Error analysis of a practical energy density sensor
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The investigation of an active control system based on acoustic energy density has led to the
analysis and development of an inexpensive three-axes energy density sensor. The energy density
sensor comprises six electret microphones mounted on the surface of a 0.@2%h radius

sphere. The bias errors for the potential, kinetic, and total energy density as well as the magnitude
of intensity of a spherical sensor are compared to a sensor comprising six microphones suspended
in space. Analytical, computer-modeled, and experimental data are presented for both sensor
configurations in the case of traveling and standing wave fields, for an arbitrary incidence angle. It
is shown that the energy density measurement is the most nearly accurate measurement of the four
for the conditions presented. Experimentally, it is found that the spherical energy density sensor is
within =1.75 dB compared to reference measurements in the 110-400 Hz frequency range in a
reverberant enclosure. The diffraction effects from the hard sphere enable the sensor to be made
more compact by a factor of compared to the sensor with suspended microphones20@
Acoustical Society of AmericBS0001-4966)0)04906-7

PACS numbers: 43.58.Fm, 43.50.FSLE]

INTRODUCTION electret microphones, on the calculation of the acoustic quan-
tities in question. The sensors would be used in reverberant
Research in active noise cont@dNC) systems has led fields, therefore the performance of a sensor in a standing
scientists to investigate the performance of various cost funowyave field was of particular interest.
tions such as structural intensityyave number amplitude, Since the error analysis of the total energy density mea-
volume velocity? and, most commonly, potential energy surement requires investigating the errors in the particle ve-
density? (The cost function of an ANC system is the func- locity and pressure estimates, the errors in potential and ki-
tion that is minimized as a result of the ANC algorithm. netic energy density as well as intensity require little
Sommerfeldt and Nashif, in 1992, proposed using the sum dddditional work, and are useful for gaining insights into the
the acoustic energy densities at discrete points in space ag@tal energy density measurement. All four measurements
cost function for controlling acoustic fields in dutslashif  are functions of the acoustic pressure and/or particle veloc-
constructed a single-axis energy density sensor using instrity. In this paper, the measurement errors in potential, ki-
mentation microphones, and conducted ANC experiments inetic, and total energy density as well as intensity are inves-
ducts with promising resulfsThis research led to the devel- tigated for two sensor configurations. One configuration has
opment of an ANC system for use in three-dimensionakhe microphones suspended at points in sgegferred to as
acoustic fields using the total energy density as a cosh two-point sens9r while the other has microphones
function”~° In the course of this work on controlling three- mounted on the surface of a hard sphaeferred to as a
dimensional acoustic fields, it was necessary to develop anspherical sensr
characterize the performance of a three-axes energy density It is convenient to first study the bias errdiar offset
sensor. errorg of a single-axis sensor which can be analyzed in
Multiple sensors were needed for the ANC system,greater detail due to its relative simplicity. The bias error
which was targeted for use in commercial applications suckequations for a single-axis sensor are investigated, while
as aircraft cabins. Therefore, high-precision instrumentatiothose of a three-axes sensor are beyond the scope of this
microphones were prohibitively expensive for use in the senwork. The understanding gained from the study of the single-
sor. Electret microphones manufactured by Lectret Corpaxis sensor yields insights into the error mechanisms in a
(model 1270A costing $15 each were chosen for the sensothree-axes sensor. Ultimately, the measurement errors of a
microphones. Calibration was also an issue since the use tiree-axes energy density sensor are determined for some
digital calibration filters for each microphone in the sensorspecial cases through computer simulation and experimental
was computationally expensive for a controller. Therefore, itmeasurement.
was necessary to understand the effects of microphones mis- The bias errors of the spherical sensor are determined
matched in sensitivity and phase, consistent with inexpensivéor the case of a one-dimensional standing wave field with
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arbitrary reflection coefficient and incident angle, when the E E
measurement microphones have a sensitivity and phase mit |

match. The bias errors in potential energy density, kinetic
energy density, total energy density, and intensity are re-
ported and compared to those of the two-point sensor, /

Analysis of the two-point sensor yields insights into the per- y .
formance of the spherical sensor. It will be shown that an

inexpensive yet robust spherical energy density sensor ca m2

be fabricated with sufficient accuracy for use in practical
active control systems.
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|. BACKGROUND (@ ‘ ®)

A sensor th_at is capablg of measurin.g the total a_COUSti%IG. 1. Plane wave®, andP_ incident on(a) a spherical sensor an(d)
energy density is a vector-field sensor, since the particle vex two-point sensor.
locity vector must be determined. Typically, vector-field

probes, such as intensity sensors, comprise two small micrgjngle-axis vector-field sensor consisting of two microphones
phones separated by a known distance. The acoustic pressWigipedded on the surface of a hard sphere. Elko demon-
and velocity are estimated by using finite sum and finitegyated that diffraction from the hard sphere causes beneficial
difference approximations, respectively. The measuremerfiases which offset systematic biases for the finite sum and
errors associated with the two-point sensor have been studiggite difference approximations in the pressure and velocity

at length, r?‘?LDSF"ECL'"\”V as they relate to the intensitymeasurements, respectively, for most incidence angles. Elko
measurement. Much less effort has been dedicated t0 Un-gerived these results for perfectly matched microphones,

derstanding the errors qfatotal energy density measurementiin regard to sensitivity and phase, in a traveling plane
Early work concerning the measurement of the total enyyaye field with variable angles of incidence. No investiga-
ergy density of an airborne acoustic field was conducted byion was made into the accuracy of a total energy density

. l . .
Wolff and Massa in _1933 Using three pressure gradient jeasurement, or how the sensor would perform in a standing
microphones and a single pressure microphone, the three qfaye field.

thogonal vector components of the particle velocity and the

pressure at a point in space were measured. From these four

measured quantities, the total energy density was calculatell: PROBLEM FORMULATION

