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The FXLMS algorithm, which is extensively used in active noise control, exhibits frequency
dependent convergence behavior. This leads to degraded performance for time-varying and multiple
frequency signals. A new algorithm called the eigenvalue equalization filtered-x least mean squares
(EE-FXLMS) has been developed to overcome this limitation without increasing the computational
burden of the controller. The algorithm is easily implemented for either single or multichannel
control. The magnitude coefficients of the secondary path transfer function estimate are altered
while preserving the phase. For a reference signal that has the same magnitude at all frequencies, the
secondary path estimate is given a flat response over frequency. For a reference signal that contains
tonal components of unequal magnitudes, the magnitude coefficients of the secondary path are
adjusted to be the inverse magnitude of the reference tones. Both modifications reduce the variation
in the eigenvalues of the filtered-x autocorrelation matrix and lead to increased performance.
Experimental results show that the EE-FXLMS algorithm provides 3.5—-4.4 dB additional attenuation
at the error sensor compared to normal FXLMS control. The EE-FXLMS algorithm’s convergence rate
at individual frequencies is faster and more uniform than the normal FXLMS algorithm with several

second improvement being seen in some cases. © 2008 Acoustical Society of America.
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I. INTRODUCTION

An active noise control (ANC) system relies on the
theory of superposition of sound waves—propagating waves
can constructively and destructively interfere to either in-
crease or decrease the sound, respectively. Applications of
ANC are widespread but can, in general, be categorized into
two types of controllable signals: signals which are station-
ary in time and signals which are nonstationary or time vary-
ing. Signals of both types may be single frequency, multiple
frequency, broadband, or some combination of these three.
The most common control approach for the ANC of these
signals is based on some version of the filtered-x least mean
squares (FXLMS) algorithm."” The FXLMS algorithm has
proven successful for applications such as single frequency
noise in a duct,2 broadband noise in an enclosure,3 multiple
frequency noise in a helicopter,4 and time-varying frequency
noise in a tractor.

One of the limitations of the FXLMS algorithm is that it
exhibits frequency dependent convergence behavior that can
lead to a significant degradation in the overall performance
of the control system. The performance degradation is evi-
dent for the case of noise that is time varying, such as that of
a tractor engine, where the frequency changes as the speed of
the engine, in rpm, changes during operation. If the fre-
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quency associated with the engine speed changes faster than
the algorithm can converge and attenuate that particular fre-
quency, then performance of the ANC system will be de-
graded. The degradation is also evident for the case of sta-
tionary multiple frequency noise, such as that in a helicopter,
where multiple harmonics of the engine, tail rotor, and main
rotor can be controlled. Poor performance is expected at fre-
quencies where the convergence of the algorithm is slow.
The frequency dependent problem is not manifested for sta-
tionary single frequency noise, as optimal performance is
still possible by the correct selection of the convergence pa-
rameter u. Since u also exhibits frequency dependence, op-
timal performance by selection of the correct w is not guar-
anteed for the case of multiple stationary frequencies and
time-varying frequencies.

Solutions to the frequency dependent problem for mul-
tiple stationary frequency noise have been proposed such as
the higher harmonic filtered-x (HLMS) algorithm by Clark
and Gibbs,6 similar work by Lee et al.,7 and the modified
FXLMS algorithm.8 The drawback of these approaches is that
they add complexity and computational burden to the algo-
rithm. The work of Kuo er al.”' suggested a relatively
simple solution for the case of internally generated sinusoids.
More of their work will be discussed at a later point. For the
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FIG. 1. Block diagram of the FXLMS algorithm.

case of time-varying frequencies, the filtered-x gradient
adaptive lattice (FXGAL) algorithm by Vicente and Masgrau''
improves the convergence behavior when an acoustic refer-
ence signal is used at the expense of computational complex-
ity. For the case of a single time-varying frequency, the nor-
malized FXLMS can be an effective solution.

This paper will discuss two simple approaches for deal-
ing with noise characterized as multiple stationary or time-
varying frequencies, which largely overcomes this frequency
dependent performance and improves the overall perfor-
mance of the ANC system. These approaches are appropriate
for both single and multiple channel controls, are relatively
simple to implement, and do not increase the computational
burden of the algorithm. The effectiveness of these ap-
proaches will be experimentally demonstrated.

Il. BACKGROUND

For this research, a feedforward multiple channel imple-
mentation of the FXLMS algorithm is used, which relies on a
reference signal being “fed” forward to the control algorithm
so that it can predict in advance the control signal needed to
attenuate the unwanted noise. A feedforward implementation
of the FXLMS algorithm involves adaptive signal processing
to filter the reference signal in such a way that the measured
residual noise is minimized. The measured residual is called
the error signal and for this research it will be measured as an
energy density (ED) quantity. The advantages of an ED
based FXLMS algorithm12 for noise in an enclosure™'® and for
the application of tractor engine noise™'* are well docu-
mented. For simplicity in developing the control approaches,
a brief derivation of the general FXLMS algorithm for a single
channel is given. The extension of the approaches for mul-
tiple channel control"” is straightforward. The use of an ED
based FXLMS is also straightforward and well documented in
Ref. 12.

A. Single channel FXLms

The goal of the FXLMS algorithm is to reduce the mean-
squared error of the error signal at a location where the
sound is to be minimized. Boucher ef al.'® provided a good
reference for the derivation of the single channel FXLMS al-
gorithm, which is shown in block diagram form in Fig. 1. In
the figure and in all equations presented, the variable 7 is
used as a discrete time index and the variable z is used as a
discrete frequency domain index. Signals in the time domain
are represented as lower case letters, while capital letters are
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used in the frequency domain. Vectors in each domain are
represented as bold letters.

