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for use in near-field acoustical holography when pressure
and in-plane velocities are measured
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Acoustical-based imaging techniques have found merit in determining the behavior of vibrating
structures. These techniques are commonly used in numerous applications to obtain detailed noise
source information and energy distributions on source surfaces. Source reconstructions using
near-field acoustical holography (NAH) are reliant upon accurate measurement of the pressure field
at the hologram surface. For complex acoustic fields this requires fine spatial resolution and
therefore demands large microphone arrays. In this paper, an interpolation method is developed for
obtaining the complex pressure field at the hologram surface from pressure and velocity
measurements. Because particle velocity measurements provide directional information, a more
accurate characterization of the pressure field with fewer measurement locations is obtained. The
processing technique presented does not relate directly to the holographic reconstruction itself.
However, the interpolation scheme presented serves as a preprocessing step before a NAH algorithm
is applied. The presentation and validation of the interpolation scheme is the major focus of the
paper. An analytical comparison of NAH reconstructions from traditional pressure measurements to
reconstructions using the preprocessed pressure and velocity measurements is presented. A vibrating
plate and cylinder are considered as test cases to validate the analytical results. © 2006 Acoustical

Society of America. [DOI: 10.1121/1.2159427]

PACS number(s): 43.20.Ye, 43.40.At, 43.60.Pt [EGW]

I. INTRODUCTION

Near-field acoustic holography (NAH) is a methodology
that enables the reconstruction of acoustic quantities in three-
dimensional space from a two-dimensional measurement of
the pressure field near the surface. Williams and Maynard
presented a Fourier transform-based NAH method' ™ for
separable geometries of the wave equation that has been suc-
cessfully applied to a variety of radiation problems.“_6 Two
approaches are currently available for arbitrary geometry
problems. The first technique solves the Helmholtz integral
equation numerically via the inverse boundary element
method (IBEM).”® An alternative to IBEM is the Helmholtz
equation least-squares (HELS)9’10 method which reconstructs
the acoustic field using spherical basis functions.

One common aspect of all three NAH implementations
is that the accuracy of reconstruction is dependent upon ad-
equate representation of the pressure field on the measure-
ment surface. The Fourier transform method and the IBEM
rely on a spatial sampling for field characterization, which
can cause mid- to high-frequency measurements to become
cumbersome. This is due to the fact that the microphone
spacing must be less than or equal to a half wavelength of
the highest frequency of interest to avoid spatial aliasing.

The objective of this work is to develop a processing
technique for pressure and velocity measurements that pro-

“Electronic mail: jblotter@byu.edu

808  J. Acoust. Soc. Am. 119 (2), February 2006

0001-4966/2006/119(2)/808/9/$22.50

Pages: 808-816

vides an improved characterization of the pressure field at
the hologram surface. The result would be a reduction in the
number of required measurement locations. This would lead
to a considerable savings in data acquisition time for scan-
ning array systems and help reduce the inefficiencies encoun-
tered at high frequencies.

Acoustic pressure and quadratic pressure measurements
were used for NAH by Loyau et al. " in their development of
broadband acoustic holography from intensity measurements
(BAHIM) to obtain the phase of the pressure hologram with-
out the need of a reference for scanning array systems.
Visser'? also showed that a particle velocity based adaptive
boundary element method performs better than the conven-
tional pressure based implementation if the pressure and ve-
locity measurements have comparable signal-to-noise ratios.

This work relies on the ability to accurately measure
acoustic particle velocity. Presently, the primary technique
for particle velocity estimation is via finite difference ap-
proximations. The accuracy of this method depends on error
in the pressure difference, scattering and diffraction, and mi-
crophone phase mismatch. Recently, a new particle velocity
transducer known as a Microflown'” sensor has been devel-
oped which functions similar to a hot wire anemometer. The
transducer consists of two thin, parallel wires five microns
apart that are heated to approximately 300 °C. As air par-
ticles flow across the wires heat transfer occurs. The first
wire crossed will heat the air slightly which results in the
second wire not being cooled to quite the same degree. This
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temperature difference is then used to determine the particle
velocity. Jacobsen and de Bree'* showed that results compa-
rable to finite difference intensity approximations are pos-
sible using the Microflown to measure the particle velocity.
For the work presented in this paper, the Microflown sensor
is used. However, the results are applicable to any sensor that
measures both pressure and particle velocity, such as the en-
ergy density probe discussed in Ref. 15.

