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Abstract: Structures whose thickness follow a power law profile
exhibit the “acoustic black hole” (ABH) effect and can be used for effec-
tive vibration reduction. However, it is difficult to know a priori what
constitutes the best design. A new block matrix formulation of the
transfer matrix method is developed for use in the optimization of an
ABH vibration absorber at the end of a cantilever beam. Results indi-
cate that introduction of the ABH significantly alters the dynamics of
the beam, which must be considered in determining the optimal design
for a given vibration reduction problem.
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1. Introduction

Mironov1 was the first to demonstrate the theoretical possibility of zero reflection of
bending waves in a wedge whose thickness decreases to zero according to the relation
hðxÞ ¼ �xm for m � 2, and others2 have since shown this possibility for other thickness
profiles. As the waves approach the zero-thickness end of such a so-called acoustic
black hole (ABH), the wavespeed approaches zero and the transit time to the end
approaches infinity. However, in practice there will always be a nonzero truncation at
the tip of the wedge, so that the thickness profile will be hðxÞ ¼ �xm þ h0. The result of
this modification is that the transit time to the end becomes finite, which can result in
reflection of as much as 70% of the incident energy even for small values of h0.3

However, the shortcomings of real wedges can be drastically improved with
the addition of a thin layer of viscoelastic damping material near the tip. In such a
case, the ABH works by reducing the bending wavelength and increasing the trans-
verse amplitude, thereby focusing strain in a small region where damping material can
more effectively absorb and dissipate energy. Such ABH vibration absorbers have
received increased attention in recent years as a means to effectively reduce structural
vibrations without adding weight.4–10 This paper explores the optimal design of a one-
dimensional ABH vibration absorber located at the end of a cantilever beam, using a
block transfer matrix approach.

2. Theoretical model

The dynamic equation for an Euler-Bernoulli beam can be written as

l
@2w
@t2 þ

@2

@x2 EI
@2w
@x2

� �
� q x;tð Þ ¼ 0; (1)

where qðx;tÞ is the external force applied to the beam, E is the Young’s modulus of
the beam material, l is its density per unit length, and I is the second moment of iner-
tia about the beam’s neutral axis. In the case that E and I are independent of position,
there are no external forces, and assuming a steady-state, time-harmonic solution,
wðx;tÞ ¼WðxÞejxt, one form of the solution to Eq. (1) is

W xð Þ ¼W0c1 xð Þþ h0

k
c2 xð Þ � M0

EIk2 c3 xð Þ � Q0

EIk3 c4 xð Þ; (2)

where k4 ¼ lx2=EI , W0 is the vertical displacement of the beam’s neutral axis at
x¼ 0, h0 is its slope, M0 is the moment about the neutral axis, and Q0 is the shear
force. Additionally, c1ðxÞ ¼ ðcoshðkxÞþcos ðkxÞÞ=2, c2ðxÞ ¼ ðsinhðkxÞþsinðkxÞÞ=2, c3ðxÞ
¼ ðcoshðkxÞ � cos ðkxÞÞ=2, and c4ðxÞ ¼ ðsinhðkxÞ � sinðkxÞÞ=2. For a finite beam of
length L, it is possible to relate the state variables at x¼ 0, u1 ¼ ½W0 h0 M0 Q0 �T ,
to the state variables at x¼ L, u2 ¼ ½WL hL ML QL �T , through the transfer matrix
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Z ¼

c1 Lð Þ c2 Lð Þ
k

� c3 Lð Þ
EIk2 � c4 Lð Þ

EIk3

kc4 Lð Þ c1 Lð Þ � c2 Lð Þ
EIk

� c3 Lð Þ
EIk2

�EIk2c3 Lð Þ �EIkc4 Lð Þ c1 Lð Þ c2 Lð Þ
k

�EIk3c2 Lð Þ �EIk2c3 Lð Þ kc4 Lð Þ c1 Lð Þ

2
66666666664

3
77777777775
: (3)

This relation may be written succinctly as u2 ¼ Zu1. This transfer matrix method can
also be used to relate the state variables at any intermediate point along the beam, so
long as each segment is uniform and homogenous. In this way, the dynamics of com-
plex beam geometries can be analyzed by partitioning them into segments that are
approximately uniform and homogenous. For a beam partitioned into N segments
with Nþ1 nodes, the two ends of the beam can be related

uNþ1 ¼
YN
i¼1

Z i

 !
u1 ¼ Au1: (4)

The P notation is used in Eq. (4) and subsequently to denote sequential left multiplica-
tion of matrices. Given a set of known boundary conditions, the unknown state varia-
bles in u1 and uNþ1 can be solved by explicitly calculating A and carrying out the
appropriate algebra. State variables at intermediate points can then be determined
using sequential application of transfer matrices.