The mean-squared error is a quadratic function (a
“bowl”) with a unique global minimum. For each iteration of
the algorithm, W(z), which is represented as an adaptive
finite impulse response (FIR) control filter, takes a step of
size u, the convergence coefficient, times the gradient in
search of a single global minimum that represents the small-
est attainable mean-squared error. The control filter update
equation for W(z) can be expressed in vector notation as

w(t+1)=w(t) — ne()r(r), (1)
where e(7) is the error signal and r(z) and w(z) are defined as
r () =[rt),r(t=1), ... ,r(t =1+ 1)], (2)

-’Wr—l]- (3)

The filtered-x signal r(¢) is the convolution of fl(t), which is
the estimate of the impulse response of the secondary path
transfer function, and x(z), which is the reference signal. The
secondary path transfer function includes the effects of
digital-to-analog converters, reconstruction filters, audio
power amplifiers, loudspeakers, the acoustical transmission
path, error sensors, signal conditioning, antialias filters, and
analog-to-digital converters. The reference signal contains
information correlated with the unwanted noise that the ANC
system will target when control is enabled.

WT(t) = [Wo,Wl, ..

B. Secondary path transfer function

One difficulty in implementing the FXLMS algorithm is
that the secondary path, which is represented as H(z) in Fig.

1, is unknown. An estimate, ﬁ(z), of the secondary path must
be used. The estimate is obtained through a process called
system identification (SysID).

The SysID process is performed either online (while
ANC is running) or offline (before ANC is started). For the
fastest convergence of the algorithm, an offline approach is
used. The offline SysID process is performed before ANC is
started and consists of playing white noise through the con-
trol speaker(s) and measuring the output at the error sensor.
The measured impulse response is obtained as a FIR filter

ﬁ(t) that represents ﬁ(z). The coefficients of ﬁ(t) are stored
and used to run control. For multiple channel control, there is

an ﬁ(t) estimate for every error sensor and control speaker
combination. Each is obtained in turn through the SysID pro-
cess.

C. Reference signal

The reference signal may be an acoustic signal (e.g.,
from a microphone) or a nonacoustic signal (e.g., a tachom-
eter signal from an engine) depending on the control appli-
cation. Generally, the reference signal will be either station-
ary or time varying. Signals of either type may be single
frequency, multiple frequency, broadband, or some combina-
tion of these three.

Significant signal conditioning may be required to get
the reference signal in a form suitable for control. For ex-
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ample, for control of engine noise, a tachometer signal re-
lated to the engine speed (in rpm) is typically used as the
reference signal. The tachometer signal is usually a multiple
or some fraction of the engine firing frequency and must be
filtered and passed through a frequency multiplier to be di-
rectly used as the reference signal. If harmonics are also
targeted for control, they too are usually generated either in
hardware or software from the fundamental frequency.
Where multiple noise sources are present, a reference signal
may be obtained for each and combined into a single refer-
ence. The resulting signal will, in general, have varying mag-
nitude at the various tonal components.

lll. FREQUENCY DEPENDENT CONVERGENCE
BEHAVIOR

The inclusion of ﬁ(z), while necessary for algorithm
stability, degrades performance by slowing the algorithm’s
convergence. One reason for the decreased performance is

the delay associated with ﬁ(z). For many ANC applications,
such as enclosures of less than a few meters, the delay is on
the order of 10 ms or less and convergence is still rapid.17 A

more significant problem is that the inclusion of I:I(z) causes
a frequency dependent convergence behavior. The frequency
dependent behavior can be better understood by looking at
the eigenvalues of the autocorrelation matrix of the filtered-x

signal, which is a function of ﬁ(z) and X(z).

A. Eigenvalues

The eigenvalues of the autocorrelation matrix of the
filtered-x signal relate to the dynamics or time constants of
the modes of the system. Typically, a large spread is ob-
served in the eigenvalues of this matrix, which corresponds
to fast and slow modes of convergence. The slowest modes
limit the performance of the algorithm because they deter-
mine the overall convergence of the algorithm to the opti-
mum. The fastest modes have the fastest convergence and
the greatest reduction potential but limit how large of a con-
vergence parameter u can be used.'® For stability, u is set
based on the slowest converging mode (the maximum eigen-
value), which leads to degraded performance. If u is in-
creased, the slower modes will converge faster, but the faster
modes will drive the system unstable.

The autocorrelation matrix of the filtered-x signal is de-
fined as

E[r()*r'(1)], (4)

where E[] denotes the expected value of the operand, which
is the filtered-x signal vector r(¢) multiplied by the filtered-x
signal vector transposed r’(¢). In general, it has been shown
that the algorithm will converge and remain stable as long as
the chosen u satisfies the following equation:16

2
O<pu<_—, (5)

max

where A, is the maximum eigenvalue of the autocorrela-
tion matrix in the range of frequencies targeted for control.
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FIG. 2. Plot of normalized maximum eigenvalues over frequency—equally
weighted reference signal.