This paper presents a method where near-field pressure
and in-plane velocities are used to obtain a representation of
the pressure field at the measurement contour. The pressure
and velocity field information are combined using a modified
bicubic Hermite interpolation scheme presented in Sec. II.
The work presented in this paper does not modify the cur-
rently used NAH algorithms discussed earlier. It does, how-
ever, provide the user with a better characterization of the
field on the measurement surface to input into one of the
currently available NAH algorithms. Analytical results are
presented to indicate the theoretical benefits of the proposed
preprocessing method. Experimental results for planar and
cylindrical test cases are included for model validation. Be-
cause separable geometries have been chosen, the Fourier
transform-based NAH method is implemented. However, the
interpolation method presented in the following is applicable
to arbitrary geometry problems if the IBEM or HELS
method is selected.

Il. PRESSURE FIELD INTERPOLATION THEORY

Current NAH reconstruction methods are based solely
on measurement of the pressure field. Since pressure is a
scalar quantity, it does not provide directional information
for the field. Particle velocity measurements, on the other
hand, supply first derivative information for the pressure
field via Euler’s equation,

u

Po Pl Vp. (1)
The measured in-plane velocities make derivative informa-
tion available that is used to interpolate between measure-
ment locations. This effectively simulates a finer mesh of
pressure measurements.

Hermite Interpolation. The chosen interpolation method
is taken from the area of geometric modeling.16 For ease of
programming and computability, along with other reasons
specific to geometric modeling, the preferred way to perform
interpolation is with parametric equations. For example, a
three-dimensional curve is defined by x=x(r,s),y=y(r,s),
and z=z(r,s). It is generally convenient to normalize the
domain of the parametric variables, r and s, by restricting
their values to the closed interval between O and 1, inclusive.
This restriction is expressed symbolically as r,s e[0,1].
This interval establishes the bounding curves and the inter-
mediate interpolation points. These curves have a natural
vector representation given by

f(r,s) =[x(r,s) y(r.s) z(r.s)]. 2)

Farin'’ points out that a piecewise lower order polynomial
interpolation approach is superior in speed and accuracy to
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its higher order counterparts. Therefore, bicubic polynomial
interpolation is selected. Hermite surface patches are chosen
for interpolation between measurement locations because
they match both function values and slopes at the specified
corner points.

Curves. Bicubic Hermite surfaces are composed of an
orthogonal net of cubic Hermite curves. Therefore, a prelimi-
nary discussion of these curves is necessary to provide the
foundation upon which the surface interpolation is built. For
a more detailed development of Hermite interpolation see
Ref. 16. The algebraic form of a parametric cubic curve is
given by the polynomials in the following:

x(N=ar+br+cr+d,
y(r)= ayr3 + byr2 +cyr+d,, (3)

_ 3 2
W =ar’ +br +cr+d..

The 12 scalar coefficients, called algebraic coefficients, de-
termine a unique curve. Using vector notation to obtain a
more compact form, Eq. (3) becomes

f(ry=ar’+brX+cr+d, (4)

where f(r) is the position vector of any point on the curve
and a,b,c, and d are the vector equivalents of the scalar
algebraic coefficients. The algebraic coefficients are not the
most convenient way of controlling the shape of a curve, nor
do they provide an intuitive sense of the curve shape. Con-
verting to the Hermite form allows for the definition of con-
ditions at the curve boundaries, or end points. Using the end
points f(0) and (1), the corresponding tangent vectors f(0)
and f"(1), and Eq. (4) yields the

