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Estimating acoustic radiation from a Bernoulli–Euler beam
using shaped polyvinylidene flouride film
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This paper examines numerically the use of arrayed shaped polyvinylidene fluoride film sensors to
obtain an estimate of the far-field radiated power from a clamped-clamped Bernoulli–Euler beam
excited by a sinusoidal point force. Distributed sensors are designed that are sensitive to the radiated
power. Fourier analysis of point and distributed sensor outputs is used to estimate the beam’s
radiated power. The numerical results of the estimated power obtained from the point and
distributed sensors are compared to those predicted by the theoretical model and the performance of
the two sensor types is assessed. The results show that the shaped sensors provide a reasonable
estimate of the strain transforms over the region of interest, when compared to the exact theoretical
predictions, for the first five beam resonance frequencies and for frequencies located approximately
midway between resonance frequencies. The distributed sensors also give consistently better
predictions of the strain transforms for all frequencies considered when compared to the point sensor
results. The power predictions using shaped sensors range from21 to 3 dB relative to the exact
theoretical results for most of the frequencies analyzed. This contrasts to the 36–68 dB range of
relative power estimates using point sensors. ©1997 Acoustical Society of America.
@S0001-4966~97!02606-4#

PACS numbers: 43.40.Rj, 43.38.Fx@CBB#
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INTRODUCTION

A number of methods exist to obtain the acoustic rad
tion from a vibrating structure. Examples include an analy
cal model of the structure to predict radiated power, mic
phones to perform far-field or intensity measurements,
accelerometers to obtain the structure’s vibrational respo
A known model assumption has the benefit of not requir
additional financial, weight, or space costs, but normally c
not model the structure completely and lacks the ability
adapt to changes in the system. Using transducers to co
real-time data allows the prediction of radiated power ev
when system parameters change. If transducers are use
physical quantity to be measured and the location of
sensors are important considerations.

The radiation from a structure can be determined
placing transducers away from the structure, as is the c
when using microphones to record the pressure levels in
surrounding fluid. Unattached sensors have the benefi
having little or no effect on the behavior of the system un
consideration and measure only what is radiated when im
mented properly. However, locating transducers off
structure is often not suitable due to environmental c
straints. Mounting sensors directly on the structure, for
stance by using accelerometers, can solve this problem
addition, this type of sensor is not influenced by second
pathways and might be better for implementing active c
trol of the structure. Since the desire is to determine
radiated power, transducers that are sensitive to radia
not simply vibration, are required. One possibility f
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achieving this is to use distributed sensors mounted to
structure.

Using distributed sensors allows the fabrication of se
sors that are sensitive to specific vibrational characteristic
the structure. Work done by Burke on a pinned beam ill
trates the use of shaping polyvinylidene fluoride~PVDF!
film, a piezoelectric material, in terms of singularity fun
tions to design a sensor that is sensitive to the beam’s ve
ity or moment at a specific location.1 Burke demonstrated
how a sensor with a given width at one end of the beam
decreases linearly to zero at the other end is sensitive to
beam’s moment at the tip with the nonzero film width. Bur
has also extended this work to two-dimensional system2

Weighting functions that produce sensors that are sens
to the modal vibration of a structure were demonstrated
Lee and Moon.3 Other shape functions and their benefits a
discussed in Refs. 4–6. These works are significant in
they discuss the use of shape functions and windows
achieve frequency or wave number roll-off with distribute
sensors.

Discrete sensors can also be used to obtain wave num
information. Maillard and Fuller used an array of accelero
eters and digital signal processing to achieve the des
wave-number filtering.7 This is accomplished by passing th
accelerometer information through an array of finite impu
response filters that process the data to provide informa
on specific wave-number components. The wave-number
tering is achieved through software, as opposed to distribu
sensors.

This paper presents results of a numerical investiga
using an array of shaped PVDF sensors to act as low-p
34756)/3475/11/$10.00 © 1997 Acoustical Society of America
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 Redistr
filters of the spatial strain transform. An analytical model
a clamped-clamped Bernoulli–Euler beam is presented
obtain the beam’s strain response, which is then used to
tain the response of point and distributed sensors. The ch
of the distributed sensor shape is also investigated. Fin
the radiated power estimates using point and distributed
sors are compared to those predicted by theory.

