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Abstract:  High harmonic production can be dramatically increased by
utilizing an interaction region much longer than a coherence length.
Counter-propagating light pulses can be used to disrupt the out-of-phase
harmonic emission from selected zones in the focus so that the remaining
emission builds constructively.  Counter-propagating light creates a
standing field modulation repeating over a half laser wavelength in which
phase cancellations for harmonic emission occur. A simple power-law
model is used to demonstrate how such pulses can be designed to
counteract geometrical phase mismatches and improve emission for
individual harmonics by more than two orders of magnitude.
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1. Introduction

When an intense laser pulse is focused into an atomic medium (typically low-density gas),
very many orders of harmonic light can be produced (wavelengths less than a hundredth the
laser wavelength).1-2  The harmonics have become an attractive source for coherent vacuum
ultraviolet radiation.  However, in many cases the generated harmonics (in particular the
highest orders) have so little energy per pulse as to make them difficult to register, and this
limits the prospects of their usefulness.  The efficiency of converting the laser light into the
high-order harmonics under optimal conditions has reached about 10-7 (25nm light)3 and is
often much less.  Some improvements to the efficiency of converting the laser light into the
high-order harmonics can be made by decreasing the laser pulse duration4 or by designing
laser pulse temporal profiles to enhance the atomic response.5-7  The efficiency of converting
laser light into high-order harmonics is seriously limited by several macroscopic
mechanisms (other than the atomic response itself):  1. Geometrical phase mismatches arise
from discrepancies between the diffraction rates for the laser and for individual harmonics;
2. The refractive index for laser light in the generating medium can differ from the refractive
index for the harmonics (particularly severe when free electrons are present);  3. The
intrinsic phase of harmonic emission can vary spatially via the atomic response to local laser
intensity throughout the focus.  All together, these phase mismatches can cause strong
cancellations as harmonic light emerges from different locations in the laser focus.

L'Huillier et al. have investigated extensively the phase matching issues associated
with focal geometry.8-10  In response to such investigations, it is typical to confine the
interaction region to a geometrical coherence length to avoid destructive phase cancellations.
This is usually done by lengthening the laser focus relative to the width of the gas jet or by
working outside of the focus.  Nevertheless, since only a very small fraction of the laser
energy is converted into harmonic radiation, this confinement of the interaction region is
disheartening since the laser intensity in near-by regions is not utilized.  The discovery of
intensity-dependent intrinsic phases11-12 initiated investigations into the possibility of
playing the intrinsic phases against the geometrical phase mismatches in an effort to
improve overall harmonic generation.13-14  However, this seems to produce only marginal
gains (i.e., a factor of 2).  Wahlstrom et al.15-16 have investigated the harmonic generation
process as a function of atomic density.  They found well-defined limitations to the gas
density depending on harmonic order and atomic species beyond which index-related phase
mismatches overcame the benefit of an increased number of harmonic emitters.  The use of
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atomic clusters or ions as a generating medium so far has not lead to significantly increased
conversion efficiencies.17-18  On the other hand, high-order harmonic generation in plasma
interactions on solid targets using extremely high intensities (i.e. ~1019 W/cm2) has recently
been demonstrated to have conversion efficiencies in the neighborhood of 10-6, assuming
that the radiation is spread over a wide solid angle.20  It should also be noted that Milchberg
et al.21 have proposed using a pre-formed plasma waveguide to improve phase matching.

In the past few years, a basic understanding of the phase-matching for high
harmonics generated in a gas has emerged.  The limitations are so severe that under current
norms it is more appropriate to call it phase mismatch minimization rather than phase-
matching.  In spite of the difficulties, the possibility of finding ways to achieve genuine
phase-matching offers large incentive for addressing the problem.  A hundred fold or better
improvement to the conversion efficiency would make the harmonics a more attractive
vacuum ultraviolet source as well as improve the range over which the harmonics can be
studied.  Shkolnikov et al.22 have recently made estimates on possible increases to the
harmonic conversion efficiency based on long-understood ideas of quasi phase matching.23

In their work, they point out that if the atomic density can be modulated along the laser axis
in order to eliminate harmonic emission from regions having destructive phases, the
efficiency of harmonic production can be improved by orders of magnitude.  This procedure
would compensate for geometrical phase mismatches, but it could not deal with index-related
phase mismatches, assuming them to be inseparably linked with the density modulation.
The detailed manipulation of the atomic density in the focus poses some technical
challenges.