£(0) =d,

f(l)=a+b+c+d,

(5)
f"(0) =c,

f(1)=3a+2b+c,

where substituting r=0 into Eq. (4) yields f(0), and substi-
tuting r=1 into the equation yields f(1). Differentiating f(r)
with respect to r obtains f'(r)=3ar’+2br+c. Substituting r
=0 and r=1 into this yields f(0) and (1), respectively,
where the superscript  indicates the derivative with respect
to r. Solving this set of four simultaneous vector equations in
four unknown vectors yields the algebraic coefficients in
terms of the boundary conditions,

a=2f(0) — 2f(1) + £(0) + £'(1),

b =-3f(0) + 3£(1) — 2£"(0) — f'(1),

(6)
c=17(0),
d =£(0).

Substituting these equations for the algebraic coefficient
vectors into Eq. (4) and rearranging terms produces
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FIG. 1. Plot of the cubic Hermite basis functions in parameter space.

£f(r) = (27 =377+ DE0) + (= 23 + 3.)f(1)
+ (P =27+ NF0)+ (P = AI(). (7)

This equation is simplified by making the following substi-
tutions:

B,(r)=2r-3r"+1,

B,(r) =—2r + 377,
®)

By(r)=r-2r*+r,

B,(r)=r -1

Using these simplifications and subscripts to represent the
end point r values, Eq. (7) becomes

f(r) =B (Nfy + Bo(n)f; + B3 (N} + B4(n)f]. 9)

Equation (9) is called the geometric form, and the vectors
fo.f,.fi, and f] are the geometric coefficients. The B,(r)
terms are called the Hermite basis functions. Figure 1 shows
each basis function as a curve over the domain of the param-
eter r. These basis functions have three important character-
istics. First, they are universal for all cubic Hermite curves.
Second, they are only dependent on the parameter, making
them identical for each of the three real space coordinates.
Finally, they allow the constituent boundary condition coef-
ficients to be decoupled from each other. These functions
blend the effects of the end points and tangent vectors to
produce the intermediate point coordinate values over the
parameter domain. Letting

Rz[r3 Por 1],

M, = , (10)
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Gy=[fy fi £ f1",

the geometric form given in Eq. (9) can be transformed into
the more computationally efficient matrix form, where My is
the Hermite basis transformation matrix and Gy is the geom-
etry matrix containing the curve boundary conditions,

The geometry matrix in Eq. (11) is altered for each segment
to obtain a series of cubic Hermite curves which are com-
bined to form a composite curve with slope continuity at the
end points.

Surfaces. A large complex surface can be defined by a
composite collection of simpler patches. The algebraic form
of a bicubic Hermite patch is given by the tensor product
shown in the following:

303
f(r,s)=>, > a,r's. (12)

i=0 j=0

The a;; are the three component algebraic coefficient vectors
of the patch, where each component represents one of the
three dimensions in real space. The subscripting corresponds
to the order of the parameter variables that the coefficient is
attributed to. Expanding Eq. (12) and arranging the a;; terms
in descending order produces Eq. (13), a 16 term polynomial
in r and s,

£(r,s) = 2335 + a3,r°s% + 3,75 + A3 + ayyr°s’

+ 3227'252 + 321r2s + azorz + al3rs3 + alzrsz
+a“rs+alor+ao3s3+302S2+301S+300. (13)

Because each of the 16 vector coefficients a;; has three in-
dependent components, there are a total of 48 algebraic co-
efficients, or 48 degrees of freedom. In matrix notation, the
algebraic form is

f(r,s) = RAS, (14)
where

R=[" * r 1],
S=[s* s> s 1], (15)