I. ACOUSTIC RADIATION FROM STRUCTURES

The one-sided far-field acoustic power per unit wid
radiated from a beam undergoing sinusoidal vibration can
expressed as

P5
vr f

4p E
2kf

kf uV~kx!u2

Akf22kx
2
dkx , ~1!

wherev is the angular frequency,r f is the fluid density,
V(kx) is the spatial Fourier transform of the beam veloci
kx is the beam wave number, andkf is the total fluid wave
number.8 Equation ~1! shows that only the wave numbe
components with magnitude less than or equal tokf , which
are referred to as supersonic wave numbers, contribute to
far-field sound radiation. Therefore, if a suitable veloc
wave-number spectrum is obtained, an estimate of the r
ated power from the structure can be made using Eq.~1!.
Since the strain in the beam is related to the displacem
and hence the velocity, the strain wave-number transfo
can also be used to estimate the radiated power of the b

A. System model

The system studied is a Bernoulli–Euler damped be
of lengthL with clamped ends~see Fig. 1!. The equation of
motion for this system can be expressed as

E* I
]4j~x,t !

]x4
1m

]2j~x,t !

]t2
5F0d~x2x0!e

jvt,
~2!

E*5E~11 jh!, I5bh3/12,

where j is the displacement in they direction, E is the
Young’s modulus,I is the second moment of the cros
sectional area for a rectangular cross section,m is the mass
per unit length of the beam,F0 is the magnitude of the forc
ing function,d(x) is the Dirac delta function,h is the damp-
ing loss factor,b is the width of the beam, andh is the beam

FIG. 1. Schematic of beam geometry for the system.
3476 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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thickness. The specific beam values used in the analy
model are presented in Table I.

B. Natural frequencies

The transcendental equation for the system, obtained
setting the forcing function to zero in Eq.~2! and applying
the appropriate boundary conditions, is

cosh~kbL !cos~kbL !51,
~3!

kb5S rv2

E* k2D 1/4, k5
h

A12
,

wherekb is the beam bending wave numberr is the mass
density of the beam, andk is the radius of gyration for a
rectangular section.9 To obtain the undamped natural fre
quencies, the damping loss factor was set to zero in the t
scendental equation. The first five roots forkbL and their
corresponding frequencies are shown in Table II.

C. Forced solution

The equation of motion can also be solved to obtain
expression for the beam displacement response. Po
nylidene fluoride~PVDF! generates a voltage signal that
proportional to the strain. Therefore, an analytical express
for strain is desired. The strain,e, can be obtained from the
displacement using the relationship

e~x,t !52y
]2j~x,t !

]x2
5 H e1~x,t !, x5@0,x1#,

e2~x,t !, x5@x1 ,L#,

e1~x,t !52ykb
2$A1@cosh~kbx!1cos~kbx!#

1B1@sinh~kbx!1sin~kbx!#%ejvt, ~4!

e2~x,t !52ykb
2$A2 cosh@kb~x2x1!#

1B2 sinh@kb~x2x1!#2C2 cos@kb~x2x1!#

2D2 sin@kb~x2x1!#%e
jvt.

Here,y is the distance from the neutral axis; the subscript

TABLE I. Beam parameters used in the theoretical model.

Parameter Symbol Value

Length L 0.914 m
Width w 0.0508 m
Height h 0.006 35 m
Young’s modulus E 71 GPa
Mass density r 2700 kg/m3

Damping loss factor h 0.05

TABLE II. Roots and frequencies of beam characteristic equation.

Mode kbL Frequency~Hz!

1 4.73 40.07
2 7.85 110.45
3 11.00 216.52
4 14.14 357.92
5 17.28 534.67
3476L. Scott and S. D. Sommerfeldt: Estimating acoustic radiation
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and 2 refer to the beam sections before and after the ex
tion point, respectively;x50 refers to the left-hand side o
each section; andx15x0 and x25L2x0 refer to the right-
hand side of sections one and two, respectively. The s
scripted letters in Eqs.~4! are constants defined as
an
k
o

t
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A15
F

E* Ikb
3V8

, B15V3A1 , A25V4A1 ,

~5!
B25V7A1 , C25V5A1 , D25V6A1 ,

and theVi terms are constants given by
metric
V15
~sh11si1!~sh2 co22ch2 si2!2~ch12co1!~sh2 si22ch2 co221!

2~12ch2 co2!
,

V25
~ch12co1!~sh2 co22ch2 si2!2~sh12si1!~sh2 si22ch2 co221!

2~12ch2 co2!
,

~6!

V35
V12ch1
sh12V2

, V45V11V2V3 , V55ch12co11~sh12si1!V32V4 ,

V65
V41~sh2 si22ch2 co2!V5

sh2 co22ch2 si2
, V752

V4 ch21V5 co21V6 si2
sh2

, V852sh11si12~ch11co1!V32V61V7 .