In this article, we propose an alternative approach for achieving quasi phase
matching.  Rather than attempting to modulate spatially either the density of the atomic
medium or the density of free electrons, the approach uses counter propagating light to
disrupt the phase matching microscopically in specific regions of the focus.  We give an
analysis of how even relatively weak counter-propagating light can substantially suppress
harmonic production.  The quasi phase matching is achieved using multiple counter-
propagating light pulses which collide with the main generating pulse in the laser focus.
The timing and durations of these counter-propagating pulses can be chosen appropriately to
frustrate harmonic production in selected zones with undesirable phase.  The remaining
regions then constructively interfere, and harmonic production is expected to increase
approximately quadratically with the number of in-phase regions created.

It should be mentioned that our approach is fundamentally different from other
proposed phase-matching methods using dual light sources.  In these cases, either difference-
frequency mixing22 or angular tuning of crossing beams24 are proposed to allow for phase
matching in a positive dispersive medium (i.e., plasma).
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Fig. 1.  A mirror with a hole is used to extract high-order harmonics generated in counter-
propagating laser beams.
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In Ref. [13], a scheme is proposed for examining intrinsic phases in high-harmonic
emission based on the generation of harmonics in the presence of a weak counter-
propagating laser beam.  Intensity-dependent phases are expected to overcome the extremely
poor phase matching in the direction of the weak counter-propagating light and produce
measurable albeit faint harmonic signals.  It was also pointed out in Ref. [13] that the
harmonic emission in the direction of the main pulse is at the same time strongly attenuated
(by roughly a factor of ten) owing to a standing interference induced by the weak counter-
propagating light.  It is this suppression of production in the forward direction that makes
counter-propagating pulses an attractive candidate for use in quasi phase-matching.

Figure 1 shows a schematic of the experimental setup which uses a mirror with a
hole in it to introduce the counter-propagating light while allowing the harmonics to be
observed.25  When an annular beam is focused, the center fills in to produce a central peak
similar to that of a usual laser focus, surrounded by faint rings which do not contribute to
harmonic production.  Much of the harmonic energy emerges close to the laser axis so that it
can pass inside of the hole.  The hole is necessary because of the lack of suitable materials
able to transmit vacuum ultraviolet light.

Counter-propagating light disrupts phase matching over a distance of a half laser
wave length.  This is caused both by a standing phase variation in the crossing beams as well
as by the intensity-dependent intrinsic atomic phase responding to the standing intensity
fluctuation.  In the present work, we will consider only the standing phase variation,
although the neglected intensity-dependent phase variation is expected to enhance phase
disruption.  We will give a microscopic analysis of how counter-propagating light suppresses
harmonic production.  We will also demonstrate how a tailored series of counter-propagating
pulses can be used to overcome geometrical phase mismatches in a Gaussian laser focus.

2. Microscopic phase disruption in counter-propagating pulses

Consider two plane wave fields with real amplitudes E1 and E2  which propagate in opposite
directions.  We will assume that E1 is the larger of the fields and write their sum as a single
field having the form of the stronger plane wave, although with a standing intensity and
phase modulation:

     E1e
i kz −ωt( ) + E2e−i kz+ ωt( ) = Et z( )ei kz− ωt +φ z( )( )

.   (1)

The total amplitude which is stationary and varies spatially can be written as

Et z( )= E1 1+
E2

E1

 

 
 

 

 
 

2

+ 2
E2

E1

cos 2kz,   (2)

and the phase modulation, also stationary, is found to be

    φ z( )= − tan−1

E2

E1

sin2kz

1 + E2

E1

cos 2kz
.   (3)

In the limit of a very weak counter-propagating field (i.e., E2 << E1), the total field reduces
to that of the stronger plane wave (i.e., Et z( )→ E1; φ z( )→ 0 ).  Nevertheless, even a
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relatively weak field E2  can cause significant standing modulations.  The fringe visibility for
the standing intensity modulation is given by

  V =
I max − I min

I max + I min

=
2E2 E1

1+ E2 E1( )2 .   (4)

If E2  is only a tenth as strong as E1 (i.e., 100 times less intense), the standing intensity
pattern has a fringe visibility of 0.20.  In this case, I max is 49% more intense than I min .  Fig.
2 shows the standing intensity profile for this case.  By intensity, we do not refer to net
energy flow (i.e., Poynting vector), but rather to the square of the combined field amplitude
(i.e., εocEt

2 z( ) 2 ).  Fig. 2 also shows the standing phase variation described by Eq. (3).
Although the phase fluctuates over a total range of only 0.06π , this translates into a phase

disruption of more than π  for harmonics beyond the 15th order.  As seen in Fig. 2, both the
standing intensity modulation and the standing phase modulation are periodic over a half
laser wavelength.
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Fig. 2.  Standing intensity and phase variations resulting when a plane wave is met by a counter-
propagating plane wave one hundredth as intense.