In practice, it is computationally demanding to obtain a
real-time estimate of the autocorrelation matrix so the opti-
mal u is often selected through experimentation. An offline
estimate of the autocorrelation matrix is made by taking an

actual ﬁ(z) model from a mock cabin and importing it into a
numerical computer package. If a single frequency reference
signal is used, A, can be computed for that frequency. If
the simulation is repeated over a range of frequencies, N«
for each frequency can be found. Figure 2 shows an offline

simulation using an actual ﬁ(z) from a mock cabin and equal
amplitude tonal inputs from O to 400 Hz. The eigenvalues in
the figure have been normalized to the largest eigenvalue in
the range. In this eigenvalue simulation, and all others in this

paper, the results are shown for only a single ﬁ(z) for a
single channel. The results for multiple channel and/or ED
control [where the filtered-x signal is a combination of each

ﬁ(z) component of each channel] follow a similar trend as
the single channel case and so, to facilitate explanation of the

concepts presented in this paper, only a single H(z) for a
single channel is shown.

Figure 2 illustrates the frequency dependent behavior.
The largest eigenvalue occurs at about 208 Hz. This location
corresponds to the smallest stable w in the frequency range
from 0 to 400 Hz, as given by Eq. (5). Most other frequen-
cies have a smaller eigenvalue and could use a larger u and
still be stable, if just that particular frequency was targeted
for control. Frequencies at the valleys of the figure have the
smallest eigenvalues and could use the largest w’s and still
be stable, again if they were the only frequencies targeted for
control. The larger u’s are desirable as they lead to faster
convergence and increased attenuation.

If the frequency range for control is 0—400 Hz, the u
associated with 208 Hz (the smallest in the range) must be
used for stability. If, for example, 100 Hz was the only tone
targeted for control, a wu larger than the 1 used at 208 Hz
could be used and convergence would be faster. If both 100
and 208 Hz were targeted for control, the smaller u associ-
ated with 208 Hz must be used for stability and degraded
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performance at 100 Hz is expected. In summary, because the
o associated with the largest eigenvalue in the range of fre-
quencies targeted for control must be used for stability, de-
graded performance is expected at the other frequencies in
the range that would benefit from the use of a larger u.

IV. EIGENVALUE EQUALIZATION

If the variance in the eigenvalues of the autocorrelation
matrix was minimized, a single convergence parameter could
then be chosen that would converge at nearly the same rate
over all frequencies. As previously stated, the autocorrelation
matrix is directly dependent on the filtered-x signal, which is
computed by filtering the input reference signal X(z) with

ﬁ(z). Thus, to adjust the eigenvalues, changes can either be

made to X(z) or to ﬁ(z). For either X(z) or ﬁ(z) changes
must be carefully done so that control is not only still pos-

sible, but at worst, it is as good as if they were left unmodi-
fied.

The choice of whether to adjust X(z) or ﬁ(z) largely
depends on the control application being investigated. For
simplicity, it can be said that there are two possible cases: (1)
applications where changes can easily be made to X(z)

[leave H(z) unmodified] and (2) applications where changes

cannot be easily made to X(z) [modify ﬁ(z)]. The adverb
“easily” is included in the previous sentence to emphasize
that in some control cases, it may be a simple procedure to
make adjustments to X(z), and for other control cases, al-
though it may be possible to make changes to X(z), it may be
a difficult or undesirable procedure. An example of the first
case would be if the fundamental and higher harmonics of
the reference signal were computer generated. If such was
the case, it would be a straightforward process to digitally
adjust the weightings of each tone in the signal. An example
of the latter case would be if an acoustic reference signal was
used that included several tones, each with a different ampli-
tude. Adjustments to the weightings of individual tones could
require significant signal processing, which may add an un-
desired complexity to the system.

A solution for case 1 was proposed by Kuo et al.”'® The
solution is most applicable for stationary multiple frequency
single channel control where the fundamental and harmonics
are internally generated. A general solution for case 2 is pre-
sented in this paper as the eigenvalue equalization filtered-x
least mean squares (EE-FXLMS) algorithm. The algorithm has
been developed to handle both the case of multiple stationary
frequency control and the case of time-varying frequency
control for either single or multiple channel control. The EE-
FXLMS algorithm has two unique implementations to handle
the two possible conditions of the reference signal. These are
the following: (1) the frequencies of interest in the reference
signal are equally weighted or (2) the frequencies of interest
in the reference signal are unequally weighted.

A. Case 1 solution: The method of Kuo et al.

Kuo et al. observed that for multiple frequency control,
the convergence parameter p must be chosen to ensure that
the system is stable at the frequency where the magnitude
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response of ﬁ(z) is largest and that this causes the conver-

gence at frequencies where the magnitude response of ﬁ(z)
is small to be slow.’ They showed that if the amplitude of
each frequency in the reference signal is optimized as the

inverse of the magnitude response of H(z) at that frequency,
then the performance of the algorithm is greatly improved:
the biggest improvement being seen at the frequencies where

the magnitude response of ﬁ(z) is small and convergence
was originally slow. In terms of the filtered-x autocorrelation
matrix eigenvalues, they show that the eigenvalue spread is
close to 1 for the frequencies of interest, which should result
in better convergence properties. This method was developed
for single channel control.

A strength of their method is that it can be performed
offline (before control is enabled) and thus does not increase
the computational burden on the algorithm. One drawback is
that, as they suggest, it is applicable for cases where fre-
quency information is first obtained through a source such as
a tachometer or accelerometer and is then used to digitally
synthesize a reference signal that contains the fundamental
frequency and appropriate harmonics.” Because the reference
signal is digitally synthesized, it is a simple process to adjust
the amplitude of each frequency in the reference signal to its
optimal value. In many control applications, however, it is
desirable to directly use the reference signal from its source,
which makes the adjustment of the individual frequency am-
plitudes a more difficult task requiring extensive filtering and
signal conditioning. Such might be the case when an acoustic
reference signal is used. Directly using the reference signal
from its source is especially important when time-varying
frequencies are involved. For example, when controlling en-
gine noise, it is desirable to directly use the tachometer sig-
nal so that the engine firing frequency and harmonics can be
tracked and controlled as the speed of the engine changes
during operation.