a33 a3z Az a3
A3 ax»n Az 4y
a3 ap a1 Ay

Ap3 A Ag; app

Since the a elements are three-component vectors, the A
matrix is actually a 4 X4 X 3 array. As was found with Her-
mite curves, the algebraic coefficients of a Hermite patch
determine its shape and position in space. Although the r,s
parameter domain values are restricted between 0 and 1, the
range of the variables in x,y, and z is not restricted, because
the range of the algebraic coefficients is not limited. A
unique point on the surface patch is generated each time a
specific pair of r,s values are input into Eq. (14). These pairs
of r,s values are then mapped back into real space.
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Each patch is bounded by four curves, and each bound-
ary curve is a cubic Hermite curve. Applying the same sub-
scripting notation as implemented in Eq. (9), these curves are
denoted as: f,,f,.f,, and f,;, because they arise at the limit
values of the parametric variables. There are also four unique
corner points fy,f;,f,0, and f;;. As was seen for curves, the
geometric form is a more convenient and intuitive way to
define a patch. The geometric form is derived in the same
way as for curves. The boundary conditions of the patch are
used to solve for the algebraic coefficients. These conditions
include the four patch corner points fy,,fy;.fo,.f;; and the
eight tangent vectors £(,,,£5.£10. 80,50, . £0; . £1.£]; which de-
fine the boundary curves. B once again represents the Her-
mite basis functions, as in Eq. (9),

£(r,0)=B()[fy fio oo fio1",

f(V,1)=B(V)[f01 £ 61 fl]T,

(16)
£(0,s) =B(s)[foo for oo f3,17,
f(1,5) =B(s)[f,o £, £, £},1".

These four curves provide 12 of the 16 vectors needed to
specify the 48 degrees of freedom. Four additional vectors at
the corner points, called twist vectors, are used to fully
specify the patch. Mathematically, these vectors are defined
as follows:

. PH(r,s)

w="—""— atr=0,5=0,
arads

s ()

= atr=1,5s=0,
arads

(17)

s ()

n=""—— atr=0,5s=1,
arads

. FH(rs)

= atr=1,s=1.
arads

Calculating the mixed partial derivative of Eq. (13) yields

PL(r,s)

ard = 9a33r2s2 + 63321"2S + 33317’2 + 63237’5‘2 + 43221’,3'
ros

+2321}’+ 3313S2+2312S+a”. (18)
Evaluating Eq. (18) at the corner points obtains

TS __
foo=2ai,

TS
jo=3a3 +2ay +ay,
(19)
TS
o1 =3a;3+2ap+a,

11 = 9233 + 623, + 323, + 62,3 + 4a,, + 2a,, + 3a3

+2312+311.
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Doing the same for the remaining 12 vectors provides
the remaining 12 equations required to solve for the alge-
braic coefficients,

fo0 =200,
flo=as+ay +a;p+agy,
for =ag3 +ag, +ag; +ag,

fli=an+tap+ag +agg+tapg+ayn+ay +at+ag;

t+apt+a;+at+agt+agt+ag +ag,
.
foo =210,

foo = 2o,
(20)
flo=3a3)+ 2ay +ay,

s

flo=as; +ay +a; +a,
f, =
or=aptap+a;+a,
fgl = 3303 +2302+301,

f{l =3as;+ 3a3, + 3a3; + a3g + 2a,3 + 2a,, + 2a,; + 2a,,

+apy+ap+a+a,

fil = 3333 + 2332 +asz + 3323 + 2322 +ay + 3313 + 2312
+ay;+3ap; +2ap, + ag,.

Solving this set of 16 simultaneous equations from Egs. (19)
and (20) for the algebraic coefficients in terms of the geo-
metric inputs and rearranging terms yields

f(r,5)=[By(r) By(r) Bs(r) Bu(r) ]Gy
X [By(s) By(s) Bs(s) Bu(s)]", 21

where Gy is the Hermite geometry matrix shown in the fol-
lowing:

foo for foo for

s s
f10 fl 1 10 *11

GH = o rs s | (22)
00 *01 00 H01
T T S TS
10 11 10 11

Recalling from Eq. (11) that B(r) may be expressed as RMy,
Eq. (21) may be further simplified to obtain the conven-
tional geometric form given by

f(r,s) = RMHGHMHST. (23)