The phase variation within the half wavelength interval can seriously dampen
harmonic production.  It is useful to perform a microscopic phase-matching calculation over
such an interval, say from −λ 2  to zero, to find the effective harmonic emission strength to
be compared with the usual case of no counter-propagating light (i.e. E2 = 0).  To perform

this calculation, we invoke a simple model: The strength of the qth harmonic is assumed to
follow the laser field strength raised to the pth power.  That is, the field emission from
individual atoms goes as

   Eq z, t( ) ~ Et
p z( )eqi kz−ωt +φ z( )( ) .   (5)

The effective emission from the interval is found by summing the contributions from all
participating dipoles to the net field leaving the interval (i.e. at z= 0 ).  The interval net field
at the exiting edge is then proportional to
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       Eq z, t + z c( )dz
− λ 2

0

∫ ~ e− iqωt Et
p z( )eqiφ z( )dz

−λ 2

0

∫ .   (6)

To obtain a factor proportional to the effective emission from the interval, it is convenient to
compare the result of Eq. (6) with λe−iqωtE1

p 2 , the result when E2  is zero.  By effective
emission, we mean the apparent response of the atoms in the interval as though the phase
matching had not been disrupted.  We therefore define a microscopic phase-mismatch factor
as

   ξ ≡
2

λE1
p Et

p z( )eqiφ z( )dz
−λ 2

0

∫ .   (7)

Note that ξ  is real because Et z( ) is even and φ z( ) is odd over the interval of integration.
Although Eq. (7) is defined in terms of the power law model used in the present work, the
definition can be generalized to accommodate other models including results of numerical
simulations.
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Fig. 3.  The effective emission from a microscopic phase-matching interval for the 11th, 31st, and
51st harmonics as a function of relative counter-propagating field strength.  The calculation
assumes that harmonic emission follows a power law with p=5.

Fig. (3) shows the behavior of the microscopic factor ξ  for a variety of harmonic
orders as a function of counter-propagating field.  In all cases, p is chosen to be 5, but the
results are not sensitive to the exact choice for this parameter.  As is evident, the emitted
harmonics are significantly degraded even with a relatively weak counter-propagating field.
For harmonic orders in the twenties or higher, a counter-propagating field strength of only
one tenth the main field is sufficient to seriously disrupt the harmonic emission.  This means
that to realize this situation experimentally, counter-propagating pulses need only have one
hundredth the intensity of the main pulse.  As is also seen in Fig. 3, the microscopic factor is
zero only at a few specific counter-propagating field strengths.  Nevertheless, in the cases
where the microscopic factor goes negative, the emission is out of phase by π .  Since the
reason for suppressing the harmonic production is to eliminate emission having the incorrect
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phase, the π  phase change is actually more beneficial than if the microscopic factor simply
goes to zero.  It should be noted that the decrease in the microscopic factor with counter-
propagating field strength is entirely due to the functional form of φ z( ); if φ z( ) is arbitrarily
held constant, the result of Eq. (7) would continually increase above one.

3. Geometrical phase mismatches

The phase matching (mismatch) calculation for harmonics produced in a Gaussian focus
under the assumption of perturbation theory (i.e., Eq ~ EL

q ) can be reduced to a one-

dimensional integral which is well known.8  Similarly, the phase matching calculation for
the arbitrary power-law model used in the present work (i.e., Eq ~ EL

p
) can be reduced to a

one-dimensional integral.12  The integral which describes the field of individual harmonics
at a screen far from the laser focus is

Eq θ,T( )~ E1
p T( ) dz

N z( )ξ T,z( )ηe
− q

2η 2

p
2f #θ( )2

1+ z2 zo
2( ) p−1( ) 2

e
−iq tan−1 z zo +i tan−1 qz

pzo

+iq 2f# θ( )2 1− q2 η2

p2
 

 
 

 

 
 

z

zo∫    (8)

where η ≡ 1+ z2 zo
2( ) 1 + q2z2 p2zo

2( ).  N z( )  is the density of the atomic medium, zo  is

the laser Rayleigh range, and θ  is the angle from the axis to a point on the screen.  Note that
2f#θ  is a parameter which compares the angle of the harmonic emission to that of the laser
beam.  We have included the microscopic phase-mismatch factor ξ T,z( )  which is identically
one in the absence of counter-propagating pulses.  T is a time parameter that refers to a
specific point on the temporal envelope of the generating pulse which moves through the
focus.  In Eq. (8), we have neglected proportionality factors since we are interested only in
changes in harmonic production when counter-propagating pulses are used.