B. Case 2 solution: EE-FXLMS

Often times, it is either difficult or undesirable to alter
the reference signal. Assuming that the reference signal is
left unchanged, changes to the autocorrelation matrix must

stem from changes to ﬁ(z) but must be done carefully as any
errors in its estimation already contribute to lower conver-
gence rates and instability. Estimation errors can be consid-
ered in two parts: errors in the amplitude estimation and
errors in the phase estimation." It has been shown that phase
estimation errors greater than *90° cause algorithm
instability,16 but errors as high as 40° have little effect on the
performance.16 Magnitude estimation errors can be compen-
sated for by the choice of w (Ref. 20), and consequently do
not affect stability. Ideally, changes would be made to the

magnitude information of ﬁ(z), while the phase information
is preserved. The method to equalize the eigenvalues of the
autocorrelation matrix by changing the magnitude informa-
tion of ﬁ(z) while preserving the phase information will be
referred to as the EE-FXLMS algorithm.

Two implementations of the EE-FXLMS algorithm have
been developed to handle the two possible conditions of the
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reference signal. These are the following: (1) the frequencies
of interest in the reference signal are equally weighted or (2)
the frequencies of interest in the reference signal are un-
equally weighted. If the frequencies of interest in the refer-
ence signal are equally weighted, it is proposed that the mag-

nitude coefficients of H(z) be optimized to also have an
equal (flat) weighting over frequency. One example of a sig-
nal that would have an equal weighting over frequency
would be the use of a tachometer signal to control the engine
firing frequency of an engine. As the rpm of the engine
changes during operation, the engine firing frequency will
change, but the voltage level of the tachometer signal will
remain constant. In other words, the amplitude of the refer-
ence signal will not change as the frequency changes. If the
frequencies of interest in the reference signal are unequally
weighted, it is proposed that the magnitude coefficients of

ﬁ(z) be optimized to have the inverse of the magnitude re-
sponse of X(z). An example would be multiple frequency
noise where the signal is nominally stationary, such as heli-
copter noise. With helicopter noise, each of the major noise
sources (engine, main rotor, and tail rotor) will require a
different reference signal obtained through a tachometer,
photocell, or other method. Each of these signals will contain
harmonics, each with a unique amplitude (generally, each
successive higher harmonic will have a lower amplitude),
resulting in an unequally weighted multiple frequency refer-
ence signal.

1. EE-FXLMS Flat I:I(z) implementation

If all frequencies in X(z) are equally weighted, then Kuo
et al’ suggested that p must be chosen based on the fre-
quency where the magnitude of H(z) is the largest. This
slows down the convergence at frequencies where the mag-
nitude of H(z) is small. This agrees with the eigenvalue
simulation shown in Fig. 2. Note that in that simulation, each
frequency was given an equal weighting. As previously men-
tioned, u must be chosen based on the maximum eigenvalue
in the frequency range of interest, and performance is de-
graded at frequencies where the eigenvalues are small. For
the equally weighted X(z), the eigenvalue spread is mostly a
function of the magnitude response of ﬁ(z). This can be seen

in Fig. 3. In Fig. 3, the magnitude coefficients of H(z) are
overlaid on the same plot of the maximum eigenvalues
shown in Fig. 2. It can be seen that the magnitude coeffi-
cients are highly correlated with the eigenvalues. The maxi-

mum eigenvalue occurs where the response of ﬁ(z) is large.
The data in Fig. 3 suggest that manipulating the magni-

tude coefficients of H(z) should modify the eigenvalue
spread. If the magnitude coefficients were “flat” over fre-
quency, the eigenvalue spread should also be more flat over
frequency. A method for flattening the magnitude coefficients
has been developed, which is simple to implement and does
not increase the computational burden of the algorithm.
The basic procedure for implementing the EE-FXLMS is

to adjust the coefficients of h(r) before ANC control is
started as follows.
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FIG. 3. Maximum eigenvalues and magnitude coefficients vs frequency for
a mock cab—equally weighted reference signal.

(1) Obtain the time domain impulse response h(z) for
each ﬁ(z) through an offline SysID process.

(i)  Take the fast fourier transform (FFT) to obtain ﬁ(z).

(iii) Divide each value in the FFT by its magnitude and
then multiply by the mean value of the FFT.

(iv)  Compute the inverse FFT to obtain a new ﬁ(t) and use

the new modified ﬁ(t) in the FXLMS algorithm as
normal.

If using multiple channel and/or ED control, the process
is repeated for each H(z) estimate. This procedure flattens

the magnitude coefficients of ﬁ(z) while preserving the
phase. It is an offline process directly done by following
SysID and can be incorporated into any existing algorithm
with only a few lines of code. As an offline process, it adds
no computational burden to the algorithm while control is
running. The results of the flattening process can be seen in

Fig. 4. Figure 4 shows the original and modified H(z) mag-
nitude coefficients in the top plot and shows that the phase

information of ﬁ(z) has been preserved in the bottom plot.
Note that the two lines representing the original and modified
phase information of ﬁ(z) are directly on top of each other in
the bottom plot. The plots for the other H(z) models for the
other channels and ED components are similar.

