the pulse. The concept of group veloc-
ity enters the picture without our resorting to a perturba-
tive expansion about a carrier frequency. The analysis is
appropriate for pulses of arbitrarily wide bandwidth.

2. PHASE DELAY IN DISPERSIVE SYSTEMS
The form of a pulse at various points in a dispersive sys-
tem may be found by use of the phase delay function
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f~v! 5 k~v! • Dr. (1)

The wave vector k(v) specifies the direction of travel for
each frequency, and the displacement Dr [ r 2 r0 repre-
sents the separation between a point r0 , where the form
of the pulse is known, and a point r, where the form of the
pulse is to be found. For simplicity we assume a single
wave vector for each frequency. Thus diffraction effects
associated with narrow beams6 are ignored, but this ap-
proximation is reasonable for many optical systems (e.g.,
compression of large beams). The phase-delay function
f(v) gives the difference in phase between the field at r0
and at r for each frequency component. The form of the
pulse at r is then

E~r, t ! 5
1

A2p
E

2`

`

E~r0 , v!exp@if~v!#exp~2ivt !dv,

(2)

where the frequency representation of the field at r0 is
found from the usual Fourier transform

E~r0 , v! 5
1

A2p
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E~r0 , t !exp~ivt !dt. (3)

The method of finding phase delay in angularly disper-
sive systems represented in Eq. (1) was used by Martinez
et al.7 A related method sometimes employed is to trace
a representative ray for an arbitrary frequency as it
traverses the system. The phase delay is then computed
as f(v) 5 k(v)l(v), where l(v) is the frequency-
dependent path length and the vectoral nature of the
wave number is suppressed. The results derived in this
manner are fairly straightforward for dielectric media
such as prism pairs and material windows, although the
geometry is cumbersome. In the case of parallel grat-
ings, Treacy8 showed that it is necessary to append a
phase-matching term to the phase delay obtained by the
representative-ray method in order to arrive at the cor-
rect result. We find it more convenient to utilize the vec-
toral nature of k(v) as in Eq. (1) when calculating the
phase delay of an angularly dispersive setup. This
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method avoids the need for phase-matching terms associ-
ated with diffraction and also avoids much of the geom-
etry necessary in the representative-ray approach. For
the representative-ray method to yield a tenable result,
l(v) must begin and end on planes that are parallel to the
wave fronts for all frequencies chosen before the wave
front enters and after it exits the system. However, the
phase delay in Eq. (1) can be calculated between arbitrary
points within a system (e.g., at points between grating
pairs) where it is not possible to define a plane parallel to
the wave fronts for all frequencies.

In many systems the angular spread of k(v) is confined
to a plane, say the x –y plane. In this case the wave vec-
tor may be represented as

k~v! 5 k@ x̂ cos u~v! 1 ŷ sin u~v!#, (4)

where u (v) is the direction of travel for each frequency
component referenced to the x axis as depicted in Fig.
1(a). [Recall that we have assumed a single wave vector
per frequency.] For a displacement Dr [ x̂Dx 1 ŷDy as
depicted in Fig. 1(b), Eqs. (1) and (4) combine to yield

f~v! 5 k~v! • Dr

5 @vn~v!/c#@Dx cos u~v! 1 Dy sin u~v!#, (5)

where we have incorporated the dispersion relation in an
isotropic medium: k(v) 5 n(v)v/c. The specification
of the frequency dependence of u (v) necessarily contains
the essential geometry for a given angularly dispersive
system. Thus it is only necessary to know the direction
of travel of each frequency component to calculate the
phase delay. In Appendix A we give the forms of u (v)
and use Eq. (5) to calculate f (v) for a grating, a prism,
and a dielectric interface. In these systems it is assumed
that all frequencies travel in parallel before meeting the
particular element. In typical setups a second grating, a
prism, or a dielectric interface reorients the wave vectors
to travel in parallel again. The phase delays for these
systems are well known (e.g., Ref. 9), but Appendix A is
included as a reference for use with the formalism in this
paper.

