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Two common classes of optimization algorithm used in structural and/or multidisciplinary optimization are 
gradient-based algorithms and evolutionary algorithms. In the case of smooth, unimodal objective spaces, 
gradient-based algorithms are generally faster, requiring fewer iterations to reach a solution. Evolutionary 
algorithms, on the other hand, are more robust against objective spaces that are nonlinear, discontinuous, 
and/or multimodal. This talk will present an optimization of the thickness distribution of a cantilever beam, 
inspired by a similar study carried out by Berggren et al. ["Sound vibration damping optimization with 
application to the design of speakerphone casings," 10th World Congress on Structural and 
Multidisciplinary Optimization, 2013]. The objective is to minimize the vibration response within a certain 
region of the beam at discrete frequencies, with constraints on total mass and static compliance. The 
objective space is expected to be nonlinear and potentially multimodal. A transfer matrix method is used to 
evaluate the objective function and constraints, and optimal solutions are found using both a gradient-based 
algorithm and an evolutionary algorithm. Qualitative and quantitative results will be presented in 
comparing the optimized distribution to that of Berggren et al. and in discussing the benefits and 
limitations of the two algorithms for vibroacoustic optimization.
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1. INTRODUCTION

When performing structural-acoustic optimization, it is important to select a quality optimization algo-
rithm. While there are many algorithms available, they can all be broadly described as one of two classifi-
cations: deterministic, gradient-based algorithms and stochastic, heuristic-based algorithms. Evolutionary
algorithms (EAs), which fall into the latter category, only require the values of the objective function and
therefore can be used as a black box. However, when used within a robust structural optimization frame-
work, they can be very effective for difficult search spaces.1, 2

The objectives of the work presented in this research are twofold. The first is to describe a general
optimization framework, including the implementation of a structural-acoustic objective function, the eval-
uation of design variables, and the incorporation of an optimization algorithm. The second is to demonstrate
the suitability of a specific EA (referred to as Borg3) for structural acoustic optimization by evaluating its
performance on a test problem from the literature. To this end, Borg’s performance is compared against that
of a standard gradient-based algorithm to establish the advantages (and disadvantages) of a heuristic-based
algorithm for structural-acoustic optimization problems.

2. PROBLEM DESCRIPTION

The chosen test problem is taken with minimal modification from Berggren et al.,4 which was presented
at the 10th World Congress on Structural and Multidisciplinary Optimization. Nominally, the problem is
to minimize the coupling of vibration between a speakerphone’s speaker and its microphone through the
speakerphone’s casing. For modeling purposes, the system is reduced to one dimension, with the casing
modeled as a thin beam fixed at one end and the speaker modeled as a time-harmonic shear force acting on
the other end. The design variable is the thickness distribution of the beam, h(x), and the objective is to
minimize the time-harmonic displacement amplitude, U(x) = |ũ(x, t)|, within the region representing the
microphone, 0 < xa ≤ x ≤ xb < Lx, where Lx is the length of the beam. The tilde indicates that the
variable is a complex quantity. To reduce the dimension of the design space, the beam is subdivided into
100 constant-thickness segments so that h(x) is piecewise constant and can be represented by the vector

h =
[
h1 h2 · · · h100

]T
. Additionally, the microphone region is enforced to have a constant thickness,

hmic, so that in practice the number of design variables, Nvars, is some number less than 100 and h(x) can

instead be represented by the vector h =
[
h1 h2 · · · hj hmic · · · hmic hj+1 · · · hNvars

]T
. A

graphical depiction of the beam is shown in Figure 1.
Furthermore, the design space is restricted by constraints on the beam’s overall mass and its static

compliance under a uniform load with both ends pinned. If m is the mass of a given design and C is its
static compliance, then the constraints take the form m ≤ γm and C ≤ γC , respectively. With the objective
and constraints so described, the problem can be formulated as follows:
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Figure 1: Graphical depiction of the current optimization problem. The beam geometry is represented
by 100 beam segments, where each segment has constant thickness. The left-hand boundary condition is
an imposed shear, while the right-hand boundary condition is zero displacement and zero rotation, i.e.,
fixed. The microphone region, (xa, xb), has constant thickness hmic throughout.