The remaining intricacy of the interpolation relates to
converting between real and parameter space. A simple
method for mapping between the two domains is presented
in the following. Figure 2 provides an example of a set of
four corner points in x and y that could be used to define a
patch. In this case, the r parameter corresponds to the x di-
rection and the s parameter to the y direction. Each (x,y)
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FIG. 2. Four corner points that could be used to define a Hermite surface
patch.

coordinate pair inside the patch corresponds to an (r,s) pa-
rameter pair. This parameter pair is obtained using

X~ Xo
"= Ax
(24)
Sz)")’o,
Ay

where Ax and Ay correspond to the spacing between corner
points in x and y, respectively. The slopes at the end points
must also be transformed to the parameter domain. This is
accomplished by scaling the r derivatives by Ax and the s
derivatives by Ay as shown in Eq. (25) for the corner point
corresponding to r=s=0,

07 ox  AF
(25)

afoo Ay

£fH=—- —

07 5y As’

where Ar and As equal one because they are restricted to
vary from zero to one. The form is the same for the remain-
ing three corner points of the patch.

Because measurements with pressure and velocity sen-
sors do not in general provide enough information to calcu-
late twist vectors, they have been set to zero for this inves-
tigation. The Hermite geometry matrix from Eq. (22) then
becomes

f00 fOl f‘(Y)O ff)l
f10 fll | fy
Gu=|. . (1)0 (1)1 . (26)
00 01
o fii 0 0

This limits the patches to having only first derivative conti-
nuity at their edges. The results presented in the following
indicate that adequate reconstructions are still obtained with
this simplification. A second order fit could also provide first
derivative continuity but lacks the ability to interpolate more
than a half of a wavelength between measurements. Figure 3
shows a sample bicubic Hermite patch and the required in-
puts at each corner point f,,. Each patch represents the rect-
angular area between four corner point locations. The above-
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FIG. 3. A sample bicubic Hermite surface patch showing the required inputs
at each corner point.

noted interpolation is repeated for each segment of the
surface and all the patches combined.

lll. ANALYTICAL IMPLEMENTATION

With the surface interpolation completed, the chosen
NAH algorithm is applied. In this section an analytical
model is developed to investigate the theoretical benefits of
the pressure field preprocessing method. This model requires
first that a synthetic acoustic field be created from a hypo-
thetical source. The field is then sampled and the chosen
algorithm implemented. The error is then evaluated on the
estimation plane by comparing the actual and reconstructed
fields.

A. Synthetic field creation

A rectangular, simply supported plate is chosen as the
hypothetical source because it has a simple closed-form ra-
diation equation. The plate shown in Fig. 4 is driven by a

Excitation

l Ly |

FIG. 4. Geometry of the simply supported plate chosen to be the source for
the analytical modeling.
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H

x,x
FIG. 5. Description of the geometric quantities used in Rayleigh’s integral.
harmonic point source acting normal to the plate at its center

(x9,¥0)- The surface displacement w for the plate as a func-
tion of angular frequency w is given by Eq. (27),’

F - - ¢inn ” 0 ®mn ,’ '
W(xl9y,,w)=_ _2 E (xo yO) (x 4 )

s 27
ph m=1 n=1 w2 - Enn ( )
. 2 (mmx"\ . (nmy
D, (x"y")=— sin sin , (28)
\"LxLy Lx Ly

where F' is the excitation force amplitude, p the plate mate-
rial density per unit area, & the plate thickness, and L the
length of the plate in the indicated direction. The subscripts
m and n denote the plate mode numbers in the x and y di-
rections, respectively. Assuming that the plate is in an infi-
nite rigid baffle, the radiated pressure can be expressed in
terms of the plate surface displacement using Rayleigh’s in-
tegral. Figure 5 provides a clear description of the geometric
quantities to be used in Eq. (29), where ¢ time depen-
dence has been assumed,

|
dx'dy’.