3. GROUP DELAY IN DISPERSIVE
SYSTEMS
In Treacy’s original paper on parallel-grating systems,
the argument for the phase-matching term appended to
the representative-ray approach is subtle and connected
with the specific geometry of the gratings. This
prompted Brorson and Haus4 to reexamine the setup in
terms of an energy transport argument involving the
group velocity, which obtained the required derivative of

Fig. 1. (a) Orientation of k(v) assumed to lie in the x –y plane.
(b) Displacement Dr between points r0 and r where pulse forms
will be examined.
the phase delay with less reliance on specific geometry
and without the need for appending a phase-matching
term. They first showed that the well-known diffraction
grating law [describing a diffracted angle in terms of the
incidence angle and groove spacing, Eq. (A1)] is derivable
by variational methods. Their argument states that,
since energy transport must occur at velocity c (assuming
vacuum between gratings) along the path predicted by
variational methods, the group-delay function ]f(v)/]v
must be equal to l(v)/c, where l(v) is the frequency-
dependent path length through the grating system as
used by Treacy. This argument has its own subtleties,
since the variational method (justified by the eikonal
equation10) applies to individual frequencies, whereas
]f(v)/]v necessarily involves neighboring frequencies.

In traditional pedagogy10 group delay is often intro-
duced in the context of an expansion of the phase delay
about a carrier frequency v̄:
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1
1

2
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]v2 U
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~v 2 v̄ !2 1 ¯ . (6)

The linear coefficient ]f(v)/]vuv̄ is recognized as the
group delay but evaluated at only a single frequency. To
first order, this term describes the time that it takes the
pulse to travel from r0 to r. However, the coefficients of
the Taylor’s series depend on the choice of carrier fre-
quency v̄, thus affecting this first-order approximation of
energy transport time. Moreover, higher-order terms in
the phase-delay expansion also influence the energy
transport time to the extent that the pulse shape evolves
asymmetrically. It is therefore essential that the analy-
sis of Brorson and Haus4 require ]f(v)/]v to be evaluated
at each frequency rather than at a single carrier fre-
quency as in relation (6). Thus a linear-superposition
principle for group delays is implied by their conclusion,
although this fact was not emphasized in Ref. 4. This su-
perposition principle will be demonstrated explicitly in
Section 4.

Before proceeding, we briefly explore Eq. (5) in a special
case relevant to the Brorson and Haus analysis, which ad-
dressed one frequency at a time yet invoked the multifre-
quency concept of group delay. To obtain the group delay
along a path parallel to the wave vector of a specific fre-
quency v8, we may differentiate Eq. (5) with the displace-
ment chosen to be parallel to k(v8). A displacement Dr
in this direction corresponds to the vector components

Dx 5 Dr cos u~v8!, Dy 5 Dr sin u~v8!. (7)

Substitution of Eqs. (7) into Eq. (5) yields simply

]f

]v
U
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5
Dr

c Fn~v8! 1
]n

]v
U

v8
G . (8)

As expected, this group delay (evaluated at v8) reduces to
Dr/c for propagation in vacuum. Thus the group delay
evaluated at individual frequencies taken along their re-
spective paths occurs at the speed of light regardless of
the functional form of u (v), and in particular u (v) need
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not be derivable from variational methods. This seem-
ingly contradicts the emphasis placed on variational
methods by Brorson and Haus in the case of a grating
pair. However, the fact that the grating dispersion for-
mula is derivable from variational principles means that
energy does not linger (or advance in time) on the grating
surfaces during the act of reflection, which is critical to
their argument.

4. ENERGY TRANSPORT TIME AND
GROUP DELAY
We next turn our attention to the connection between en-
ergy transport time and group delay. In a dispersive sys-
tem, pulse shape may evolve in complicated ways during
propagation, especially if the spectrum is broad. As was
mentioned in Section 3, the second term in relation (6) is
insufficient for determining the delay of the pulse except
in a narrow-band situation, and we will not use this ex-
pansion. To specify the energy transport time of arbi-
trary pulses, it is necessary to define the pulse arrival
time at a point in a way that is insensitive to the specific
features of the pulse temporal profile. As an example of
the need for caution, the peak of the pulse is not a good
choice to indicate arrival time, since energy may be asym-
metrically distributed about the peak or there may be
multiple peaks. The method that we employed in Ref. 5
defines the time of arrival for a pulse at a point as a tem-
poral expectation, which is weighted by the energy trans-
port flux. The energy transport flux is given by the Poyn-
ting vector, S(r, t) 5 E(r, t) 3 H(r, t) where E and H
are the real electric and magnetic fields. The time of ar-
rival at r is written as

^t&r [ û • E
2`

`

tS~r, t !dtY û • E
2`

`

S~r, t !dt, (9)

which may be viewed as a kind of temporal center-of-
mass. The unit vector û specifies the orientation of a
‘‘sensor’’ at r that detects the incoming energy flux. In an
angularly dispersive system the orientation of this energy
sensor influences arrival time for the pulse, since differ-
ent frequency components may illuminate the sensor
closer to or farther from normal incidence, as will be illus-
trated in Section 5.