Wolff and Massa determined, through experimentation, that  1p¢ geometric configurations of a single-axis spherical
the squared pressure field in an enclosure had greater spatiddysor and two-point sensor are depicted in Fig. 1. The
variation compared to the total energy density field. WOIﬁsingIe-axis spherical sensor consists of two microphamds,
and Massa found that “Practically, the use of three pressurg,q m2, embedded on the surface of a hard sphere with
gradient microphones with their axes mutually perpendiculagizmeter 2. The two-point sensor consists of two micro-
plus a pressure microphone obtains the effect of averaginghones separated in space by a distarizeThe sensors are
the readings of four pressure microphones placed at randoRhin centered at the origin. Two plane wavBs, andP_,
d|stance§1 from each other and several wave-lengthgre jncident on the sensors from opposite directions produc-
apart...”"" In other words, Wolff and Massa’s energy den- g 5 standing wave. The angle of incidence for the wave
sity sensor had the advantage of using a single localizel,ygjing in the negative-direction isé. The complex reflec-

instrument comprising four sensors to achieve the same 1§y, coefficient of the standing wave is defined by
sults as four randomly distributed sensors. Wolff and Mas-

sa’s research indicates that a control system based on atotal . p_ ,

energy density measurement would be less sensitive to R=——=r7el’, 1)
placement of the error sensor than one based on the squared Py

pressure. whereP, andP_ are the complex amplitudes of the plane

Cook and Schgde, in 1974, investigated a configuratioqvaves at the origin when there is no obsta¢l#at” ac-
for an energy density sensor and its use for measurements {5 ahove variables and constants indicate complex quan-
a reverberant chambéf.They investigated the spatial vari- yitjes) Microphonem1 is chosen to have a phase mismatch
ances ofone_—, tvyo—, and three-.dlmens,lonal potential and totq;p, and sensitivity mismatchs,,, with respect to micro-
energy density fields. The variance of the total energy de”phonemz given by
sity field in a reverberant enclosure was estimated to be one-
half that of the squared pressure field. Cook and Schade con- I5m1
structed a three-dimensional energy density sensor using ﬁ,_
three pairs of microphones. The performance limitations of m2
the energy density sensor were not disclosed. when the microphones are co-located in a pressure field. The
Elko, in 1991, investigated the diffraction effects of a variablesP,,; and P, represent the complex pressures at
spherical probe on intensity, potential energy density, andhe two microphone locations. The sensitivity mismatch in
kinetic energy density measuremetitElko investigated a  decibels is

= 6pel %, v
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and finite difference approximations, the estimated pressure

P P
}' + and velocity at the origin are
. : . PmptP
) T _m2 ml, %
B p B ec 2
D [ A L -
3 i IE; -~ Pma=Pm
\ / — __m
KJ Ver™Jpcakd ©®
whered is a constant related to the microphone separation
T T distance"*
P P To determine the bias errors, approximations for the
(@ ®) acoustical measures using the finite sum and difference equa-

FIG. 2. Plane waveP, andP_ incident on(a) a hard-sphere obstacle and

(b) no obstacle.

tions are compared to the true values at the origin. The ex-
pressions for the four biases are defined by
2

Pec
5m,dB: 20 |Og 5m ) (3) Ub,dB_ 10 logUbiaS_ 10 |Og ~ | (ga)
C
Since two microphones are used, only the component 2
along the microphone axisvhich will be referred to as the _ -~ Ves
¢-component of the acoustical measures can be resolved. Tb,ae= 1010gTpjas= 1010 vl (9b)
The #-components of the potential energy density, kinetic o
energy density, total energy density, and intensity are defined €ep
by ep gg= 10 logeyi,s= 1010 e_g , (90
|Pgf? leg
U 13,0 (43 Ib,gg=1010g ias= 1010 T, (9d)
(2 The true acoustical values at the origin are given by
T :P|V0| (4b)
o4 P.=P.(1+R), (108
Pel?  plVy? .. (1—-R)cos#
€y= 12p¢2 + 7 (40 V= P+—pC , (10b)
I =1 ne(PV%), 4 P? e -
o=2Re{PeVo} 49 egz_!l_zglz(|1+R|2+3|1—R|20052 0), (109
where P, is the complex pressure, and, is the complex
velocity in the 6-direction at the origin. The phase speed and ||5+|2(1_ | |§|2)Cosg
density of air are given bg and p, respectively. The equa- ly= . (100

2pcC
tions including the contributions from all three orthogonal P

axes for these measures are defined by

The normalized complex pressure in the field at point
(x,y,2) is given by

P2 . o
Ut:LchlZ=Ui+U,-+Uk, (53 P(2)=(e "+ Rel?), (11)

_— for a standing wave. There is no loss in generality of Egs.

\ 109—(10d) by assumingz=0 for the standing wave situa-
7PV —T+ T+ T, (5py ~ (103—(10d by assumingz=0 for the J

4 tion since the reflection coefficierR, is complex.
e—“ﬁC|2 p|\7t|2—e-+e-+e (50
v 4pc? 4 IR lll. SCATTERING EFFECTS FROM A HARD SPHERE

le=3Re{(PVF PV PV =(11.15,1), (5d)
where

Vi=(V;,V;, V) (6)

The pressure on the surface of the sphere, due to scat-
tering, must be determined to calculate the bias errors of the
spherical sensor. The geometry of the problem is depicted in
Fig. 2. Two plane waves? . andP_, form a standing wave

with reflection coefficienR. The hard sphere is centered at

is the complex particle velocity vector at the origin. The the origin. From the equation of scattering of a single plane

complex conjugate operation is indicated by,™ while the

wave by a spher, it can be shown that the complex pres-

real part is indicated by $ie.” The three orthogonal axes sure on the surface of a sphere in a standing wave field is
are represented by subscriptg, andk. Using the finite sum given by
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R=0 R-0 discussed later in this paper. WhRs-0.97 the sensor is at a

1 20

05 o 10 Tl pressure maximum and a velocity minimum. Here, the

o o Of e sphere has a minimal effect on the pressure field. Both the

NI mor T magnitude and phase of the excess pressure in Hiy.add

a“”() 5w w0 w ® o 0 10 20 (e) are small and relatively uniform. The most significant
o) a ¥ . . . .
B R 097 s @ - effect on the magnitude of the excess pressure is seen in Fig.
= - 5 T . . . .
R T £’ PP 3(c). In this case, the standing wave field produces a velocity
° - -~ S~ - R} - . . . .
] N 3 f maximum at the location of the sensor. The high velocity of
gt \,\_ $ oo --—m--mTTT air impinging on the sphere causes a substantial pressure
5 |- A . . . .
215 ° increase, since the pressure without an obstacle present is
2 [ 50 100 150 200 § 0 50 100 150 200 . . .pe
g ® £ very small. This also causes the phase to be significantly
g - i A— L) R=-097 affected, as seen in Fig(f3. Ultimately, the effects of the

s \‘\; oo sphere will cause the bias estimates from finite sum and fi-

, a0l nite difference for the pressure and velocity estimations to

kes03 generally improve. This will be seen in plots later in this
-2 =20

0 50 100 150 200 0 50 100 150 200 pape r.