If the beam is excited by a harmonic point force, then the transfer matrix for-
mulation is modified as follows. Suppose a force with magnitude q0 is applied at the
node 1 < j < N þ 1. The state vector at this node would then be calculated as uj
¼ Z j�1uj�1 þ q, where q ¼ ½ 0 0 0 q0 �T . The two ends of the beam are then related

uNþ1 ¼
YN
i¼1

Z i

 !
u1 þ

YN
i¼j

Z i

0
@

1
Aq ¼ Au1 þ Bq (5)

and the unknown state variables can be solved just as before.
For reasons of numerical stability, calculations were implemented using the

Riccati transfer matrix method developed by Horner and Pilkey.11 The advantage of
the Riccati transfer matrix method is that, like the generalized Riccati transformation,
it converts a numerically unstable two-point boundary value problem into a stable ini-
tial value problem. Moreover, the formulation of Horner and Pilkey requires no
numerical integration, and the matrix components can be determined analytically. The
reader is referred to Ref. 11 for details of the derivation, but in short the state vector
and transfer matrix are modified to be of the form

f

e

" #
iþ1

¼ Z11 Z12

Z21 Z22

" #
i

f

e

" #
i

þ d f

de

" #
i

; (6)

where f i are the state variables that are homogeneous at x ¼ 0 and ei are the compli-
mentary forces or displacements. For the cantilever beam with a harmonic point force
at node j, f i ¼ ½Qi Mi �T , ei ¼ ½Wi hi �T , d f

i ¼ ½ q0diðj�1Þ 0 �T , and de
i ¼ 0, with Z i

defined appropriately. The generalized Riccati transformation relating f i to ei is given
by f i ¼ S iei þ pi, where S i is a 2� 2 matrix and pi is a 2� 1 vector.12 The correspond-
ing equation for ei is ei ¼ T ieiþ1 þ gi, where T i is similarly a 2� 2 matrix and gi is a
2� 1 vector. Given these two equations and the modified transfer matrix equation, the
following recursive relations can be deduced:

S iþ1 ¼ Z11
i S i þ Z12

i

� �
Z21

i S i þ Z22
i

� ��1
; (7)

T i ¼ Z21
i S i þ Z22

i

� ��1
; (8)

piþ1 ¼ Z11
i pi þ d f

i

� �
� S iþ1 Z21

i pi þ de
i

� �
; (9)

giþ1 ¼ �T i Z21
i pi þ de

i

� �
: (10)

Equations (7)–(10) are solved sequentially from node i ¼ 1 to node i ¼ N þ 1, the
boundary conditions at x ¼ L are applied, and finally f i and ei are solved in reverse
from node i ¼ N þ 1 to node i ¼ 1.
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Because Z i is frequency-dependent, f i and ei would normally need to be calcu-
lated separately for each frequency of interest. For additional speed-up, a block matrix
approach was developed to handle the calculation of multiple frequencies at once. For
K analysis frequencies, 2� 1 vectors are converted to 2K � 1 vectors and 2� 2 matri-
ces are converted to 2K � 2K block-diagonal matrices. For example, f i becomes
½ f T

i ðx1Þ f T
i ðx2Þ � � � f T

i ðxKÞ �T , while S i becomes

S i x1ð Þ 0 � � � 0

0 S i x2ð Þ 0

..

. . .
. ..

.

0 0 � � � S i xKð Þ

2
666664

3
777775: (11)

Analysis can then be carried out exactly as in the single-frequency case. Although this
block approach can theoretically handle all analysis frequencies simultaneously, for
reasons of memory limitations the size of the matrices were restricted in this study so
that 4K2ðN þ 1Þ � 106.

3. Objective function

The objective function chosen for this problem is

J hð Þ ¼ C
L

ðx2

x1

ðL

0
jjxW j2dxdx ¼ C

ðx2

x1

h _W
2idx; (12)

where Wðx;x; hÞ is the solution to the steady-state equation

�lx2W þ @2

@x2 EI
@2W
@x2

� �
� q0d x� xqð Þ ¼ 0: (13)

That is, W is the (complex) displacement amplitude of a beam under a harmonic point
force, jjxW j2 is the square magnitude of its velocity, and h _W

2i is the spatially aver-
aged square velocity. Because l and I are both functions of hðxÞ, W will also depend
upon hðxÞ. The normalization factor, C, is chosen such that JðhÞ ¼ 1 for an unmodi-
fied beam with thickness profile hðxÞ ¼ h1. The objective function thus represents the
percent reduction in the total, spatially averaged square velocity response across the
frequency band ½x1;x2�, as compared to an unmodified, uniform beam. To limit the
design space, the set of possible thickness profiles is defined by the set V,

V ¼ h 2 L1 0;Lð Þ
����� h xð Þ ¼

�xm þ h0 0 � x � LABH

h1 LABH < x � L;
� ¼ h1 � h0

LABHð Þm ;
(8<

:
0 � L�ABH � LABH � LþABH; 0 � h�0 � h0 � hþ0 ; 0 < m� � m � mþ

)
; (14)

which defines the geometry of a beam with an ABH at one end, and includes the ad
hoc bounds set upon the design variables used in the optimization procedure. These
design variables are the length of the ABH taper, LABH, the minimum thickness of the
taper, h0, and the power-law exponent of the taper, m. Having defined the objective
function and the set of possible solutions, the optimization problem is formulated as

Table 1. Parameters and material properties used for the optimization problem described in Sec. 3. E and Edamp

are the Young’s modulus of the beam and damping layer, respectively; q and qdamp are their respective densities;
and g and gdamp are their respective loss factors.