min
h∈H

J(h) =
∑
ω∈W

Jω(ω,h) =
∑
ω∈W

∫ xb

xa

∣∣∣U(x, ω,h)
∣∣∣2 dx

subject to

H =
{
h ∈ RNvars : 0 < h− ≤ hi ≤ h+, hmic const.

}
−ω2ρLyh(x)U +

∂2

∂x2

(
E
Lyh

3(x)

12
U,xx

)
= f(x, ω) , ∀x ∈ (0, Lx)

f(x) = 0

U,xx(0) = 0

h3(0)U,xxx(0) = F ′

U(Lx) = U,x(Lx) = 0

∀ω ∈ W

f(x) = 1

U(0) = U,xx(0) = 0

U(Lx) = U,xx(Lx) = 0

 for ω = 0

∫ Lx

0
ρLyh(x) dx ≤ γm

1

Lx

∫ Lx

0

∣∣∣U(x, 0,h)
∣∣∣ dx ≤ γC

In words, the above states that the goal of the problem is to find the vector of design variables, h,
that minimizes the objective function, J(h). h is restricted to be in the set of valid designs, H, such that
the microphone region has a constant thickness and the remaining portions of the beam have a thickness
between some lower and upper limits, given by h− and h+ respectively. J(h) is itself a summation of the
squared displacement magnitude, |U(x)|2, in the microphone region, (xa, xb), across a set of frequencies,
W . Additionally, f(x, ω) is the external loading as a function of position and frequency while F’ is a scaled
shear force within the beam. Note the bin width is the same for all of the discrete frequencies and so it is
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not necessary to include it in the definition of J(h). The dynamic displacement along the beam, U(x), is
determined by the time-harmonic solution of the dynamic Euler-Bernoulli beam equation, the solution of
which depends on the particular evaluation frequency, ω, the thickness profile of the beam, h(x), the beam’s
width, Ly, and the beam’s material properties, namely its density, ρ, and its Young’s modulus, E. Depending
on the value of ω, there are different boundary conditions on the zeroth, first, second, and third derivatives
of the displacement, U(x), U,x(x), U,xx(x), and U,xxx(x), respectively. In this sense, the dynamic equation
acts as a PDE constraint on the optimization problem, with its boundary conditions depending on whether
the evaluation frequency is in the set W or is equal to zero—i.e., static beam deflection. The latter case
applies only when evaluating the final two constraints, which as mentioned above are constraints on the
beam’s total mass and its static compliance under a uniform load. The beam vibration was determined using
the transfer matrix method.5

3. PROCEDURE

The gradient-based optimization algorithm chosen to compare against Borg is MATLAB’s fmincon.
The fmincon function is actually a collection of algorithms that are used to minimize nonlinear scalar
objective functions with multiple (possibly) nonlinear constraints. It is a default choice in MATLAB’s Op-
timization Toolbox because it is generally effective for smooth objective functions with smooth constraints.
Further details can be found in MATLAB’s documentation. Both optimization algorithms call the same
design evaluation function. A flowchart representation of this function is given in Figure 2. In short, given
a vector of design variables, the overall mass and compliance of the design are first calculated. If either of
these values violates the constraints, then the function returns these values along with a nominal objective
value of 100. If the constraints are satisfied, then the function continues with the solution of the dynamic
response of the design and ultimately returns the corresponding objective value. The constraints are thus
enforced using a fixed penalty method.