Using the definition of temporal position given in Eq.
(9), it is shown in Ref. 5 that the time Dt [ ^t&r 2 ^t&r0

from when a pulse passes a position r0 until it arrives at
r 5 r0 1 Dr can be written as the spectral average of the
group delays of individual frequency components. We as-
sume that there is no material interface or reflection that
the light experiences between r0 and r (i.e., k(v) remains
constant). The travel time Dt can be expressed as

Dt 5 û • E
2`

`

S~r0 , v!
]f~v!

]v
dvY û • E

2`

`

S~r0 , v!dv,

(10)

where S(r, v) is the Poynting vector obtained in the usual
manner from Fourier transforms of the electric and mag-
netic fields. This expression must be modified in the case
of absorption, as explained in Ref. 5, but for the current
consideration we neglect absorption. An outline of the
derivation of this theorem for the nonabsorbing case is
given in Appendix B. The striking similarity between
Eq. (9) and Eq. (10) is immediately evident. The time ex-
pectation integral in Eq. (9) leads to the group-delay ex-
pectation integral in Eq. (10). The total delay between
the pulse crossing points r0 and r is given by a linear su-
perposition of the group delay at every frequency
weighted by the spectral content of the pulse. This result
is insensitive to the specific temporal organization of the
pulse for a given spectrum. Equation (10) demonstrates
the linear-superposition principle of group delay that is
implicit in the Brorson and Haus argument, as previously
mentioned.

5. DETECTION ANGLE AND ENERGY
TRANSPORT TIME
In this section we examine the effect of sensor orientation
on the arrival time of the pulse in angularly dispersive
systems where the direction of the wave vectors depends
on frequency. Consider a grating pair, a material slab, or
a prism pair as outlined in Appendix A. We assume that
all frequencies associated with the initial pulse travel in a
single direction before entering the system, indicated by
u i . The spectral components of the field within the inte-
rior of the angularly dispersive system can be written in
terms of the initial field amplitude as follows:

E~v, r! 5 Ei~v, r0!Aj~2sin u x̂ 1 cos u ŷ !exp@if~v!#,
(11)

H~v, r! 5
k

m0v
E~v, r!ẑ, (12)

where we have assumed p-polarized light propagating in
the x –y plane. Ei(v, r0) is the field spectrum incident
upon the system. The point r0 is taken to lie on the first
grating surface in the case of a grating pair, on the dielec-
tric interface in the case of a material slab, or at the apex
of the first prism in the case of a prism pair.

The parameter j contains the factors related to the ef-
ficiency of transferring energy into the system. In the
case of a grating pair, j is equal to the diffraction effi-
ciency (possibly frequency dependent) multiplied by the
ratio cos ui /cos u, a geometrical factor arising from the
change in propagation direction as the pulse enters the
system. For the grating we ignore frequency-dependent
phase effects associated with the reflection from the grat-
ing material, which would modify the incident field
Ei(v, r0). In the case of a material slab, j is equal to the
surface transmittance T [ cos uiutu2/n cos u, where t is the
Fresnel transmission coefficient. For a prism pair, the
passing of the pulse through the first prism gives for j the
product of the transmittances of the two prism surfaces.
It is important to note that in each system the geometri-
cal factors are removed at the second element, whereupon
the various frequency components are redirected into a
common direction parallel to the propagation direction of
the incident pulse. However, the spectral content of the
pulse is irreversibly modified to the extent that diffraction
efficiency or the Fresnel transmittance coefficients have a
strong frequency dependence.
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The spectral representation of the Poynting vector from
Eqs. (11) and (12) becomes

S~v, r! [ E~v, r! 3 H* ~v, r!

5 juEi~v, r0!u2
k

m0v
@cos u x̂ 1 sin u ŷ#, (13)

which is independent of position r. In the case of a grat-
ing, to the extent that the diffraction efficiency is uniform
over frequency, Eq. (13) reveals that for the specific sen-
sor orientation û 5 x̂ (i.e., the sensor is parallel to the
grating surface), projection of the energy flow onto the
sensor carries the identical spectral profile as the initial
pulse before encountering the grating. (To see this, note
that j is inversely proportional to cos u.) To the extent
that the sensor angle is oriented differently, the spectral
content of the pulse arriving at the sensor is altered. In
typical systems, such as grating pairs employed in laser
systems, this effect is not dramatic, since the range of
angles present is typically rather modest (a few degrees).