© 0 (deg) ® 0 (degy . :
t ¢ The hard sphere effectively changes the acoustic separa-
FIG. 3. Excess pressure magnitude and phase on the surface of a hatidn of the two microphones embedded on the sphere. The

sphere for various reflection coefficients and valuekaf acoustic wave no longer has a direct path from one micro-
phone to the other, but has to travel the contour of the
I53(ka 0,RP,) sphere. For a single plane wave propagating in the positive
z-direction, the reflection coefficiei®=0, and the pressure
P, i i"(2n+1)(R+(—1)")P,(cos6) on the surface of the sphere becomes
=- , . (12
j(ka)? n=o h?' (ka) .

. A P, - ..,
whereP,(cos6) is a Legendre function of order, andh®” Py(ka,0,R=0P.)= (ka)2 20 (=1)"(2n+1)Py(cos6)

is the derivative of the spherical Hankel function of the sec-

ond kind of ordem. Thee!“! convention is used here for the (ka)"*? (15)
complex representation. The pressure on this same surface 1-3:5-(2n—=1)(n+1)|"
with the sphere removed, shown in Figbp is given by
) R R ) . . . . 5
B(ka,0,R,P,)=P e ikacosty p Relkacoss (13 The smallka approximation of Eq(15) is given by
The complex excess pressure is defined by P (ka,6,R=0P,)~P.(1—] ¢kacosf). (16)

@

Por=—, (14 Using the finite difference equation E@) and Eq.(16), the
Py approximate velocity calculated at low frequency for the

and is plotted in Fig. 3 for three values of real reflectionSPherical sensor using=a would be

coefficient,R, and four values oka. To numerically calcu- .

late the excess pressure and phase, the first 13 terms in the . P, 3kacos#

infinite series of Eq(12) were used. In Fig. @—(c), the Vey~ pc2ka (17)
magnitude of the excess pressures on the surface of a sphere

are plotted forR=0 (the plane wave cageandR==0.97  1no constand is related to the microphone separation dis-
(the standing wave caseReflection coefficients 0f-0.97  5n06 (1ts exact value will be developed in the next section.

are consistent with the absorption characteristics of an enclepy,o approximate velocity at low frequency for the two-point
sure used by the authors for ANC experiments. WIRN  ¢onsor under these conditions whereb is

=0.97 the pressure field has a maximum at the sensor loca-
tion, while whenR=—0.97 the pressure field has a mini-

mum at the sensor location. Figuré&g-(f) show the corre- o, _Pi2sinkbcosd) P, 2kbcosd

~ , 18
sponding phases of the excess pressures on the surface of the e pc2kb pc2kb 18
sphere. The effects of the sphere are obviously more substan-
tial aska increases. using Eqgs.(8) and (11). The expressions for the velocity

For the plane wave case in Fig(aB and (d), there is  calculated for the spherical sensor and the two-point sensor
increased pressure where the plane wave first contacts tligfer only by the factors & and 2b, respectively. There-
sphere atf=180deg. The scattering effects on the phasdore, the effective separation of the microphones on the
shown in Fig. 8d) are substantial. The authors have deter-sphere is] that of the two-point sensor. For subsequent dis-
mined that the excess phase varies linearly W#hindicat-  cussion and comparisons, the microphone separaboof
ing a time delay. This time delay yields an effective increasethe two-point sensor will be assumed to bie microphone
in the acoustic path from one microphone to the other, to beseparationa, of the spherical sensor. Thusi= kb.
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IV. NUMERICALLY CALCULATED BIAS ERRORS 0 U Bias T Bias

<

A. Reflection coefficient and microphone mismatch -05 o2
parameters o -1 ~

g a-04

The bias error equations become quite complex, espe-g""5 £ o5

cially for the case of the spherical sensor which requires an
infinite sum. In order to plot the errors, specific values of the

i
=]
o0

-2.5

reflection coefficient are chosen. Reflection coefficients of o 02 04 06 o 02 04 06
. . . . kb [} [¢]
materials are typically not available; however, absorption co- ~ ® o ® o
efficients are. The absorption coefficient, of a material is 0 \\'\ 0
defined as the energy absorbed by the material divided by the -os o
energy incident, which can be written as a 1 a
"ZT-] 5 % -1
P>~ |P_|? Il @
a=— (19 25| [FR=97 -15
= -2, .
| P+| _3 -2
R A 0 0.2 04 0.6 0 02 0.4 0.6
From Eq.(1), |P_|?=|RP.|?, and for a purely real reflec- © kb @ kb cos 8
tion coefficient FIG. 4. Bias errors of a two-point sensor with perfectly matched micro-
a=1-R? (20) phones for(a) potential energy densityb) kinetic energy density(c) total

energy density, an¢d) magnitude of intensity measurements.
The walls of the ANC test enclosure consist of sand sand-
wiched between wood layers, and the absorption coefficientisiyivy by using a simple trim potentiometer, there will stil

of the yvalls was _estimated to be 0.06. Th_is is equivalent to $e some sensitivity drift even over short periods of time. It
reflection coefficient of 0.97. The sensor is located at a PreSyas observed that the microphones varied.25 dB in the
sure maximum if the reflection coefficient is 0.97, while thelaboratory Hence, phase mismatches*if dég and sensi-

sensor is located at a pressure minimum if the reflection Coﬁvity mismatches of-0.25 dB, are used for the microphone
efficient is —0.97. The pressure maxima and minima are ogairs when plotting bias error’s

interest since the finite sum and difference approximation
are particularly subject to error there. A plane wave propa-

gation in the positivez-direction occurs for a reflection co- _ _ _

efficient of 0, and is also of interest. Hence, reflection coef-B. Bias errors of sensors with matched microphones

ficients of £0.97 and 0 are used when plotting bias errors. For the two-point sensor, the bias errors can be calcu-