The optimization procedure was carried out using the parameters given in Table 1. As in Berggren,4

three different optimizations were carried out, one for each of three sets of frequencies. The first case is
broadband optimization, ω ∈ WBB which is a frequency range from 300 Hz to 3400 Hz with 50 equally-
spaced frequencies within this range. Two other cases include 300 Hz to 800 Hz and 2300 Hz to 2800 Hz.
From each of these frequency ranges, 50 equally-spaced evaluation frequencies were again used to constitute
the low-frequency set, WLF, and the high-frequency set, WHF.

For all three frequency sets, both Borg and fmincon were run for 500,000 objective function evalua-
tions. In the case of fmincon, the gradient is estimated at each iteration using finite differences unless the
user supplies a gradient function. As such, the actual number of function evaluations may be many times
more than the number of iterations. However, fmincon converged in fewer than 500,000 function evalua-
tions for the present problem and so it was restarted several times with random starting designs until a total
of 500,000 function evaluations was reached. The ‘optimal’ design shown below is thus the best of the set
of designs converged upon by fmincon. It should be noted that in the high-frequency case, fmincon’s
default tolerances were too low to produce convergence in 500,000 function evaluations or fewer, and so the
minimum step size was increased from 10−10 to 10−8.

4. RESULTS AND DISCUSSION

This section presents the results of both Borg and fmincon for each of the three frequency sets: broad-
band frequencies (ω ∈ WBB), low frequencies (ω ∈ WLF), and high frequencies (ω ∈ WHF). Finally, a
general summary of the results, comparing Borg and fmincon, is also presented. Along with the results
from Borg and fmincon, figures taken directly from the paper of Berggren et al.4 are presented, both for
reference and to compare against the results of this current work.
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Figure 2: Flowchart representation of the design evaluation function called by both optimization algo-
rithms.
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Table 1: Parameters used in the optimization problem.

Material Parameters

Young’s modulus, E 360 MPa

Density, ρ 1100 kg
m3

Geometric Parameters

Beam length, Lx 28 cm
Beam width, Ly 7 cm

Thickness limits, (h−, h+) (2, 15) mm
Microphone thickness, hmic 6 mm
Microphone region, (xa, xb) (14, 17.92) cm

Runtime Parameters

Broadband frequencies, WBB 2π ×
{
300, 300 + 3100

49 , . . . , 3400
}

Hz

Low frequencies, WLF 2π ×
{
300, 300 + 500

49 , . . . , 800
}

Hz

High frequencies, WHF 2π ×
{
2300, 2300 + 500

49 , . . . , 2800
}

Hz

Mass constraint, γm 1.0×mref

Compliance constraint, γC 1.6× Cref

Scaled driving force magnitude, F ′ 12
LyE

Note: The reference mass and compliance, mref and Cref , are those for a beam
with a uniform thickness of 5 mm.
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A. ω ∈ WBB

Figures 3 and 4 show the results of the structural optimization using fmincon and Borg, respectively,
for the case of broadband frequencies, ω ∈ WBB. The corresponding plot from4 is reproduced in Figure 5
for reference. To facilitate direct comparison, the optimization results are formatted in the same way as in4

for each of the three frequency sets. Taking Figure 3 as an example, the top section shows the full response
spectrum for the optimal design (shown in green) as compared to a reference beam with a uniform thickness
of 5 mm (shown in blue); the evaluation frequency set, W , is shown as red hatch marks. The spectrum values
represent the integral of the displacement amplitude across the microphone region. That is, the spectrum
is calculated by evaluating the expression for Jω(ω,h) defined in Section 2. Adding together the spectrum
values at the red hatch marks would give

∑
Jω = J(h). Note that although the peak heights may appear

to differ between, e.g., Figures 3 and 5, the problem does not include damping and so the displacement at
resonance should theoretically be infinite. Therefore, the peak heights in the figures reproduced from4 are
artificially low, possibly due to undersampling. Looking again at Figure 3, a representation of the beam’s
thickness profile is shown in the lower left corner, with the optimal design shown in blue and the reference
beam shown in red. The lower right corner shows the optimal design’s displacement amplitude across the
beam (shown in green) as compared to the reference beam (shown in blue) for the first frequency of the set.
The microphone region, (xa, xb), is indicated between two red vertical lines. As will be discussed below,
altering the thickness profile acts to shift peaks in the response spectrum. As such, the two response plots in
the lower right corner may have differing numbers of nodes and antinodes, in addition to different amplitude,
because for the same evaluation frequency the effective wavenumber is different.