An attempt to quantify any improvement in the eigen-
value spread has been made by using the following metrics:

(1) Span—N\,,, divided by \;,. Ideally 1.

(2) rms value—root mean square. Ideally 1.

(3) Crest factor—N\,, divided by rms value (how close the
rms value is to the peak value) Ideally 1.

The effect of the flattening process on the eigenvalues
can be seen in Fig. 5. The data for the figure were computed
as before by an offline estimate of the autocorrelation matrix
by using an actual H(z) model from a mock cabin and find-
ing the A, for each frequency from O to 400 Hz. The curve
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Original vs. Modified Magnitude Coefficients
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FIG. 4. Original and modified magnitude coefficients of H(z)-EE-FxLms flat
H(z) implementation and the original and modified phase coefficients of
I"\I(z)fEE—FXLMS flat ﬁ(z) implementation.

labeled “original” represents the same data shown in Fig. 2,
and the curve labeled “modified” is an estimate of the eigen-

values by using the modified H(z) model. In Fig. 5, the ei-
genvalues in both the original and modified cases have been
normalized by the largest of the original eigenvalues. It is
seen that the modified eigenvalues are more uniform (“equal-
ized”) over all frequencies. While the variation in the modi-
fied eigenvalues would ideally be zero, the decreased varia-
tion compared to the original eigenvalues should produce an
observable performance advantage. The algorithm should
converge at near the same rate over all frequencies and
should not exhibit the frequency dependent behavior of the
standard FXLMS.

Table I shows the improvement of the modified eigen-
values according to the defined metrics over the range from O
to 400 Hz. The range from 0 to 400 Hz was selected because
the experimental hardware has a cutoff frequency at 400 Hz.

Original and Modified Eigenvalues

1 T T T T T T
” ---------------- Modified
—— Original

Normalized value of max eigenvalue
o
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FIG. 5. Normalized original and modified eigenvalues—ee-FxLms flat F(z)
implementation.
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TABLE I. Comparison of original and modified eigenvalues by using de-
fined metrics—EE-FXLMS flat ﬁ(z) implementation.

Metric Original Modified % improvement
Span 237X 10° 2920 99
rms 0.19 0.3 58
Crest factor 5.283 3.413 35

In Table I it can be seen that the modified case has a lower
span, a higher rms value, and a lower crest factor. In all three
metrics, the values for the modified case are closer to the
optimum values that would be present if the eigenvalues
across all frequencies were exactly the same. These modifi-

cations to H(z) should make a noticeable improvement in the
performance of the algorithm.

2. EE-FxLMS H(2) =1 /|X(2)| implementation

In this case, the reference signal is unequally weighted,
and so the eigenvalue simulation shown in Fig. 2 must be
redone by using an unequally weighted reference signal. For
this simulation, the reference signal was chosen so that there
was a linear descending trend in the amplitude of each suc-
cessive frequency. Figure 6 shows the offline simulation by
using an actual ﬁ(z) from a mock cabin and tonal inputs
from O to 400 Hz. The eigenvalues in the figure have been
normalized to the largest eigenvalue in the range.

The same ideas behind flattening the magnitude coeffi-
cients of H(z) when X(z) is equally weighted apply for the
case when the frequencies in X(z) have unequal weighting.
The magnitude coefficients of H(z) at each frequency bin
must be made to compensate for the unequal weighting of
each tone in X(z) so that the eigenvalue spread becomes
essentially flat over frequency. As with the flat ﬁ(z) imple-
mentation, the phase information must be preserved.

When X(z) has unequally weighted frequencies, the
magnitude coefficients of H(z) are set to be 1/[X(z)|. This

Maximum Eigenvalues

1 T T T T T T
0.9} ﬂ

Normalized value of max eigenvalue
o
(3,

150 200 250 300 350 400
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0 50 100

FIG. 6. Plot of normalized maximum eigenvalues over frequency—
unequally weighted reference signal.
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FIG. 7. Original and modified magnitude coefficients of FI(z)-EE-FXLMS
H(z)=1/|X(s)| implementation and the original and modified phase coeffi-
cients of H(z)—ee-rxLms H(z)=1/ |X(#)| implementation.

has the same effect as flattening the magnitude coefficients
of H(z) when X(z) has equally weighted frequencies. The
method is simple to implement and does not increase the
computational burden of the algorithm. The basic procedure
is run before ANC control and is as follows:

(1) Obtain the time domain impulse response h(7) for each
H(z) through an offline SysID process.
(2) Take the FFT to obtain H(z).

(3) Compute the phase coefficients from the FFT of ﬁ(z)
and save them in a vector.

(4) Take a time sample of x(7) and compute its FFT, X(z).

(5) Find the magnitude coefficients of X(z) at the frequen-
cies of interest.

(6) Create a vector of magnitude coefficients that is equal to
1/|X(z)| from the coefficients computed in step (5).

(7) Take the vector of phase coefficients from step (3) and
combine them with the vector of magnitude coefficients
in step (6) to create a new single vector of complex
coefficients having the original phase and the 1/|X(2)|
magnitudes.

(8) Take the inverse FFT of the new vector and use it as the

new modified fl(t) in the FXLMS algorithm as normal.