Specific values of microphone magnitude and phasg,ieq using Eqs(4) and (7)—(10). The normalized complex

mismatch are also introduced to plot the bias errors. Meapressures at the microphones can be found using(EXy
surements of the microphones have shown that they exhibit @nerez=p cosg and are given by

first-order roll-off near the 3-dB low-frequency cutoff fre-

qguency. The low-frequency cutoff frequency of the micro- P = 8,6l %p(e ikbcost | Reikbcost) (239
phones varied between 4 and 40 Hz. The microphones also
exhibit a second order roll-off near 20 kHz. As an approxi- ~ p__ — (gikcosd Rg-ikbcosd), (23b)
mation, the response of the microphones was modeled as the
first-order high-pass transfer function For matched microphones,,=1 and§,=0. In Fig. 4, the

(o bias errors are plotted for the two-point sensor with matched
_]—77, (21) microphones. The potential and kinetic energy density as
j2mi+2mf, well as the intensity bias errors are not a function of the

near the low-frequency cutoff frequendy,, since the high- reflection coefficient. The totgl energy (_iensity bias error is
frequency break frequency is almost two orders of magnidependent on the real reflection coefficieRt,and angle of
tude greater thaf,. From Eq.(21) the phase response, in incidence,f, and must be plotted for specific values of each.
degrees, would be For different reflection coefficients, the relative contributions
of the kinetic and potential energy density change in the total

180 f - is i i
/H(j2mf)=90- ——tan ' 22) energy de_n5|_ty measurement. This is also true for different
T angles of incidence.

e
In determining the bias errors for the spherical sensor,

p
From Eq.(22), a low freguency cutoff frequency vgr|at|on of only the first 13 terms of Eq.12) are used, since including
4 to 40 Hz between microphones causes a maximum phase .
- . more terms does not change the results noticeably. The nor-
variation of approximately 16 deg at 100 Hz between the . : L
. ) L2 . malized complex pressures at the two microphones in this
microphones. This phase variation is much too high for de-
o X " : case are
termining acoustic vector quantities with any degree of ac-

H(j2mf)=

curacy. Therefore, the microphone pairs were selected to P(kd,0.R.P.)
have less than 1 deg phase mismatch at 100 Hz. Assuming P, = §,el%——— 2 (249
that the microphones would be calibrated with regard to sen- Py
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U Bias T Bias

U Bias, 8 =0 T Bias, 8 =0 3 50
0 0
2 — Two~Point
-0.5 -0.2 . | --Spherical ~
a )
a I
g-04 B 1
2 K 2
E_ a_ a
& 0.6 1
038 -2
-1 3 0 02 0.4 06
0 0.1 02 03 04 05 ®) kb
® ka I Bias
1Bias, 8 =0 3
0
2
-0.5 a 1 a
- <) o
g 20 e
% -l = S
8 m_ 3
=
- R=-97 -1.5 -2
=25
-3 -30
-3 -2 0 0.2 04 0.6 0 0.2 0.4 0.6
0 0.1 0.2 03 0.4 0.5 0 0.1 0.2 03 0.4 0.5 ©) kb (d) kb
(c) ka ()] ka

FIG. 6. Bias errors of a spherical sensor and two-point sensor for micro-
phones having a 1-deg phase and 0.25-dB sensitivity mismatch. Sensors are
in a standing wave field with reflection coefficieRt=0.97 and incident
angled=0. (a) Potential energy density biad) kinetic energy density bias,

(c) total energy density biagd) magnitude of intensity bias.

FIG. 5. Bias errors of a spherical sensor with perfectly matched micro-
phones for(a) potential energy densityb) kinetic energy density(c) total
energy density, an¢d) magnitude of intensity measurements.

R P(kd, 6+ =R P,) _ As compared to Figs. 4 arjd 5, the errors .in general haye
m2= " , (24b) significantly increased. There is no longer an improvement in
P bias errors due to spherical scattering, and generally the er-

. _ _ ~rors are dominated by the sensitivity and phase mismatch of
whered=3a. Again, the bias errors can be calculated usingthe microphones. An important point in comparing the

Eq. (4) and Egs(7)—(10). In Fig. 5, the bias errors are plot- spherical and two-point sensors is that the bias errors show
ted for the spherical sensor with matched microphones.  the same trends.

As Elko noted in his work, there is a general improve-
ment in the bias errors due to the diffraction of the hard?: TWO-POINT SENSOR BIAS EQUATIONS
sphere®® The smallest improvement in the total energy den- ~ The bias error equations for the spherical sensor are in-
sity bias occurs whelR=0.97. Earlier it was seen that the tractable due to the infinite series involved. Since the bias
diffraction effects due to the sphere were minimal for thiserror plots for the two-point sensor and the spherical sensor
reflection coefficient compared ®=—0.97 andR=0. The follow the same trends, insight into the bias errors can be
diffraction of the sphere also causes all the bias errors to bgained by studying the bias error equations for the two-point
a function ofka and 6 separately, so that specific anglesfof sensor alone. In the case of the two-point sensor, the esti-
must be chosen for plotting. The errors of the two-point senmated pressure and velocity using the finite sum and finite
sor increase as c@sapproaches unity, so the angle chosendifference equations, respectively, are
fortplotting the bias errors was 0, in order to yield the great- B.=el2[(5 +1)(cosA+RcosB)
est errors.