The use of the power-law model rather than perturbation theory is significant to the
analysis of geometrical phase matching because it allows sizable harmonic production to
take place through a longer depth in the focus.  This is more realistic than the perturbation
model since high-order harmonic generation is known to increase with the laser field at a
rate much less than perturbation theory would suggest.  Nevertheless, the power law model
misses much of the physics associated with realistic atoms and is used here only for its
convenience to illustrate geometrical phase mismatch.
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Fig. 4.  (a) Amplitude and phase of the 51st harmonic field arriving simultaneously in the center of
a distant screen as a function of emission position (normalized by the Rayleigh range).  The graph
shows the field contributions associated with a particular point on the pulse temporal envelope as
it travels through the focus.  The net field for that instant is found by summing  the contributions
as in Eq. (8).  (b) Real part of the field

Fig. 4(a) shows the amplitude and phase of harmonic contributions as a function of
point of origin in the laser focus in the absence of a counter-propagating field.  This is done

for the 51st harmonic with p chosen to be 5.  The calculation is for that light which hits the
screen on axis (i.e., the figure shows the integrand of Eq. (8) with θ = 0 , N = 1, and ξ = 1).
The phase changes by about 25π  over the range −zo < z < zo .  Fig. 4(b) shows the real part
of the emission to emphasize the strong effect of the varying phase.  The curve in Fig. 4(b)
may be interpreted as the electric field contributions from different positions in the focus
arriving simultaneously and interfering at the center of the distant screen.  Since these
contributions arrive at the screen together, it is apparent that they are produced at different
laboratory times as a single temporal point T of the laser pulse moves through the focus.
When the contributions are summed (i.e., the integral of Eq. (8) is taken), the strongly
varying phase takes a serious toll on the overall harmonic emission.  To counteract this
effect, counter-propagating pulses can be chosen with appropriate timing and durations so
that the microscopic factor ξ z, T( )  tends towards zero in regions with undesirable phase.
Alternatively, the gas distribution can be restricted to a coherence length (phase interval of
π ) to minimize phase cancellations, as is the usual practice, but this makes only limited use
of the focal region.

It may be argued that geometrical phase mismatches can be reduced with less
trouble by generating harmonics outside of the focus where the laser phase varies less rapidly
along the z-axis.  However, in order to maintain the intensity necessary for good harmonic
production, this requires a shorter depth of focus (assuming fixed laser energy).  A decrease
in the focal depth increases the rate of axial phase variation, and this cancels the benefit of
working outside of the focus.  The coherence length for harmonic production is never larger
than its value at the focal center as long as the f-number is chosen to make the intensity
appropriate at the location of generation.  An increase in laser energy does not alter this
relationship, since it means simply that a larger f-number can be utilized.  Thus,
improvements to the phase matching in the vicinity of the focus represent genuine gains in
harmonic production.  It should be conceded, however, that for very energetic laser systems,
it may be more practical to work outside of the laser focus in order to avoid huge f-numbers
while fully utilizing available laser energy.

To see why the coherence length at the focal center is as long as it can be, an
examination of the phase term q tan−1z zo  in Eq. (8) is sufficient since it is by far the most

rapidly varying phase term.  The derivative of this phase term is q zo + z2 zo( ) which

implies a phase change of π  over an approximate coherence length of

L C ≅ π zo + z2 zo( ) q .  At an arbitrary position z away from the focus, the laser intensity

drops by the factor 1+ z2 zo
2 .  Thus, in order to satisfy the constraint that the intensity must

be the same regardless of position, a new Rayleigh range ′ z o  must be chosen depending on
the selected position z such that

zo ′ z o = 1+ z2 ′ z o
2 . (9)

Under this constraint, the coherence length as a function of position must be written using

the new Rayleigh range (i.e., LC ≅ π ′ z o + z2 ′ z o( ) q ).  A substitution from Eq. (9) simplifies
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the coherence length to L C ≅ πzo q .  This result which does not depend on z implies that
the coherence length at the focal center is as long as it is anywhere.