If using multiple channel and/or ED control, the process
is repeated for each ﬁ(z) estimate. This procedure adjusts the
magnitude coefficients of ﬁ(z) while preserving the phase.
As an offline process, it adds no computational burden to the
algorithm when control is running. The results of the process
can be seen in Fig. 7. The top plot in Fig. 7 shows the
original and modified H(z) magnitude coefficients. The bot-
tom plot shows that the phase information of the same H(z)
has been preserved. Again, note that the two lines represent-
ing the original and modified phase information of H(z) are
directly on top of each other. The plots for the other H(z)
models for the other channels and ED components are simi-
lar.
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FIG. 8. Normalized original and modified eigenvalues—EE-FXLMS ﬁ(z)
=1/|X(t)| implementation.

The effect of the modification process on the eigenval-
ues can be seen in Fig. 8. The data for the figure were com-
puted as before by an offline estimate of the autocorrelation

matrix by using an actual ﬁ(z) model from a mock cabin and
finding the A\, for each frequency from O to 400 Hz. The
curve labeled “original” represents the same data shown in
Fig. 7, and the curve labeled “modified” is an estimate of the
eigenvalues using the modified H(z) model. In Fig. 8, the
eigenvalues in both the original and modified cases have
been normalized by the largest of the original eigenvalues. It
is seen that the modified eigenvalues are more uniform
(equalized) over all frequencies, though not perfectly flat.
While the variation in the modified eigenvalues would ide-
ally be zero, the decreased variation compared to the original
eigenvalues should produce an observable performance ad-
vantage.

Table II shows the improvement of the modified eigen-
values according to the same metrics defined for the flat ﬁ(z)
implementation over the range from 0 to 400 Hz. In Table II
it can be seen that the modified case has a lower span a
higher rms value, and a lower crest factor. In all three met-
rics, the values for the modified case are closer to the opti-
mum values that would be present if the eigenvalues across
all frequencies were exactly the same. It is also of note that

setting the magnitude coefficients of H(z)= 1/|X(z)| with an
unequally weighted reference signal offered nearly the same
percentage improvement as flattening the magnitude coeffi-
cients of ﬁ(z) with an equally weighted reference signal
(compare Tables T and II).

TABLE II. Comparison of original and modified eigenvalues using defined
metrics—EE-FXLMS H(z)=1/[X(#)| implementation.

Metric Original Modified % improvement
Span 4.77%10° 99.24 100
rms 0.2 0.3 50
Crest factor 4.983 3.33 33
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FIG. 9. Photo of inside of mock cab.

V. EXPERIMENTAL RESULTS

The performance advantages of the EE-FXLMS algorithm
were verified for both single time-varying frequency and sta-
tionary multiple frequency test cases. First, the experimental
setup will be explained, second the results for the EE-FXLMS

flat ﬁ(z) implementation will be shown, and, lastly, the re-

sults for the EE-EXLMS H(z)=1/|X(z)| implementation will
be shown.

A. Experimental setup

The experiments were conducted inside a mock cabin
enclosure with nominal dimensions of 1.0X1.5X 1.1 m?.
The cabin has a steel frame, 0.01-m-thick plywood sides, and
a 0.003-m-thick Plexiglass® front panel. A speaker placed
under a chair served as the sound source and three loud-
speakers were set up in a two channel control configuration.
The control signals were routed through a crossover circuit
to route the low-frequency content (below 90 Hz) of both
channels to a subwoofer on the floor of the cab and to route
the high-frequency content (above 90 Hz) of each control
channel to one of two smaller satellite speakers mounted in
the top corners of the cab, near the back. An ED error sensor
consisting of four equally spaced microphones around a
small disk was placed on the ceiling near where an operator’s
head would be. The performance of the algorithms will be
reported at the error sensor. A photo of the cab, error sensor,
and speakers is seen in Fig. 9.

The control algorithms were implemented on a Texas
Instruments TMS320C6713 DSP processor, capable of
1.350 X 10° floating point operations/s. Both adaptive control
filters consisted of 32 taps for control of single tones and 100
taps for multiple tones, and all secondary path transfer func-
tions were modeled with 128 taps. All input channels were
simultaneously sampled at 2 kHz, and all input and output
signals had 16 bits of resolution. Fourth-order Butterworth
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TABLE III. Comparison of EE-FXLMs flat ﬁ(z) implementation and normal
FXLMS control for time-varying frequency experimentation. A positive num-
ber indicates that EE-FXLMS control performed better.

Sweep Average
rate Control reduction at
(Hz) type error mic (dB) Difference® (dB)
2 Normal 6.5 3.5
EE 10.0
4 Normal 5.2 2.1
EE 7.3
8 Normal 4.3 1.4
EE 5.7
16 Normal 4.4 1.1
EE 5.5
32 Normal 4.0 0.3
EE 4.3
64 Normal 3.9 0.2
EE 4.1
128 Normal 3.9 0.0
EE 3.9
256 Normal 3.9 0.0
EE 3.9
TOTAL AVERAGE 1.1

“Positive number indicates that EE-FXLMS performed better.

low pass filters (400 Hz cutoff) provided antialiasing and
reconstruction of input and output signals, respectively.

B. Results for EE-FXLMsS Flat I:I(z) implementation

The EE-FXLMS flat implementation was tested for a time-
varying frequency. For the time-varying frequency, a swept
sine signal with different sweep rates was used. The signal
maintained the same amplitude at each frequency in the
sweep.