+j(8y—1)(sinA+RsinB)], (259
C. Bias errors of sensors with mismatched . jeltw) R
microphones Ve“)_ch—kd [(6m—1)(cosA+RcosB)
For matched microphones the bias errors are relatively ) ) .
small. If a sensitivity and phase mismatch are allowed in the +i(émt1)(sinA+RsinB)], (25b

microphones, a dramatic effect is seen on the bias errors. Thehere

spherical sensor and two-point sensor bias errors are plotted 5

in Fig. 6, for the case of 1 deg phase and 0.25-dB sensitivity A= ?p— kdcosé and B= 7” +kdcosé.

mismatch in a standing wave field whelRe=0.97, and the

angle of incidence is O. It follows from Egs.(7)—(10) that the bias equations are then

27( 8%,Co8 é+ 0) +28,,COSE COSSy+COS E— ) 28,(COH 8, — o) + 1 COL 8+ o)) + (1 + 85) (1+ 7?)
bias™ 4(1+ n°+ 27 cosé) " 4(1+ 7°+ 27 cosé) ’

(269

27( 85, o8 é+ ) — 25, COSE COSS,+COLE— 1)) 28,(COS 8, — o)+ 7% coK 8+ o)) — (1+ 8%) (1+ 7?)
bias™ o?(1+ n?— 27y cosé) o?(1+ 5?— 27 cosé) ’

(26b)
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Upad 1+ R|2+3Tyd 1— R[2cog 6 8|1+ R|?
€bias™ i A| bla{ | : (260 U:(pl—T' 28)
|1+ R|2+3|1—R|%cog ¢

Therefore, a finite intensity can yield an intensity estimate of
Sm(SiN(8,— o) + 72 sin( Sp+ o) +27 cosEsins,) zero, and result in infinite error. The value @fwhere this
| bias™ o(7—1) , occurs is proportional t@,, and therefore the phase mis-
(260 match should be kept as small as possible.

The kinetic energy density bias, in E@6b), is a func-
where o= 2kd cos#; & and 5 are defined in Eq(1). A bias  tion of 1/0® and the error becomes large for finite phase
greater than unity indicates an estimate which is high, whilénismatch aso approaches zero. Fgr|<1, the measure-

a bias between zero and unity indicates an estimate which ient error for the kinetic energy density will be substantially
low. Negative biases for the velocity or intensity indicate greater than the intensity error, since the intensity bias is a
that the vector is 180 deg out of phase. Biases substantialfinction of 16. The bias errors in kinetic energy density will
deviating from unity indicate large errors. be greatest when the sensor is at a velocity minimum, when
The expression for the intensity bias in E86d) is rela-  Phase mismatches are present in the microphones. The pres-
tively simple, and clearly indicates the potential for largesures at the two microphones will be large, but very nearly
errors. When the microphones are not phase matched, bi#e same in magnitude and phase. Small changes in the mi-
errors increase as approaches zero, such as at low fre-crophone phase due to microphone phase mismatch therefore
quency and/or an angle of incidence approaching 90 degield a relatively large pressure difference and estimated ve-
Bias errors also become very large when the numerator dpcity. At pressure minima, the magnitude of the pressure is

Eq. (26d) approaches zero for finite. For |o|<1 (in radi- low, but the phase gradient is large. Small phase mismatches
ans and| 5p|<1 (|n radians’ Eq (260) can be approximated in the minOphoneS, therefore, have much less of an effect on
as the estimated velocity in this case.
The expression for the potential energy density in Eq.
Sl o(p2—1)+ 5p|1+ |32|2) (264 is not a function of 14, and.therefpre dogs not hqve t.he
| pia™ o(=1) (270 very large errors for smalr as in the intensity and kinetic

energy density estimates. For|<1rad, and|6p|<1, Eq.
The numerator of Eq(27) becomes zero when (269 can be approximated as

(14 821+ R12+207(1— 82)SiNE+ 20 8,8,(1— 77)
U pias™ N . (29
4/1+R|?

When the value oR is not close to—1, the first term in the mum, but the kinetic energy density is quite small compared
numerator of Eq(29) dominates the expression, and E2P)  to the potential energy density. The potential energy density

reduces to error is relatively small here and dominates the total energy
density calculation. Thus the potential energy density miti-
(14 6,)? gates the error due to the kinetic energy density calculation.
bias™ 4 ' (30) In general, the errors for the kinetic energy density and po-
tential energy density will not both be high at the same lo-
If |8 4s/ <1 dB, then cations, and the errors are reduced for the total energy den-
' sity calculation.
Ubias™ 6 (3D
and VI. NUMERICALLY CALCULATED BIAS ERRORS FOR
A SPHERICAL SENSOR
Up, gg~ %5m,dB- (32) A. Results of a single-axis, two-microphone sensor

The bias errors of the spherical sensor were shown to be

Hence, the potential energy density bias in decibels for smallonsistent with the bias errors of the two-point sensor, as

microphone mismatches and smalls equal to one-half the illustrated in the previous sections. The spherical sensor also
sensitivity mismatch in decibels. provides a very convenient way of mounting the micro-

The equation for the total energy density bias, 69, phones that is more compact than the two-point sensor by a

illustrates that the error is a function of the potential andfactor of3. For these reasons, the spherical sensor is the more
kinetic energy density bias. The error is high for the kineticattractive sensor and will be studied further in this paper. In

energy density when the sensor is located at a velocity minithis section, the bias errors of the spherical sensor are calcu-
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FIG. 7. Bias errors of a spherical sensor with sensitivity and phase misFIG. 9. Bias errors of a spherical sensor with sensitivity and phase mis-
matched microphonesR=0, #=0. (a) Potential energy density biagh) matched microphone®=—0.97, ¢=0. (a) Potential energy density bias,
kinetic energy density biagc) total energy density biagd) magnitude of (D) kinetic energy density biagc) total energy density biagd) magnitude
intensity bias. of intensity bias.