Moreover, away from the focus the harmonic production can tend to zero over a
distance shorter than the laser coherence length owing to nonlinearity of the interaction and
the decreasing laser intensity associated with the expanding beam.  Eq. (8) suggests that the

harmonic amplitude decreases with z as 1+ z2 ′ z o
2( )− p−1( ) 2

.  Again, an estimate using the

derivative for harmonic production length yields LP = zo ′ z o p − 1( )z, where a substitution

from Eq. (9) was again used.  From this it is seen that the production length L P  will be

shorter than the coherence length L C  whenever we have z′ z o > q π p − 1( ).  This means that

the production length can be shorter than the coherence length if the harmonics are
generated more than a few Rayleigh ranges from the focus.  These results do not contradict
reports suggesting improved production slightly outside of the laser focus10,14 since the
reports refer to experiments made with fixed f-number and higher-than necessary intensity in
the focus.

4. Simulation of harmonic production in a focus with counter-propagating light

Inasmuch as this analysis uses the results of section 2 which were derived for plane waves,
the pulses should be of sufficient duration to enable them to be treated as plane waves over a
half laser wavelength. However, as the main laser pulse produces harmonic radiation, the
newly created light travels together with the pulse so that harmonics generated by a specific
point T of the laser temporal envelope do not combine with harmonics generated by other
points of the envelope (at least not with time separations of more than several harmonic
periods as in the case of strong interference).  Thus, even though the formulas in Section 2
were derived for counter-propagating plane waves, the main harmonic generating pulse need
not be a plane wave.  Nevertheless, the use of the plane wave approximation does require the
counter-propagating pulse to be of sufficient duration.  We have found that Eqs. (2) and (3)
hold to within 1% if the counter-propagating pulse is of duration 100fs or longer, assuming
800nm light.  This corresponds to a distance of 15µm  that a point T on the main pulse
travels while experiencing the counter-propagating light.  Thus, it appears to be feasible to
utilize in excess of ten counter-propagating pulses to dampen harmonic emission from
selected zones inside of a 1mm region without violating the analytical descriptions above.
However, unless the main generating pulse is short compared to the counter-propagating
pulses, the selected zones will shift position for different temporal points of the main pulse.
However, to the extent that the selected zones are spatially periodic the shifting of the zones
will not be important.  The quasi plane wave requirement ensures the accuracy of the
formulas in section 2, but a non-plane wave is still expected to disrupt harmonic production.

The amplitude of the main pulse envelope has the form E1 t − z c( ) while counter-

propagating pulses have the form E2 t + z c( ).  In order to find the relevant ratio between the

two crossing fields, we must monitor each temporal point of the main pulse for which
T ≡ t − z c is constant as it travels through the focus.  Thus, the ratio of the main pulse
amplitude at point T to the amplitude of the counter-propagating field throughout the focus
is E1 T( ) E2 T + 2z c( ).  With this we can find the microscopic factor ξ  as a function of z for

each point T of the main pulse.  To do this, we utilize Eqs. (2), (3) and (7).  After this
preliminary calculation, the integral in Eq. (8) can be computed to find the harmonic
emission in the far field.

Fig. 5(a) shows a series of counter-propagating pulses especially tailored to suppress
harmonic production in the regions with negative field in Fig. 4(b).  The series of pulses was
created by blocking portions of a single longer Gaussian.  In the laboratory, the counter-
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propagating pulses might be produced using a chirped pulse with selected regions of the
spectrum blocked.  Depending on which portions of the spectrum are blocked, the duration
and timing of the counter-propagating pulses can be controlled.  The individual peaks seen
in Fig. 5(a) were smoothed to make them appear more experimentally realistic.  Although a
larger number of peaks would be beneficial, the simulation utilizes seven dips in the counter-
propagating light.  This number is likely to be experimental feasible.  The fact that the
intensity is just a hundredth of the main pulse adds to the experimental convenience since
the duration might be chosen to be 10ps (i.e., 1.5mm) or longer.  It should be noted that the
diversion of laser energy into counter-propagating light lessens harmonic production
quadratically (decreasing potential focal area and associated coherence length), so it is
desirable to use as little energy as possible to form the counter-propagating peaks.  If
coherence length is limited by refractive index, then diverted energy would decrease
harmonic production only linearly.
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Fig. 5.  (a) The relative intensity of counter-propagating pulses tailored to improve emission for
the 51st harmonic.  (b) The real part of the 51st harmonic field components at the center of a
distant screen in the presence of counter-propagating pulses. The graph  shows the field
contributions associated with a particular point on the pulse temporal envelope as it travels
through the focus (position normalized to the Rayleigh range).  The net field for that instant is
found by summing the contributions as in Eq. (8).  Compare with Fig. 4(b).