1. Time-varying frequency results

Several swept sine test signals with different sweep rates
were created. Each test signal consisted of a swept sine from
50 to 200 Hz and the rates ranged from 2 to 256 Hz/s. The
time-averaged sound pressure level over the entire duration
of the test signal was measured with and without control
running. The convergence coefficient u was experimentally
determined by finding the largest stable value for the entire
frequency range and then scaling it back by a factor of 10 to
ensure stability. The u for EE-FXLMS control was found to be
1X 1077 and the w for standard FXLMS control was found to
be 1 X 1078. Each measurement was repeated three times and
the average and standard deviation were computed. The ac-
tual attenuation for both control types at the error sensor is
shown in Table IIl. The difference in attenuation between
EE-FXLMS and FXLMS controls is also shown in Table III. A
positive number indicates the EE-FXLMS performed better.
The standard deviation for each test case was small (usually
less than 0.02 dB) and is not reported in the table.

The data show that when averaged over all of the data,
EE-FXLMS performs 1.1 dB better than normal FXLMS at the
error sensor. The data also show that the slower the sweep
rate, the more advantage the EE-FXLMS control provides. For
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FIG. 10. SPL at the error sensor for normal FXLMS and EE-FXLMS control.

the 2 Hz sweep rate, EE-FXLMS control provides 3.5 dB more
reduction at the error sensor. Figure 10 shows a plot of the
control results for both normal FXLMS and EE-FXLMS for the
2 Hz sweep rate. For this run, the sound pressure level (SPL)
at the error sensor before control was enabled was 87.9 dB
(calculated over the entire frequency range). The SPL
dropped to 81.5 dB for normal FXLMS control and 77.9 dB
for EE-FXLMS control.

At the fastest sweep rates, the differences were almost
negligible. An explanation of this can be found by looking at
the fastest convergence times for the single frequency case.
For this case, the fastest convergence times were seen to be
on the order of 0.10s. At the faster sweep rates, such as
128 Hz/s, the algorithm has 0.0078 s (1/128 Hz/s
=0.0078 s/Hz) to converge at each frequency. At the slower
sweep rates, such as 2 Hz/s, the algorithm has 0.5 s
(1/2 Hz/s=0.5 s/Hz) to converge at each frequency. When
the sweep rates are faster, the convergence times are several
orders of magnitude larger than the time the algorithm has to
converge on each frequency before it shifts, which leads to
poor performance and little gain from the faster convergence
times of the EE-FXLMS. When the sweep rates are slower, the
convergence times are on the same order of time that the
algorithm has to converge on each frequency before it shifts,
which leads to better performance and noticeable gains from
the faster convergence times of the EE-FXLMS.

C. Results for EE-FXLMS H(2)=1/ [X(2)| implementation

The EE-FXLMS was compared again to the FXLMS algo-
rithm for a multiple frequency test signal, this time with the
magnitude of the tones in the reference signal decreasing
with increasing frequency. Since the frequency resolution in
ﬁ(z) was not high, the magnitude coefficients in ﬁ(z) brack-
eting the frequencies in the reference were adjusted to be the
inverse magnitude of the tones in the reference. Five tone
(50, 125, 200, 250, and 300 Hz) and 11 tone (50, 75, 100,
125, 150, 175, 200, 225, 250, 275, and 300 Hz) noise and
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reference signals were created for this comparison. Many of
the tones in the signal were intentionally chosen to match

frequencies where the magnitude response of ﬁ(z) is large;

frequencies where the advantages of the EE-FXLMS H(z)
=1/|X(z)| implementation should be the most observable.
Additionally, they were chosen far enough apart that the

magnitude of H(z) could be individually adjusted for each
tone. Control was run with both the normal FXLMS algorithm
and the EE-FXLMS algorithm with the H(z)=1/|X(z)| imple-
mentation. The number of control taps was increased to 100
for these test cases.

1. Multiple frequency results

The convergence coefficient u was determined as be-
fore. The scaled u for EE-FXLMS and normal FXLMS controls
for the noise signal containing five tones were found to be
8 X107 and 1X 107, respectively. The scaled u for EE-
FXLMS and normal FXLMS controls for the noise signal
containing 11 tones were found to be 2 X 1078 and 4 X 107,
respectively. The measured performance for each configura-
tion was the amount of attenuation in decibels and the con-
vergence time in seconds at each frequency, as well as for the
total error signal. The convergence time was defined as the
time it takes the signal to converge to 1/e (natural log e) of
its initial value. A convergence time of 9 s means that the
signal did not converge at that frequency in the time period
of the measurement, which was 9 s. Each measurement was
performed three times for computation of an average and
standard deviation.

The average for the three test runs and the difference
between normal FXLMS and EE-FXLMS controls are shown for
the 5 tone test case in Table IV and the 11 tone case in Table
V. In both tables, a linear average of the reduction at each
frequency is merely given to give a sense of the performance
of the algorithms at the frequencies of interest. The actual
overall reduction of the entire error signal is also given.
Again, a positive number for the difference indicates that
EE-FXLMS performed better.

In the tables, it can be seen that EE-FXLMS control per-
formed about 4 dB better overall at the error sensor for the 5
tone case and about 2 dB better overall for the 11 tone case.
Observing the convergence time and attenuation at each fre-
quency shows the more uniform performance over frequency
of the EE-FXLMS approach. At some frequencies, the EE-
FXLMS algorithm provides as much as 16 dB additional at-
tenuation and converged several seconds faster. At higher
frequencies, where the weighting of the tones in the refer-
ence was smaller, the FXLMS algorithm had very long con-
vergence times and poor attenuation. In many cases, those
frequencies did not appreciably converge during the mea-
surement. The EE-FXLMS algorithm outperformed the normal
FXLMS algorithm in both attenuation and convergence speed
at all frequencies except 150 Hz, which did not converge
well for any test case. 150 Hz corresponds to a large reso-
nance mode of the mock cabin. Further investigation found
that the error sensor was at a nodal position for this fre-
quency, which leads to reduced performance. The frequency
spectrum for the error signal with no control and FXLMS and
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TABLE IV. Comparison of EE-FXLMS ﬁ(z)=1/|X(t)| implementation and normal FXLMS control for multiple
stationary frequency experimentation of five tones. A positive number indicates that EE-FXLMS control performed
better. The overall attenuation and convergence times reported at the bottom of the table are for the entire error
signal and not the average of all the values at each tone.