Comparing Figures 3 and 4, it is not immediately clear that the results from Borg and from fmincon
share any similarities. It is worth pointing out that the optimal design from Borg is much less ‘smooth’ than
the fmincon design, insofar as it has more jumps in thickness from segment to segment. This is indicative
of the nonlinear, stochastic search strategy of Borg as opposed to the linear gradient-based search strategy
of fmincon. While the two designs differ noticeably, their mass distribution is similar, particularly at the
excited end of the beam, which is substantially thicker than the rest of the beam. This is likely a mechanism
to increase the input impedance by increasing mass at the drive point. Because the force is independent of the
end thickness, the input power is inversely proportional to the impedance and so increasing the impedance
has the effect of reducing the power transferred to the rest of the beam. The same strategy of increased
mass at the excitation end is also seen in the results of Berggren et al. in Figure 5. The authors’ results are
more similar to the results of fmincon, with the notable exception that the results of Berggren et al. show
a thickening of the beam near the clamped end, while the fmincon favored distributing the mass to other
locations.

B. ω ∈ WLF

The results paint a clearer picture in the narrowband cases. The respective plots for the low-frequency
case, ω ∈ WLF, are shown in Figures 6, 7, and 8. Similar to the broadband case, the forced end of the
beam is significantly thicker than the rest of the beam for all three optimal designs—that from Borg, that
from fmincon, and that from Berggren et al. All three also have distinct ‘lobes’ of increased thickness at
regular intervals along the beam, although these lobes are not all in the same location nor the same size.
In this sense, the results from fmincon and Berggren et al. are similar to one another. However, both
the optimal design from Borg and the optimal design from Berggren et al. show a thickening around the
microphone region, which may work in a similar way to the thickening of the excited end—namely, to
reduce the response amplitude in that region given a certain input energy.

C. A. McCormick and M. R. Shepherd Comparison of algorithms for the vibroacoustic optimization of a beam

Proceedings of Meetings on Acoustics, Vol. 42, 022005 (2022) Page 7



(c)(b)

(a)

Figure 3: Optimization results for the broadband case, ω ∈ WBB, using fmincon. The top plot (a)
shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and a reference beam
with a uniform thickness of 5 mm (blue). The evaluation frequencies are shown as red hatch marks. The
bottom left plot (b) shows the optimal thickness distribution (blue) compared to the reference beam (red).
The bottom right plot (c) shows the displacement amplitude, |U |, along the beam at ω = 2π × 300 Hz for
the optimal beam design (green) and the reference beam (blue). The bounds of the microphone region
are indicated by two red vertical lines. Note that Berggren et al. use the variables D and A in place of h
and U , respectively.
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(c)(b)

(a)

Figure 4: Optimization results for the broadband case, ω ∈ WBB, using Borg. The top plot (a) shows
the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and a reference beam with a
uniform thickness of 5 mm (blue). The evaluation frequencies are shown as red hatch marks. The bottom
left plot (b) shows the optimal thickness distribution (blue) compared to the reference beam (red). The
bottom right plot (c) shows the displacement amplitude, |U |, along the beam at ω = 2π × 300 Hz for the
optimal beam design (green) and the reference beam (blue). The bounds of the microphone region are
indicated by two red vertical lines. Note that Berggren et al. use the variables D and A in place of h and
U , respectively.
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Figure 5: Figure 3 from Berggren et al.,4 which is the condition equivalent to Figures 3 and 4 in the
present work. Note that Berggren et al. use the variables D and A in place of h and U , respectively.
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(a)