Fig. 5(b) shows the harmonic production associated with T=0 which must be
summed to get the net instantaneous field amplitude on-axis at a distant screen.  This is
similar to Fig. 4(b) where we have plotted the integrand of Eq. (8) for θ = 0 , but we have
used the microscopic factor ξ z, T = 0( )  computed for the peaks in Fig. 5(a).  As can be seen,
the out-of-phase portions of the pulse have been removed to a large extent by the counter-
propagating light.  This produces a very dramatic effect on the integral.  Fig. 6(a) shows the
results of the integral from −zo  to +zo  as a function of θ  (blue).  The gas density was taken
to be uniform over this region, as might be the case for a gas cell.  The plot shows intensity
(not field) at the screen for the instant associated with T=0 (the laboratory time when the
peak of the laser pulse hits the screen).  Other values for T yield similar pictures (assuming a
main pulse which is shorter than individual counter-propagating peaks).

The green line in Fig. 6(a) is the result of the integral in the absence of any counter-
propagating peaks.  The phase cancellations are seen to have a sever effect on harmonic
emission.  The red line in Fig. 6(a) shows the integral performed  in the absence of counter-
propagating pulses, but where the density N z( )  is chosen to be a Lorentzian with full-width
at half maximum 0.062zo , a geometrical coherence length.  As is evident, restriction of the
gas dimension represents a substantial improvement over the case shown by the green line.
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However, the use of counter-propagating light increases the intensity over the narrow jet case
by a factor of 40.  Moreover, slightly off axis the intensity has been increased by many orders
of magnitude. To compare over all conversion efficiency, it is necessary to sum the intensity
over the area on the screen:

Power ~ Eq θ, T( )2
θdθ∫ . (10)

The integration shows for the example in Fig. 6 that the counter-propagating light improves
the emitted power relative to the narrow jet case by more than two orders of magnitude.  In
the example, the counter-propagating pulses were optimized for the on-axis emission,
whereas emission at wider angles suffers some phase mismatch.  If the counter-propagating
pulses are optimized for the emission at wider angles, a conversion efficiency up to three
orders of magnitude can be obtained owing to the larger area at the wider angles.
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Fig. 6.  (a) Relative intensity of the 51st harmonic at a distant screen as a function of angle, in the
presence of the counter-propagating field (blue), in the absence of the counter-propagating field
(green), in the absence of the counter-propagating field but with the gas restricted to a coherence
length at the focal center (red).  The laser profile is depicted for angular comparison (light blue).
(b) The same figure shown with a linear scale.

5. Summary and discussion

In this article, we have examined a means of counteracting geometrical phase mismatches in
high harmonic generation to enable the use of a longer interaction region.  Counter-
propagating light appears to offer a practical technique of achieving this by suppressing
emission from selected zones having destructive phase.  We have shown analytically that
even relatively weak counter-propagating light (one hundredth the intensity) can seriously
disrupt harmonic emission in the selected zones via a microscopic phase mismatch.  Using a
simple power-law model to describe harmonic emission, the results of the investigation
suggest that it is possible to improve the efficiency of converting laser energy into harmonic
radiation by as much as three orders of magnitude.

We have not examined phase mismatches due to free electrons or to the intensity-
dependent intrinsic phases of the atom.  These effects are more difficult to calculate owing to
the complicated nature of ionization and emission dynamics.  However, it seems likely that
counter-propagating light pulses can be applied to counteract these problems in addition to
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the geometrical phase mismatches.  The fact that free-electron and intrinsic phase
mismatches vary radially in the focus may somewhat frustrate this effort to the extent that
the phases at different radii require different sequencing of counter-propagating peaks.

The various phase mismatches are present together as harmonic production takes
place, so the optimal timing and spacing of counter-propagating light pulses will ultimately
need to be found experimentally.  An experimental optimization for the counter-propagating
light peaks will automatically take into account phase distortions present in the laser beam.
This procedure has the potential to enhance observations of harmonic emission from ions by
counteracting the strong disruption to the phase mismatches caused by the free elections.
We plan to investigate these issues in upcoming experiments.  We acknowledge support for
I. Prokopovich from the National Research Council COBASE program.
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