Control of 5 tones

Normal FXLMS EE-FXLMS Difference”

Average Average Average

reduction reduction reduction

at error Convergence at error Convergence at error Convergence
Frequency (Hz) mic (dB) time (s) mic (dB) time (s) mic (dB) time (s)
50 25.5 1.84 30.2 0.58 4.7 1.26
125 259 0.44 28.3 0.33 2.4 0.11
200 30.7 0.89 30.1 0.44 -0.6 0.45
250 52 9 19.8 0.99 14.6 8.01
300 0.2 9 16.6 3.04 16.4 5.96
Linear Average 18.2 3.61 25.2 0.95 7.0 2.66
of reduction
at 5 tones
Overall 21.6 0.5 26.0 0.34 44 0.16

reduction for
entire error
signal

“Positive number indicates that EE-FXLMS performed better.

TABLE V. Comparison of EE-FXLMS I:I(z)zl/ [X(#)| implementation and normal FXLMS control for multiple
stationary frequency experimentation of 11 tones. A positive number indicates that EE-FXLMS control performed
better. The overall attenuation and convergence times reported at the bottom of the table are for the entire error
signal and not the average of all the values at each tone.

Control of 11 Tones

Normal FXLMS EE-FXLMS Difference”

Average Average Average

reduction reduction reduction

at error Convergence at error Convergence at error Convergence
Frequency (Hz) mic (dB) time (s) mic (dB) time (s) mic (dB) time (s)
50 29 14 31 0.763 2 0.637
75 12.3 3.95 21.1 1.05 8.8 2.9
100 7.2 7.27 11 2.15 3.8 5.12
125 25.6 0.43 28.5 0.39 2.9 0.04
150 1.7 9 22 9 0.5 0
175 8.5 7.42 13.3 0.82 4.8 6.6
200 27.7 0.68 28.9 0.52 1.2 0.16
225 52 9 14.7 34 9.5 5.6
250 4.9 9 21.2 1.34 16.3 7.66
275 1.5 9 9.8 4.18 8.3 4.82
300 0.1 9 12.5 3.54 124 5.46
Linear Average 114 5.56 17.5 2.30 6.1 3.26
of reduction
at 11 Tones
Overall 12.8 0.61 152 0.49 2.4 0.12

reduction for
entire error
signal

“Positive number indicates that EE-FXLMs performed better.
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FIG. 11. SPL at the error sensor for a normal FEXLMS.

EEFXLMS controls for the 5 tone case is shown in Figs. 11
and 12 and that for the 11 tone case is shown in Figs. 13 and
14.

V1. CONCLUSIONS

A new eigenvalue equalization approach (EE-EXLMS) has
been demonstrated for time-varying and multiple frequency
noise. It has been shown that adjustments to the magnitude

coefficients of H(z) while preserving the phase leads to a
smaller eigenvalue spread, faster convergence times, and in-
creased attenuation. Two offline methods for adjusting the

magnitude coefficients of H(z) to complement the magnitude
of the reference signal have been demonstrated.
The EE-FXLMS implementation to flatten the magnitude

coefficients of ﬁ(z), when the magnitude of the reference
signal is the same for all frequencies, led to as much as
3.5 dB additional attenuation at the error sensor for the
slower sweep rates. An additional attenuation of 1.0 dB at
the error sensor was seen at sweep rates of up to 16 Hz/s,
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FIG. 12. Ee-FxLMs control for reference signal with five tones.
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FIG. 13. SPL at the error sensor for a normal FXLMS.

with a slight increase still being seen at rates as high as
64 Hz/s. When averaged over all of the sweep rates tested,
EE-FXLMS provided 1.1 dB additional attenuation at the error
Sensor.

The EE-FXLMS implementation of adjusting the magni-

tude coefficients of ﬁ(z) to be the inverse magnitude of the
reference signal, when the magnitude of the reference signal
is different for all frequencies, led to as much as 4.4 dB
additional overall attenuation at the error sensor and as much
as 16 dB additional attenuation at an individual tone. The
EE-FXLMS algorithm’s convergence rate at individual fre-
quencies was faster and more uniform than the normal FX-
LMS with several second improvement being seen in some
cases.

The performance advantages of the EE-FXLMS become
more meaningful when considering the simplicity of its
implementation. It can be incorporated into any FXLMS algo-
rithm with only a few lines of code. As an offline process, it
does not increase the computational burden of the algorithm.
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FIG. 14. ee-FXLMS control for reference signal with 11 tones.
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Additionally, it does not require that the reference be inter-
nally generated or extensively modified.
These two methods of adjusting the magnitude coeffi-

cients of ﬁ(z) provide a way to reduce the frequency depen-
dent convergence of the FXLMS algorithm. As noted, the ei-
genvalue span resulting from these modifications is still not
perfectly flat. Other alteration schemes may be developed
that can further reduce this variation.
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