To illustrate how detection angle affects the perceived
delay time, we consider a Gaussian pulse given by

E~r0 , t ! 5 E0 exp~2t2/t 2!exp~2iv0t !

as it diffracts from a grating surface. Figure 2(a) shows a
two-dimensional plot of the intensity at t 5 0 for a pulse
with width t 5 5 fs, and v0 chosen to correspond with a
vacuum wavelength of 800 nm. The incoming pulse
strikes the grating surface at an angle of 20° from normal
incidence, and the line spacing is chosen to be 1/1200 mm.
The spatial dimensions of Fig. 2(a) are 0.5 mm wide and 1
mm tall. For reference, the incoming pulse is also
shown. Arrows show the direction of the wave vector as-

Fig. 2. (a) Snapshot of the intensity distribution of a Gaussian
pulse diffracting from a grating surface. (b) Angle of the Poyn-
ting vector, measured from the horizontal x axis, for the pulse il-
lustrated in (a).
sociated with the center frequency v0 . Figure 2(b)
shows the direction of the Poynting vector at each point of
the intensity distribution (points with an intensity less
than 1024 in Fig. 2(a) are set to black). As time proceeds,
the intensity and direction patterns slide vertically down-
ward along the grating surface while maintaining their
forms. The Poynting vector changes direction in time as
the wave form crosses a given point. This change in di-
rection is a general feature of a chirped pulse in an angu-
larly dispersive system and influences the efficiency of de-
tecting the pulse during passage. Nevertheless, the
pulse propagation time [i.e., the difference in arrival
times at r and r0 as given by Eq. (10)] is impervious to
this. In other words, the direction of the Poynting vector
evolves in time in such a way as to counteract asymme-
tries in the chirping process, so that propagation time as
noted by the sensors at r and r0 is independent of the
state of chirp. For this to be true it is important that the
orientation of the two sensors match, since this was as-
sumed in deriving Eq. (10).

Figure 3 shows the delay time, as a function of sensor
angle, for the pulse illustrated in Fig. 2 to travel from
point r0 to another r after diffracting from the grating.
The angles are measured from the a horizontal x axis, and
we have chosen Dr to be 0.25 mm in the x̂ direction
(points are illustrated in Fig. 2). The delay time in-
creases as the detector rotates counterclockwise and be-
comes less sensitive to wave vectors directed closer to the
grating normal. In generating this plot, we have consid-
ered the detector to be sensitive on only one side, so that
contributions to the integrals in Eq. (10) with a positive
dot product were ignored. This effect is not important
when the detector is oriented roughly toward the grating.
While the sensor angle plays a significant role in deter-
mining the center-of-mass propagation time associated
with traversing Dr, the result is not influenced by the
state of the pulse’s chirp, as was previously mentioned.
Whether the pulse begins relatively compressed and then
incurs chirp, begins with a negative chirp that com-
presses, or begins with a positive chirp that becomes more

Fig. 3. Pulse delay time from r0 to r as a function of detector
orientation, û, for the system illustrated in Fig. 2. The angle is
measured from the horizontal x axis.
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pronounced during propagation, the travel time of the
center of mass is the same.

These results are not surprising from the point of view
that the Poynting vector in its frequency representation is
insensitive to the phases of the individual spectral field
components. Therefore the propagation time for the
pulse to traverse Dr cannot recognize the presence of
chirp within the context of Eq. (10). This would still be
the case even if the sensor were insensitive to the incident
angle of the radiation and were able to absorb radiation
equally well from any direction (i.e., if the unit vector û
were removed from Eq. (10) and the Poynting vector were
replaced with its magnitude). In this hypothetical case
the delay time assigned to pulse propagation would still
be insensitive to chirp. Nevertheless, the result for the
delay would be different from that in the case of the di-
rectional sensor, since the integrand in Eq. (10) would
vary in the two cases.

6. SUMMARY
In this paper we have examined the propagation of energy
in angularly dispersive systems. We demonstrated ex-
plicitly that, under the center-of-mass definition of arrival
time, the time it takes for a pulse to propagate from one
point to another is simply a spectral superposition of the
group delay for each frequency weighted by the spectral
content of the pulse. Since this approach does not in-
volve approximating the phase-delay function, it retains
validity for pulses of arbitrarily wide bandwidth. We
have also investigated the effects of sensor orientation on
pulse arrival time. When the sensors that perceive a
pulse are oriented in the same direction at the beginning
and the end of propagation, the time of travel depends on
the spectral content of a pulse but not its temporal orga-
nization. Thus the state of chirp does not affect the total
delay.