lated numerically and plotted for specific parameter valuesintensity bias error has a singularity for angles of incidence
The bias errors were determined using E@—(10), Egs.  approaching 90 deg. The velocity is zero, but the estimated
(24), and the first 13 terms of the infinite series in E&R).  velocity is finite due to the microphone mismatch. The ki-
The following three figures, Figs. 7-9, show the biasnetic energy density and intensity errors are therefore very
errors for the spherical sensor for reflection coefficients of Qarge. Since thé-component of the velocity is very small, in
and+97. Four plots are overlaid for each subplot for micro- this case, the velocity contribution to the total energy density
phones having a sensitivity mismatch ©0.25 dB, with a s insignificant. The pressure estimate is very accurate in this
phase mismatch of1 deg. Figure 7 shows the bias errors case; therefore the total energy density error is low.
for the spherical sensor in a plane wave field, while Figs. 8  The plots for the spherical sensor bias errors are consis-
and 9 show the bias errors for the spherical sensor in standent with the analysis conducted on the two-point sensor bias
ing wave fields producing a pressure maximum and a pressquations in the previous section. In each figure, the potential
sure minimum at the sensor location, respectively. energy density bias plots show the bias error approaching
The angle of incidence is chosen to be zero for all cases;s,, 45 (or £0.125 dB for smallka. The kinetic energy den-
since this generally yields poor estimations in the total ensity bias error, on the other hand, becomes asymptotically
ergy density measurement. Earlier, it was shown that théarge aska approaches zero due to its dependence ori.1/
It is difficult to see this in Fig. &) since the error diverges
very close they-axis. The intensity error is similar to the

U Bias T Bias
3 42548 +1deg kinetic energy deljsity for very smd{lq, but the error is not
2 - *'iiﬂﬁ"ldeg as severe due to its dependence anifistead of 142. The
! ,-:jzmﬁfi::i intensity error also has the singularity indicated by E28)

and seen in Fig. @). The total energy density bias error
appears as a combination of the potential and kinetic energy
density errors. In all three figures, the potential and kinetic
energy densities exhibit larger errors when the sensor is lo-
cated at a respective minima. When one measurement exhib-
its large errors, the other does not. The quantity producing
the larger error does not contribute to the total energy density
as much as the quantity that has smaller errors. Therefore,
the total energy density measurement has smaller errors than
both. This is true except at low frequencies, where the ki-
netic energy density approximation swamps out the mitigat-
T e oo os 5 ing effects of the pote.ntiall energy density. approximation.
© «a @ a ‘ The total energy density bias errors are withiri dB for
FIG. 8. Bias errors of a spherical sensor with sensitivity and phase mis'03< ka=.3 for all the plots. This analysis indicates that the
matched microphoneR:O.g7,0:0. () Potential energy d):ensity Eiasb) total energy density has the smallest bias errors of all four

kinetic energy density biage) total energy density biagd) magnitude of measurements,_ except for VerY_Sme_‘” valuekafwhen fi-
intensity bias. nite sum and difference approximations are used.

Bias (dB)

(@) ka
€ Bias

Bias (dB)
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FIG. 10. Predicteda) potential energy densityh) kinetic energy density, FIG. 11. Predicted spherical sensor error for microphones with a 0.25-dB

(c) total energy density, an¢d) magnitude of intensity, in the/L,=0.4 sensitivity and 1-deg mismatcta) Potential energy density biad) kinetic

plane for 135.8 Hz, modéL, 1, O excitation. energy density bias(c) total energy density bias, and) magnitude of
intensity bias, in the/L,= 0.4 plane for 135.8 Hz, mod@, 1, O excitation.

B. Results of a three-axes, six-microphone sensor function of space in the/L,=0.21 plane. The error plots are
The bias errors for a three-axis spherical sensor in aShOWn in Fig. 11.
It can be seen in Fig. 11 that the smallest errors occur for

three-dimensional pressure field were predicted with asimug . oo energy density estimation. The error surface is

lation. The sensor employs six microphones oriented alongmooth with no singularities or large gradients. The potential

three orthogonal axes. A simulation program generates the . S .
T o energy density estimation has small errors except in one re-
pressure and velocity fields within a rectangular enclosure.

due to a point monopole source. The enclosure’s dimensio lon where it has a sharp peak located at a pressure node.
. ’ s he kinetic energy density estimation has higher errors than
are 1.5<2.4xX1.9m, having one corner at the origin and the 9y y g

the potential energy density estimation, and again the largest
other at(1.5, 2.4, 1.9. The source was located at the normal- P 9y y 9 9

) N . errors are at most of the nodes. In this case, the velocit
ized point in spacé€0.12, 0.97, 0.97 where normalized co- ! v "y

rdinat re defined as/ L. 7L The absorption nodes are in the corners and center of the enclosure. As
ordinates are defined ax Cx.y/Ly,zIL;). The absorptio expected, the intensity errors are large since the enclosure is
coefficients used for the walls werer,=0.0479, a,

y lightly damped. The intensity errors are highest in general
=0.0313, anda,=0.0730. These parameters are consiste gnty P y J g

ith | d by th thors for ANC . ' here the velocity estimation is poor. As in the two-
with an enclosure used by the authors for EXPENMeNtSyimensional sensor analysis, the pressure dominates the total

Since the errors in measurements are mostly due to the mé'nergy density when the velocity error is high, while the

crophone mismatches, the dlffract|on. effects. of thfe Spher@elocity dominates the total energy density when the pres-
were not modeled. The sphere used in the simulation had & o error is high. In the corners of the enclosure, the total
radius of 1 in(0.0254 m, consistent with the size of the o0y density estimate improves as the velocity contribution
sensor ultimately constructed. One microphone from €acly yocreased. The total energy density estimate ensures no
axis pair was offset in sensitivity by 0.25 dB and 1 deg ing;, ¢ jarities in the error. The results of the three-axes spheri-
phase. Thus each microphone pair had a sensitivity angdy,"sensor are consistent with the analysis for the two-axes
phase mismatch. The excitation frequency of the enclosurggngor Overall, the magnitudes of the errors in the total en-

was chosen to be 135.8 Hz, corresponding to the sixth modeyqy gensity estimate are less than 1 dB, which is expected to
with mode indiceg1, 1, 0. An on-resonance frequency was pq 'jow enough for use in an active control system.
chosen due to the variety of pressure and phase gradients

created by on-resonance excitation.