2 (e o ik[F=7
w e

p(x,y,z,w)=——p0f J wx'y w) s
27 J_w ) o |F =7

(29)

The pressure at a point in space, p(x,y,z, ) is computed by
summing the contribution from each dx’dy’ area element.
Radiation from the plate is simulated using a discrete sum-
mation of Eq. (29) for a 32X 32 grid of point sources on the
plate. The field is then sampled at chosen measurement
locations to obtain the pressure and gradient information
to be used for interpolation. The selected NAH algorithm
is then applied to reconstruct the field.

B. Error evaluation

The reconstruction error is evaluated by first calculating
the pressure field at the measurement and estimation planes
directly using Eq. (29). The direct calculation of the pressure
field at the estimation plane serves as a reference against
which the NAH reconstruction is compared. The reconstruc-
tion error is quantified by differencing the NAH estimation
and the direct calculation at the estimation plane. The stan-
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FIG. 6. (a) The estimation error for NAH reconstructions from pressure
measurements as a function of sensors per spatial wavelength. (b) Estima-
tion error for NAH reconstructions using preprocessed pressure and velocity
measurements as a function of sensors per spatial wavelength.

dard deviation of these residuals is then computed and nor-
malized by the maximum pressure field value to obtain a
single value representing the whole field error. The error for
the reconstructions using the preprocessed data is compared
to pressure only reconstructions. The number of sensors used
to populate the measurement array is varied in both dimen-
sions in order to determine the possible reduction in sensor
count using the pressure and in-plane velocity measure-
ments.

C. Results

The results to follow correspond to the synthetic field
generated by a 30.5 cm X45.7 cm X 0.3175 cm plate vibrat-
ing in the 3,3 mode (1090 Hz), as shown in Fig. 4. These
dimensions are chosen to match the dimensions used for the
experimental validation presented in Sec. IV. The measure-
ment plane is set to 5 cm and the estimation plane to 2 cm
above the plate. Figures 6(a) and 6(b) show the resulting
normalized whole field NAH estimation error plots for array
sizes ranging from 10 X 10 to 20 X 20 for conventional pres-
sure measurements and the processed pressure and velocity
data. The data are presented as a function of the number of

Harris et al.: Pressure reconstruction using pressure and velocity 813



®)

FIG. 7. (a) The experimental setup for the simply supported plate. (b) The
piezoelectric patch used to excite the plate at its center.

sensors per spatial wavelength \. This provides the reader
with a qualitative sense of the relationship between estima-
tion error and the sensor spacing.

These plots indicate that the inclusion of velocity field
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FIG. 8. The reference pressure at the 2 cm estimation plane against which
the NAH reconstructions are compared.
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FIG. 9. (a) The pressure field reconstruction error at the 2 cm estimation
plane from an 11X 17 array of pressure measurements at 5 cm. (b) The
pressure field reconstruction error at 2 cm from a 6 X9 array of prepro-
cessed pressure and in-plane velocity measurements at 5 cm.

information at the hologram surface significantly improves
the ability to reconstruct the field accurately. In fact, the
NAH reconstruction using a 10 X 10 array of processed pres-
sure and velocity measurements has a whole field error of
0.0326, which is slightly lower than the 0.0433 error for a
20X 20 array of pressure measurements. These results show
that the number of measurement locations can be reduced by

Harris et al.: Pressure reconstruction using pressure and velocity



Reference Pressure at 2 cm

40 0.3

0.2
«| B % 5 B

10

401

£ - - o
:
-10
-0.1
= . - -
-0.2
-30
-40 -0.3
-50
0 60 120 180 240 300 360

Theta (degrees)

FIG. 10. The reference pressure field at 2 cm for the cylindrical test case.

about 75% when sensing equipment that measures pressure
and velocity is used. This reduction seems reasonable since
twice the information is being used in each direction. If a
three channel probe is used to measure the field, a channel
count reduction of 25% would also be realized for nonscan-
ning systems. These results represent the theoretical optimal
performance of the measurement schemes because the mea-
surements have zero positioning, amplitude, and phase error.