APPENDIX A: PHASE DELAY FOR THE
DIFFRACTION GRATING PAIR, DIELECTRIC
WINDOW, AND PRISM PAIR
For the diffraction grating pair it is convenient to apply
Eq. (5) by orienting the system so that the gratings are
parallel to the y axis. We choose our initial reference
point, r0 , on the first diffraction grating surface as shown
in Fig. 4(a). For first-order diffraction the direction of
travel, given by u(v), is readily obtained from the well-
known diffraction grating law

ug~v! 5 sin21S 2pc

vd
2sin u iD , (A1)

where u i is the incident angle and d is the grating line
spacing. If we are interested in only the form of the final
pulse as opposed to its arrival time, we may evaluate the
field at any point on the second grating, since after the
bounce from the second grating the direction of travel for
the various frequencies is the same as before the first
bounce. A convenient point for evaluating the phase de-
lay is directly across from r0 , so that Dr 5 lgx̂, where lg
is the separation between the gratings. We may then im-
mediately write the phase delay, by using Eq. (5), as

fg~v! 5 lg

v

c F1 2 S 2pc

vd
2 sin u iD 2G1/2

, (A2)

where we have employed the identity cos@sin21(x)#
5 (1 2 x2)1/2.

We next consider a dielectric window at an arbitrary
incidence angle, oriented parallel to the y axis shown in
Fig. 4(b). The direction of travel is easily obtained by use
of Snell’s law:

uw~v! 5 sin21F sin u i

n~v!
G . (A3)

We choose r0 to be a point on the window’s first surface
and evaluate the phase delay at a point directly across
from r0 , so that Dr 5 lwx̂, where lw is the thickness of
the window. Again, Eq. (5) immediately gives the phase
delay for the complete element:

fw~v! 5 lw

v

c
@n~v!2 2 sin2~u i!#

1/2. (A4)

In practice, the effects of angular dispersion introduced
by traversing the slab are small compared with the dis-
persion of the material itself. For example, for 800-nm
light incident at Brewster’s angle on a 1-cm-thick
Ti:sapphire crystal, the third derivative of the phase de-
lay obtained in Eq. (A4) differs by less than 1% from that

Fig. 4. Geometry for (a) diffraction grating pair, (b) material
window, and (c) prism pair.
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calculated when the angular dispersion is ignored and the
light is treated as being at normal incidence on a slab
with thickness lw /cos uw(v).

For the prism pair it is convenient to orient the system
so that the interior faces of the prisms are parallel to the
y axis as shown in Fig. 4(c). With two applications of
Snell’s law, we can calculate the direction of travel as

up~v! 5 sin21S n~v!sinH a 2 sin21F sin u i

n~v!
G J D , (A5)

where u i is the angle of incidence on the first prism sur-
face and a is the apex angle. For a standard double-
prism configuration, a convenient place to evaluate the
phase delay is between the apices of the two prisms, since
these will match the form of the pulse on the exterior
sides of the prism. We could evaluate the pulse at any
other two points on the sides of the prisms, but then the
effect of propagation through the interior of the prism
would also need to be considered. We define r0 to be at
the apex of the first prism so that Dr 5 lp cos(uR)x̂
1 lp sin(uR)ŷ, where lp is the distance between prism api-
ces and uR is the angle between the line connecting the
two apices and the normal to the interior faces of the
prisms. Applying these parameters to Eq. (5), we calcu-
late the phase delay:

fp~v! 5 lp

v

c
cos@uR 2 up~v!#. (A6)

This method is essentially the same as the equivalent
optical-path method used by Fork et al.11 but requires
much less geometry. We can verify that this formula cor-
rectly includes the dispersion introduced by propagation
through the prism interior by allowing the two prisms to
touch, as was pointed out by Durfee et al.3 In this case
we have uR 5 p/2 and lw 5 lp sin a, whereupon Eq. (A6)
is quickly reduced to Eq. (A4), aside from a linear fre-
quency delay consistent with the different orientations of
the two setups.