The potential, kinetic, and total energy density,
as the magnitude of the intensity, were calculated in th
z/L,=0.21 plane; these plots are shown in Fig. 10. The ref-  The previous analyses indicate the magnitude of the er-
erence value for each of the quantities was chosen to be unitprs associated with a spherical sensor when measuring vec-
when calculating magnitudes of the fields in units of deci-tor field acoustic quantities. A spherical vector-field sensor
bels. The complex pressures were then calculated numenvas constructed and then tested in a three-dimensional rect-
cally for each of the six microphones on the sensor. Onangular enclosure consistent with the previous computer
microphone in each of the axis pairs was offset in sensitivitysimulations. A photograph of two sensors is shown in Fig.
and phase. The estimated acoustic fields were then detet2. A two-inch-diameter wooden ball purchased from a craft
mined using Eqs(4)—(10), whered=3a. These fields were store was used as the hard sphere for housing the micro-
compared to the actual predicted fields yielding errors as phones. Three microphone pairs were mounted along the

as wellV!l- EXPERIMENTALLY MEASURED BIAS ERRORS
é:OR A SPHERICAL SENSOR
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FIG. 12. Two energy density sensors. Sensor diameter is 2 in. o 100 200 300 400 T 10 20 r 400
{©) Frequency (Hz) (d) Frequency (Hz)

three orthogonal axes. Each pair was used to estimate th@G. 13. Two-point sensor experimental measurements. Sensor located at

acoustic velocity along its axis as well as the average acou$s.50, 0.50, 0.50 (a) Potential energy densityb) kinetic energy density,

tic pressure. The wooden sphere was cut in two and hol) total energy density(d) intensity.

lowed to make room for bias and gain circuits, while the

surface was routed to allow the microphones to be flushdensity. These formulas can be derived from Eds, (7),

mounted. A cable with a connector termination providesand (8) for stationary signals. The three orthogonal compo-

power and signal connections. The sensor on the left is opements of the acoustic quantities were postprocessed in the

revealing the electronic circuit board inside. The total cost ofsoftwareMATLAB ™ to yield the complete measurements us-

a sensor was approximately $100, $90 of which was for théeng Egs.(5). The acoustic quantities for the spherical sensor

microphones. were determined the same way, excéptia was used. The
Two sensor locations were chosen for the experimentdwo-point sensor microphone spacing was equal to the spac-

One location was in the center of the enclosure at a normaing of the spherical sensor microphones in the experiments,

ized location 0f(0.50, 0.50, 0.50 while the other was cho- thusb=a=1in.(0.0254 m).

sen to be off-center at a normalized location(@f32, 0.62, The acoustic quantities determined using the B&K setup

0.64). The sensor was placed in the center of the enclosurfor the sensor located in the center of the enclosure and off-

due to the many maxima and minima located there, while icenter are plotted in Figs. 13 and 14, respectively. The ref-

was placed off-center to be located in a more random posierence measurements show many fewer peaks in the poten-

tion. Three speakers were placed in close proximity to eachial energy density measurement when the sensor is located

other, in a corner of the enclosure to achieve high enougim the center of the enclosure compared to off-center, since

sound pressure levels off-resonance for accurate measurtite nodal surfaces of many acoustic modes pass through the

ments. A white noise signal was used as the excitation.  center of the enclosure. There are also many velocity minima
A B&K 4135 i-in diameter matched-microphone pair at the center of the enclosure, and the kinetic energy density

was used as a two-point sensor to determine the reference

measurements. Measurements were taken with the micrc Ur Tr

phone pair aligned with th&-, y-, and z-axes to yield the
three orthogonal components of potential, kinetic and total -7
energy density, as well as intensity. A HP 35665A dynamici“_so _
signal analyzer was used to measure the acoustic quantitie$
along a single axis using the following formulas: i -90\
_G1+GZ+2 ReG1} 1% 00 200 3(;0 400 1% 1(:>0 260 W w0
0= 4 8p C 2 , (3 3 a (@) Frequency (Hz) (b) Frequency (Hz)
60 s T
G1+G,—2RgG,}
T = . .
0 32pd2(1)2 ’ (33b) _ 70
2 30
90:U0+T0, (330) g
90
-1 : : :
Io_p4dw IM{Gaal, (33d % e 20 300 400 0 100 200 300 400
(c) Frequency (Hz) (d) Frequency (Hz)

where d=b, oq(a_—half th? mlcrOphone SpaCIhQJ'The au- FIG. 14. Two-point sensor experimental measurements. Sensor located at
tospectral d_ensmes Qf mlc_rophongli andm2 areG; and (932, 0.62, 0.6% (a) Potential energy densityb) kinetic energy density,
G,, respectively, whilgs, is the microphone cross-spectral (o) total energy density(d) intensity.
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h . . F]G. 17. Bode plot of transfer function between two microphones having a
FIG. 15. Difference beree” tw_o-pomt sensor _measgrements and spheric nsitivity mismatch of 0.25 dB and phase mismatch of 1 deg at 100 Hz.
sensor measurements(# potential energy densityb) kinetic energy den-
sity, (c) total energy density, an¢d) intensity. Sensors located &é8.50,
0.50, 0.50. larger than the total energy density estimate in this frequency

region. Under 110 Hz the errors for the total energy density

measurements show many fewer peaks at that location ddcrease due to the df term in the bias equation. As in the
well, compared to the off-center location. The total energythree—d|menS|onaI field simulation, the energy density mea-
density plots have peaks where the potential or kinetic enSurément tends to smooth out the largest errors from the
ergy density have peaks. potential and kinetic energy density measurements.