(c)(b)

Figure 6: Optimization results for the low-frequency case, ω ∈ WLF, using fmincon. The top plot (a)
shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and a reference beam
with a uniform thickness of 5 mm (blue). The evaluation frequencies are shown as red hatch marks. The
bottom left plot (b) shows the optimal thickness distribution (blue) compared to the reference beam (red).
The bottom right plot (c) shows the displacement amplitude, |U |, along the beam at ω = 2π × 300 Hz for
the optimal beam design (green) and the reference beam (blue). The bounds of the microphone region
are indicated by two red vertical lines. Note that Berggren et al. use the variables D and A in place of h
and U , respectively.
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(a)

(c)(b)

Figure 7: Optimization results for the low-frequency case, ω ∈ WLF, using Borg. The top plot (a) shows
the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and a reference beam with a
uniform thickness of 5 mm (blue). The evaluation frequencies are shown as red hatch marks. The bottom
left plot (b) shows the optimal thickness distribution (blue) compared to the reference beam (red). The
bottom right plot (c) shows the displacement amplitude, |U |, along the beam at ω = 2π × 300 Hz for the
optimal beam design (green) and the reference beam (blue). The bounds of the microphone region are
indicated by two red vertical lines. Note that Berggren et al. use the variables D and A in place of h and
U , respectively.
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Figure 8: Figure 5 from Berggren et al.,4 which is the condition equivalent to Figures 6 and 7 in the
present work. Note that Berggren et al. use the variables D and A in place of h and U , respectively.
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Table 2: Summary of optimization results for the three frequency sets. Most optimal objective value, J ,
along with the mass, m, and compliance, C, of the corresponding design, normalized by their respective
constraints.

fmincon Borg

WBB

J 4.06× 10−4 2.69× 10−4

m/γm 1.00 1.00
C/γC 1.00 1.00

WLF

J 4.82× 10−2 7.42× 10−3

m/γm 0.994 1.00
C/γC 0.839 1.00

WHF

J 5.42× 10−4 9.18× 10−7

m/γm 0.987 1.00
C/γC 0.999 1.00

C. ω ∈ WHF

Finally, the optimization results for the high-frequency case, ω ∈ WHF, are shown in Figures 9 and 10
for fmincon and Borg, respectively, with the corresponding plot from4 reproduced in Figure 11. This case
is unique from the other two frequency ranges insofar as thickening of the excited end is not necessarily op-
timal, or is not as important. Rather, all three optimal designs show a distinct periodic structure, and there is
effectively band gap behavior in the range ω ∈ WHF for the optimal designs from Borg and fmincon. The
mechanism of this behavior can be understood by looking at the dynamic displacement at several frequen-
cies of interest. First, note that for the reference beam there is a resonance within the region of WHF, but that
this resonance is absent for the optimized shapes. Figure 12 gives the dynamic response near this frequency,
which shows that the vibration energy is concentrated away from the microphone region. Instead, there is
greatly increased displacement concentrated near the first ‘lobe’ of the periodic structure. This behavior is
akin to the antiresonance behavior of a discrete mass-spring system, wherein a natural mode shape has one
degree of freedom unmoving. As a result, one would expect two new resonance peaks flanking the one orig-
inal resonance frequency. Indeed, inspection of the spectra in Figure 10 shows this very splitting effect, with
two new peaks surrounding the one peak in the reference spectrum. If the dynamic displacement is analyzed
at these two new frequencies, as in Figure 13, it is clear that they correspond to the cases where vibration
energy is moved away from the first lobe and focused at the other end of the beam. Effectively, the search
strategies of both Borg and fmincon have resulted in the design of a vibroacoustic metamaterial, with a
periodic structure tuned to push the dynamic response of the beam towards the lobed region of the beam for
the analysis frequencies in WHF. Even the results of Berggren et al. show this periodic metamaterial design,
although the period is significantly shorter and the lobes smaller in the results from Berggren et al.