APPENDIX B: DERIVATION OF ENERGY
TRANSPORT TIME IN DISPERSIVE
SYSTEMS
In this appendix we derive an expression for the time it
takes for a pulse to travel between two points under the
center-of-mass definition of arrival in the nonabsorbing
case. The time of arrival at a point r was given in Eq. (9):

^t&r [ û • E
2`

`

tS~r, t !dtY û • E
2`

`

S~r, t !dt. (B1)

The denominator in Eq. (B1) is transformed to the fre-
quency domain via Parsevall’s theorem [i.e., *2`

` S(r, t)dt
5 E 2`

` S(r, v)dv]. The numerator in Eq. (B1) may be
transformed by our writing the Poynting vector in terms
of its field spectra. After reordering integration and in-
troducing a partial derivative to account for the factor t,
the numerator becomes
2iû • E
2`

`

H~r, v!dv

3
]

]v
E

2`

`

E~r, v8!dv8F 1

2p
E

2`

`

exp@2i~v 1 v8!t#dtG .

(B2)
The time integral enclosed in brackets yields the delta
function d (v 1 v8). This result is used along with the
fact that the fields were strictly real in the time domain to
arrive at the final form for ^t&r :

^t&r 5 2iû • E
2`

` ]E~r, v!

]v
3 H* ~r, v!dv

Y û • E
2`

`

S~r, v!dv. (B3)

To obtain delay time Dt [ ^t&r 2 ^t&r0
we need to relate

the fields at r0 with those at r. This is accomplished by
using the phase delay discussed in Section 2:

E~r, v! 5 E~r0 , v!exp@if~v!#,

H~r, v! 5 H~r0 , v!exp@if~v!#. (B4)

The expressions in Eq. (B4) are inserted into Eq. (B3),
and the partial derivative is evaluated to obtain an ex-
pression for ^t&r in terms of the fields at r0 :

^t&r 5 û • E
2`

` F2i
]E~r0 , v!

]v
1 E~r0 , v!

]f~v!

]v
G

3 H* ~r0 , v!dvY û • E
2`

`

S~r0 , v!dv. (B5)

From this expression it is straightforward to evaluate the
delay time to obtain the result given in Eq. (10):

Dt [ ^t&r 2 ^t&r0
5 û • E

2`

`

S~r0 , v!
]f~v!

]v
dv

Y û • E
2`

`

S~r0 , v!dv. (B6)

M. Ware may be reached at mw22@email.byu.edu.

REFERENCES
1. M. Pessot, P. Maine, and G. Mourou, ‘‘1000 times

expansion/compression of optical pulses for chirped pulse
amplification,’’ Opt. Commun. 62, 419–421 (1987).

2. D. N. Fittinghoff, B. C. Walker, J. A. Squier, C. S. Toth, C.
Rose-Petruck, and C. P. J. Barty, ‘‘Dispersion consider-
ations in ultrafast CPA systems,’’ IEEE J. Sel. Top. Quan-
tum Electron. 4, 430–440 (1998).

3. C. G. Durfee III, S. Backus, M. M. Murnane, and H. C.
Kapteyn, ‘‘Design and implementation of a TW-class high-
average power laser system,’’ IEEE J. Sel. Top. Quantum
Electron. 4, 395–405 (1998).

4. S. D. Brorson and H. A. Haus, ‘‘Diffraction gratings and
geometric optics,’’ J. Opt. Soc. Am. B 5, 247–248 (1988).

5. J. Peatross, S. A. Glasgow, and M. Ware, ‘‘Average energy
flow of optical pulses in dispersive media,’’ Phys. Rev. Lett.
84, 2370–2373 (2000).

6. O. E. Martinez, ‘‘Grating and prism compressors in the case
of finite beam size,’’ J. Opt. Soc. Am. B 3, 929–934 (1986).

7. O. E. Martinez, J. P. Gordon, and R. L. Fork, ‘‘Negative



Ware et al. Vol. 18, No. 6 /June 2001/J. Opt. Soc. Am. B 845
group-velocity dispersion using refraction,’’ J. Opt. Soc. Am.
A 1, 1003–1006 (1984).

8. E. B. Treacy, ‘‘Optical pulse compression with diffraction
gratings,’’ IEEE J. Quantum Electron. QE-5, 454–458
(1969).

9. C. H. Brito Cruz, P. C. Becker, R. L. Fork, and C. V. Shank,
‘‘Phase correction of femtosecond optical pulses using a
combination of prisms and gratings,’’ Opt. Lett. 13, 123–
125 (1988).

10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cam-
bridge U. Press, Cambridge, U.K., 1999), pp. 117–119.

11. R. L. Fork, O. E. Martinez, and J. P. Gordon, ‘‘Negative dis-
persion using pairs of prisms,’’ Opt. Lett. 9, 150–152 (1984).