The differences between the spherical sensor measure- 1he €rrors at low frequency can be even higher than
ments and the two-point sensor measurements are shown {30se predicted by the previous analysis. From ©d), the
Figs. 15 and 16. The differences are due to the sensitivitffansfer function between two microphones having sensitiv-
and phase mismatch of the spherical vector-field sensor, difty and phase mismatch is given by

fraction due to the sphere, and experimental error. The ex- _ j2mf+2mf

perimental error is mainly due to the inability to remove and ~ H(j27f)=46, Py (34)
replace the sensors so that they are located in exactly the J P2

same point in space. A Bode plot of this transfer function is shown in Fig. 17,

The total energy density estimate using the sphericaivhere the cutoff frequencies aifg, =38 andf,,=40Hz.
sensor is within+1.75 dB of the measurement made usingThese cutoff frequencies yield a phase mismatch of 1 deg at
the matched-microphone B&K setup in the frequency regionl00 Hz. The microphones are also givern-8.25-dB sensi-

110<f<400Hz. All the other estimates produce errorstivity mismatch.
The previous analysis assumed a constant sensitivity and

phase mismatch as a function of frequency, however Fig. 17
shows this not to be true. The phase error increases as the
frequency is reduced below 100 until 40 Hz, but decreases as
the frequency is increased above 100 Hz. The sensitivity
mismatch can also increase at low frequency, depending on
the microphone phase/sensitivity combination. Thus the er-
rors in total energy density can be higher than those expected

Us/Us Te/Ty

(SR

10log | T /Ty|
-l— (=3 P

-2

S0 0 20 30 4o S0 10 20 30 40 at frequencies lower than the cutoff frequency, but may im-
@ Frequency (Hz) ® Frequency (Hz) prove at higher frequencies. The cutoff frequency for the
3 il 10 ; lor ‘ microphones used is no higher than 40 Hz. So long as the
2p ' : energy density sensor is used to measure fields with fre-

quency content above 40 Hz, the acoustical estimates should
be more nearly accurate than those predicted by the simula-
tions.

=

les/eq]

10log
1

S0 H0 20 30 400 T 0 0 00 400 VIll. SUMMARY
©) Frequency (Hz) (d) Frequency (Hz)
Two configurations of a vector-field sensor were studied
FIG. 16. Difference between two-point sensor measurements and sphericm this paper with regard to measurement error. The estimates

sensor measurements(@ potential energy densityb) kinetic energy den- . . . . .
sity, (c) total energy density, ant) intensity. Sensors located @.32,  Of potential, kinetic, and total energy density as well as in-

0.62, 0.64. tensity were investigated. The spherical sensor’s errors are

221  J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000 Parkins et al.: Energy density sensor 221



similar in magnitude to the two-point sensor’s, yet had two Conference on Smart Structures and Materid893, Vol. 1917, pp. 612—

beneficial features. The spherical sensor provides a conve-622.
3X. Pan, T. J. Sutton, and S. J. Elliott, “Active control of sound transmis-

nient way of mounting and locating the sensor microphones, ”, .. . -

d the diffraction effects of a spherical Sensor cause anS|on through a double-leaf partition by volume velocity cancellation,” J.
an ( : - Sp : Acoust. Soc. Am105, 2828—28351998.
increase in the effective separation of the microphones. Thuss_ j. Elliot, P. A. Nelson, I. M. Stothers, and C. C. Boucher, “In-flight
a spherical sensor can be made smaller by a factémdfile experiments on the active control of propeller-induced cabin noise,” J.
maintaining the same accuracy as a two-point sensor. Sound Vib.140 219-238(1990.

. . 5 i o
It was shown that the spherlcal sensor generally im- S D._ Sommerfeldt”and P. J. Nashlf,_ Energy based control of the sound
field in enclosures,”Second International Congress on Recent Develop-

proves the_ accuracy of the aCOUSt'Ca_l measu_r_ements when th@nents in Air and Structure-Borne Sound and Vibratibtarch, 1992, pp.
sensor microphones are matched in sensitivity and phase3s1-36s.

When the microphones are mismatched, however, the effect®P. J. Nashif, “An energy-density-based control strategy for minimizing
of the microphone mismatch dominate the errors, and therethe sound field in enclosures,” M.S. thesis, Pennsylvania State University,

. L . . University Park, PA, 1992.
IS no Ionger a SImelcam Improvement in accuracy due t07S. D. Sommerfeldt and J. W. Parkins, “An evaluation of active noise

diffraCtion_ effects around the sphere. It was %lso_ shown that attenuation in rectangular enclosure$toc. Inter-Noise 94pp. 1351—
a vector-field sensor could be constructed with inexpensive 1356(1994.
electret microphones, where the accuracy of the total energ§s. D. Sommerfeldt, J. W. Parkins, and Y. C. Park, “Global active noise

density error could be kept withirc1.75 dB for two mea- control in rectangular enclosures,Proc. ACTIVE 95 pp. 477-488
. ) (1995.
surements in the 130f <400-Hz frequency range. The er- 9J. W. Parkins, S. D. Sommerfeldt, and J. Tichy, “Narrowband and broad-

rors seen in the experimental measurements showed the samgand active control in an enclosure using the acoustic energy density,” J.
trends as those predicted by theory and simulation. Acoust. Soc. Am108 192-203(2000.
10k, J. Fahy Sound IntensityE. & F.N. Spon, London, 1995pp. 91-97.
11|, Wolff and F. Massa, “Use of pressure gradient microphones for acous-
ACKNOWLEDGMENTS : '

tical measurements,” J. Acoust. Soc. A#).217-234(1933.

The authors would like to thank the Applied Research™*R. K. Cook and P. A. Schade, “New method for measurement of the total

Laboratory at Penn State University and NASA Langley for energy density of sound wavesProc. Inter-Noise 74pp. 101-1080Oct.
1974

fundlng this research. 3G. W. Elko, “An acoustic vector-field probe with calculable obstacle
bias,” Proc. Noise-Con 91pp. 525-532July 1991.
1A, E. Schwenk, S. D. Sommerfeldt, and S. I. Hayek, “Adaptive control of **F. J. Fahy, “Measurement of the acoustic intensity using the cross-
structural intensity associated with bending waves in a beam,” J. Acoust. spectra-density of two microphone sensors,” J. Acoust. Soc. B2.
Soc. Am.96, 2826—-28351991). 1057-10591977).
2S. D. Sommerfeldt and B. L. Scott, “Wavenumber sensors for active'®P. M. Morse and K. U. IngardTheoretical AcousticéPrinceton Univer-
control of acoustic radiation,” ifProceedings of the 1993 North American  sity Press Reprint 1986, McGraw-Hill, New York, 196®p. 418—421.

222 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000 Parkins et al.: Energy density sensor 222