IV. EXPERIMENTAL VALIDATION
A. Planar test case

An experimental setup is designed to approximate the
simply supported plate used in the analytical investigation.
Figure 7(a) shows the 30.5 cm X 45.7 cm X 0.3175 cm alu-
minum plate. It is attached along its edges to a heavy steel
frame using cone point set screws to approximate the simply
supported boundary condition. A 20-mm-diam piezoelectric
patch, shown in Fig. 7(b), is used to excite the plate at its
center. The plate and a measurement grid are suspended in an
anechoic chamber for data acquisition. A single Microflown
ultimate sound probe (USP) is used to scan the field to obtain
the pressure and in-plane velocities required for the modified
bicubic Hermite interpolation method. The plate is excited at
1090 Hz corresponding to the 3,3 operating shape. The field
is sampled at 2 and 5 cm from the plate as in the analytical
case. The vertical and horizontal step distance is set to 5 cm
and the plate is overscanned in both directions yielding a
50 cm X 80 cm overall measurement array size. The 2 cm
measurement again serves as the reference against which the
NAH reconstructions are compared.

Figure 8 shows the reference pressure as measured on
the 2 cm estimation plane. An 11X 17 array of pressure mea-
surements at 5 cm is used to reconstruct the pressure at the
estimation plane using the traditional Fourier NAH method.
The pressure only reconstruction is then compared to the
reconstruction using a 6 X9 array of pressure and velocity
measurements spanning the same area. Figures 9(a) and 9(b)
show the reconstruction error obtained by differencing the
reference pressure and the reconstructions.
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FIG. 11. (a) The pressure field reconstruction error at the 2 cm estimation
plane from an 11X 14 array of pressure measurements at 4 cm. (b) The
pressure field reconstruction error at 2 cm from a 7 X7 array of prepro-
cessed pressure and in-plane velocity measurements at 4 cm.

Both NAH reconstructions are able to accurately char-
acterize the pressure field on the estimation plane. The nor-
malized whole field estimation error for the NAH reconstruc-
tion using only pressure measurements is 0.051, while the
error for the reconstruction using the processed pressure and
velocity data is 0.039. The reconstruction using the pro-
cessed data is slightly more accurate than the conventional
reconstruction with 70% fewer measurements. This corre-
sponds well with the simulated results.

B. Cylindrical test case

A cylindrical ABS plastic tube is used for this test case.
The tube dimensions are: 10.2 cm inner diameter, 10.8 cm
outer diameter, 50.8 cm length. Simply supported boundary
conditions are approximated at the tube ends using tapered
conical plugs. The tube is driven at 1524 Hz with the same
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20 mm piezoelectric patch used for the plate. This excitation
corresponds to the 3,3 operating shape. Scans are made at 2
and 4 cm radial distances from the outer surface of the tube.
Figure 10 shows the reference field at 2 cm. The resulting
reconstruction error from an 11X 14 array of pressure mea-
surements at 4 cm is presented in Fig. 11(a). The vertical
step distance is 10.2 cm and the incremental rotation angle is
27.7°. The reconstruction error shown in Fig. 11(b) is ob-
tained using a 7 X7 array of pressure and velocity measure-
ments.

Both reconstructions retain the correct modal shape.
However, the reconstruction utilizing the processed pressure
and velocity measurements is more accurate at the peak am-
plitudes. The normalized whole field error for the conven-
tional NAH reconstruction is 0.030. The error for the recon-
struction based on pressure and velocity measurements is
0.024. Once again the NAH reconstruction using the pro-
posed preprocessing method is able to provide slightly better
reconstruction with 70% fewer measurements locations.

V. CONCLUSIONS

Based on the analytical and experimental results pre-
sented in this work, a 70% reduction in the number of mea-
surement locations required for NAH is possible when pres-
sure and in-plane velocities are used. For cases where
subarrays of sensors are required to scan the field, the pro-
posed preprocessing method reduces significantly the
amount of repositioning, and therefore time, required. The
subarrays could also be increased in size up to three and a
half times if the same number of sensors is used. It should
also be noted that the proposed interpolation method is ap-
plicable to other reconstruction methods, such as IBEM, that
rely on a spatial sampling of the pressure field.
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