Parameter Material Property

L 30 cm E 70 GPa
½x1;x2� 2p � ½50; 2000� rad/s q 2700 kg/m3

h1 6.35 mm g 0.0001
½L�ABH;L

þ
ABH� [0, 22.26] cm Edamp 9 MPa

½h�0 ; hþ0 � [0.635, 6.35] mm qdamp 1812 kg/m3

½m�;mþ� [1, 12] gdamp 0.2
q0 1 N
xq 22.26 cm
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min
h2V

J hð Þ such that 8x 2 x1;x2½ �;

EI
@2W
@x2

����
x¼0
¼ EI

@3W
@x3

����
x¼0
¼ 0; (15)

W Lð Þ ¼ 0;
@W
@x

����
x¼L
¼ 0; (16)

where the four constraints represent the free-clamped boundary conditions of a
cantilever.

4. Parameters

Table 1 lists the parameters and material properties used in this optimization study. A
free damping layer was added to the thinnest 25% of the ABH taper model, which was
determined by the authors to be the best trade-off between additional mass and damp-
ing for the most extreme taper profile considered in this study. This added damping
was incorporated into the model using a complex Young’s modulus and additional
loss factor.13

5. Results

A routine was written to calculate JðhÞ given the design variables LABH, h0, and m.
The geometry is first divided into a minimum of 50 segments per wavelength, which
was shown to produce a relative error less than 10�5 without significantly increasing
calculation time. The displacement, W , due to the point force is calculated using the
block Riccati transfer matrix method described in Sec. 2 with appropriate boundary
conditions. Finally, the square velocity, jjxW j2, is calculated and integrated across x
and x using the trapezoidal rule, and multiplied by the appropriate factors to obtain
JðhÞ. Analysis frequencies were chosen to range from 50 to 2000 Hz with eleven points
per 3 dB bandwidth, assuming a structural Q of 238.5. This routine was used with the
Borg multi-objective evolutionary algorithm14 for 10000 function evaluations to deter-
mine the optimal design.

Table 2 shows the optimal design variables, as well as the value of JðhÞ for
this design compared to the unmodified beam. A graphical depiction of the optimal
taper profile is shown in Fig. 1. From the results in Table 2, it is clear that the ABH
reduces the objective function by a factor of 3.35 within the frequency band consid-
ered. As predicted by classic ABH theory, a longer taper is optimal for vibration
reduction. However, a larger taper power was not found to be optimal, which is con-
trary to classic ABH theory. This may be due to the frequency range used in the objec-
tive function, which would penalize a higher taper power if it resulted in a greater
number of structural modes in the frequency range ½x1;x2�.

Looking at Fig. 2, which shows the optimal design’s spatially averaged square

velocity response, h _W
2i, as a function of frequency, there is clearly a greater number

of resonances compared to an unmodified beam, although it should be noted that the
average response is still lower for the optimal design. Indeed, classic ABH theory pre-
dicts that for increasing taper power, ABH modes should move closer together in

Table 2. Optimal design variables for the problem described in Sec. 3, and resultant objective function value.

LABH h0 m JðhÞ

Unmodified beam 0 cm 6.35 mm 1 1.000
Optimal design 22.26 cm 0.635 mm 3.06 0.2987

Fig. 1. Unmodified beam profile (top) and optimal thickness profile (bottom). The left-hand side is modelled as
free and the right-hand side is modelled as clamped in the calculation of W . Dimensions are not to scale.
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frequency. The inclusion of an ABH vibration absorber therefore significantly alters
the dynamics of the system. This may be detrimental if trying to control a discrete set
of resonances without affecting other frequency regions, but is not necessarily so for
broadband vibration reduction, since the overall structural losses also increase with the
inclusion of an ABH vibration absorber. Future work will investigate the effect of fre-
quency range on the optimal ABH design.

As the results of this study corroborate, ABH vibration absorbers are highly
effective at reducing bending vibrations in structures. However, the inclusion of an
ABH vibration absorber significantly alters the dynamics of the structure, and the fre-
quency range of interest must be considered. The optimization of ABH vibration
absorbers can be a valuable tool in practical applications, so long as the objective
function is tailored to the particular application and design outcomes.
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