D. COMPARING FMINCON AND BORG

A summary of the optimization results for all three frequency sets is given in Table 2. Included in the
table are the objective function value, J , the total mass normalized by the mass constraint, m/γm, and the
static compliance normalized by the corresponding compliance constraint, C/γC . That is, the closer the
value is to 1.00, the closer the design is to the limit of the respective constraint. It is clear from this summary
that Borg produces an overall better design compared to that of fmincon. While the difference is not
large in the broadband case, it is particularly stark in the high-frequency case, in which the best Borg design
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(c)

(a)

(b)

Figure 9: Optimization results for the high-frequency case, ω ∈ WHF, using fmincon. The top plot (a)
shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and a reference beam
with a uniform thickness of 5 mm (blue). The evaluation frequencies are shown as red hatch marks. The
bottom left plot (b) shows the optimal thickness distribution (blue) compared to the reference beam (red).
The bottom right plot (c) shows the displacement amplitude, |U |, along the beam at ω = 2π×2300 Hz for
the optimal beam design (green) and the reference beam (blue). The bounds of the microphone region
are indicated by two red vertical lines. Note that Berggren et al. use the variables D and A in place of h
and U , respectively.
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(c)

(a)

(b)

Figure 10: Optimization results for the high-frequency case, ω ∈ WHF, using Borg. The top plot (a)
shows the spectrum of Jω(ω,h) in decibels for the optimal beam design (green) and a reference beam
with a uniform thickness of 5 mm (blue). The evaluation frequencies are shown as red hatch marks. The
bottom left plot (b) shows the optimal thickness distribution (blue) compared to the reference beam (red).
The bottom right plot (c) shows the displacement amplitude, |U |, along the beam at ω = 2π×2300 Hz for
the optimal beam design (green) and the reference beam (blue). The bounds of the microphone region
are indicated by two red vertical lines. Note that Berggren et al. use the variables D and A in place of h
and U , respectively.
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Figure 11: Figure 6 from Berggren et al.,4 which is the condition equivalent to Figures 9 and 10 in the
present work. Note that Berggren et al. use the variables D and A in place of h and U , respectively.

Figure 12: Optimal thickness distribution (blue) and displacement amplitude at ω = 2π × 2557.32 Hz
(red) for the high-frequency case, ω ∈ WHF, using Borg. Clearly, at 2557.32 Hz the vibration energy is
concentrated at the left end away from the microphone region, (xa, xb).

C. A. McCormick and M. R. Shepherd Comparison of algorithms for the vibroacoustic optimization of a beam

Proceedings of Meetings on Acoustics, Vol. 42, 022005 (2022) Page 17



Figure 13: Optimal thickness distribution (blue) and displacement amplitude (red) for the high-frequency
case, ω ∈ WHF, using Borg. Analysis frequencies are ω = 2π× 2191.23 Hz (left) and ω = 2π× 2902.02
Hz (right). Whereas at 2557.32 Hz the vibration energy is concentrated at the drive point, here there is
very little movement at the left end.

Table 3: Performance comparison of the two algorithms. Because Borg will restart more frequently after
the first restart, the objective value, J , and the number of function evaluations (NFEs) are given at the
first restart. In contrast, the J and NFEs reported for fmincon are the averages for all restarts.

fmincon (average) Borg (1st restart)

WBB
J 5.44× 10−3 5.12× 10−4

NFEs 415 100,982

WLF
J 7.73× 100 1.75× 10−2

NFEs 390 4,502

WHF
J 1.30× 10−2 2.01× 10−4

NFEs 350 1,801

performs nearly 1000 times better than the best design of fmincon. It should be pointed out that all of the
Borg designs lie at the very edge of the constrained design space, while the designs of fmincon are close
but not always at the very edge.

It is not only the best designs that show this trend. Table 3 gives some statistical measures of the
performance of each algorithm on these particular problems. Among these measures are the objective value
and the number of function evaluations (NFEs) at each restart. That is, every time fmincon or Borg
restarts, the objective function and NFEs are recorded; the measures are then calculated from these two sets.
Because of the fundamentally different natures of the two algorithms, it is difficult to compare them one-to-
one. Because Borg will restart more frequently after the first restart, the objective value, J , and the NFEs
are given at the first restart. In contrast, the J and NFEs reported for fmincon are the averages for those
two sets of recorded values. In this sense, Table 3 shows an approximation of the expected performance of
a single run of each algorithm with no restarting. Under this interpretation, two things become apparent: 1)
fmincon takes significantly fewer function evaluations to converge; and 2) Borg is more robust against the
multimodal search space, reaching significantly better-performing designs before restarting. Indeed, Borg
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may take orders of magnitude more function evaluations to converge, while fmincon may converge to
designs that perform orders of magnitude worse.

In all three cases, WBB, WLF, and WHF, the primary outcome of the optimization was to shift peaks in
the beam’s response to be outside the frequency range of interest and/or in between the analysis frequencies.
By shifting the peaks away from the analysis frequencies, the peaks effectively ‘disappear’ from the point
of view of the objective function. This phenomenon can be partially alleviated by integrating across the
frequency range rather than evaluating it at discrete points. However, any analysis that involves a finite
frequency range will be susceptible to this phenomenon to some degree because the peaks at the edge of the
range can be shifted to be just outside of it.

5. CONCLUSIONS

As mentioned in the introduction, the two goals of this work were to to describe a general but effective
optimization framework and to use that framework in the context of an example structural optimization
problem and thereby compare the performance of Borg against that of a standard gradient-based algorithm.
The selected test problem was taken from Berggren et al.4 and involved tailoring the thickness profile of
a cantilever beam to isolate a portion of it from vibration. As the results of both optimization algorithms
show, the framework was successful in determining designs that achieve isolation that is orders of magnitude
better than a reference uniform beam. Moreover, designs from both algorithms share commonalities with
the results from Berggren et al., adding further credibility to the optimization framework.

In terms of comparing the two optimization algorithms, the results of this structural optimization study
illustrate several important things. First, fmincon converges significantly faster than Borg. On average,
fmincon converges in about 400 function evaluations, while Borg may take upwards of 100,000 function
evaluations before it restarts. In this sense, fmincon is the preferred algorithm, especially when function
evaluations are expensive. Second, the objective space is multimodal, as indicated by the multiple designs
converged upon by fmincon. In this sense, Borg is the preferred algorithm with its global search strategy,
including the use of automatic restarts. This is as opposed to a gradient-based algorithm like fmincon,
which converges only to local minima by the nature of its design. Indeed, fmincon is expected to converge
upon designs that perform on average orders of magnitude worse than those of Borg. Even after multiple
runs with random seeding, the best design of Borg outperforms the best design of fmincon.

Moreover, Borg naturally extends to multi-objective problems in a way that fmincon does not. For
example, although inequality constraints were used in this test case, it may be advantageous to instead
incorporate constraints like mass and compliance as additional objectives. One can then imagine a set of
optimal designs that trade off one objective for another—for example, reducing the beam’s compliance but
increasing its vibration response. It should be noted that there do exist multi-objective variants of common
gradient-based methods, such as Newton’s method6 and steepest descent.7 However, as mentioned in the
introduction, gradient-based methods are not robust against noisy and/or discontinuous objective spaces,
which frequency-dependent objectives often lead to. This is one way in which Borg is unequivocally better
suited than gradient-based algorithms like fmincon. This distinct advantage, along with the superior
robustness demonstrated by the results described here, mean that Borg can be trusted in future structural-
acoustic optimization studies.
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