For compactness, Eqs.~6! and subsequent equations use the following notation to express frequently occurring trigono
and hyperbolic constants:

sii5sin~kbxi !, coi5cos~kbxi !, shi5sinh~kbxi !, chi5cosh~kbxi !, ~7!

where the index,i , can take the value 1 or 2. The spatial Fourier transform of the strain,E(kx ,t), is given by

E~kx ,t !5E
0

L

e~x,t !e2 jkxx dx52ykb
2H A1

kb
21kx

2 @~kb sh11 jkx ch1!e
2 jkxx12 jkx#2

A1

kb
22kx

2 @~2kb si11 jkx co1!e
2 jkxx12 jkx#

1
B1

kb
21kx

2 @~kb ch11 jkx sh1!e
2 jkxx12kb#2

B1

kb
22kx

2 @~kb co11 jkx si1!e
2 jkxx12kb#

1
A2

kb
21kx

2 @~kb sh21 jkx ch2!e
2 jkxL2 jkxe

2 jkxx1#1
B2

kb
21kx

2 @~kb ch21 jkx sh2!e
2 jkxL

2kbe
2 jkxx1#2

C2

kb
22kx

2 @~kb si22 jkx co2!e
2 jkxL1 jkxe

2 jkxx1#

2
D2

kb
22kx

2 @~kb co21 jkx si2!e
2 jkxL1kbe

2 jkxx1#J ejvt. ~8!
his

sti-
ors
sed
the
uist
ur.
A typical strain response and strain transform spectrum
shown in Fig. 2 for a unit force located atx050.64 m.

II. POWER IN TERMS OF THE STRAIN TRANSFORM

Given the strain transform, it is desirable to obtain
expression for radiated power in terms of this quantity. Ma
ing use of the relationship between the Fourier transform
a function,F(kx), and the Fourier transform of thenth de-
rivative of this function,f (n)(x),10 namely

F $ f ~n!~x!%5~ jkx!
nF~kx!, ~9!

the displacement and strain transforms are related by
equation

E~kx!5ykx
2D~kx!. ~10!
is

-
f

he

Using Eq. ~10! and assumingejvt time dependence, the
power can be written in terms of the strain transform. T
equation is

P5
v3r f

4py2 E2kf

kf uE~kx!u2

kx
4Akf22kx

2
dkx . ~11!

III. POINT SENSORS VERSUS DISTRIBUTED
SENSORS

Individual strain sensors must be used to obtain an e
mate of the beam wave-number spectrum. If point sens
are used, a sufficiently large number of sensors must be u
to resolve the highest wave-number components of
wave-number spectrum. This number is based on the Nyq
criterion and if it is not met, then aliasing problems occ
3477L. Scott and S. D. Sommerfeldt: Estimating acoustic radiation
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The Nyquist criterion specifies that a minimum of two se
sors per wavelength must be used for the shortest wavele
that exists.

The number of sensors required to obtain a wa
number spectrum estimate without aliasing problems can
reduced by the use of distributed sensors. Distributed sen
can be fabricated to reduce the sensitivity of the sensor
higher wave-number components. In this way, the aliasin

FIG. 2. Theoretical~a! strain and~b! Fourier transform of strain for reso-
nance 3.
3478 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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reduced and the number of sensors used can potentiall
reduced.

A distributed strain sensor placed on the beam will o
put an electric signal proportional to the integrated str
over the area of the sensor. In equation form this proport
can be written as

ed~xs ,t !5E
xs2a

xs1b

e~x,t !s~x!dx, ~12!

whereed is the distributed strain result;xs is the center po-
sition of the sensor,xs2a andxs1b correspond to the mini-
mum and maximum locations of the patch, respectively, a
s(x) is an arbitrary shape function. The form of the sha
function used in this research is discussed in the next sec

IV. THE SHAPE FUNCTION

A distributed strain sensor effectively integrates t
strain over the sensor area and a shape function can b
troduced to vary the width of the sensor. This shape funct
can be chosen to provide spatial filtering. For this paper
shape function was chosen to provide low-pass filtering
the wave-number domain and is defined as
FIG. 3. Wave-number response of shape function. (kcl p) values shown are ——— 3, –– 6, and –•– 30.
3478L. Scott and S. D. Sommerfeldt: Estimating acoustic radiation
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s~x!5h~x2xs!sinc@kc~x2xs!#,

h~x!5H 0.5410.46 cosS 2p
x

l p
D , 2a<x<b,

0, x,2a, x.b,
~13!

sinc~x!5
sin~x!

x
,

whereh(x) defines a Hamming window,11 kc is the positive
cutoff wave number, andl p is the full sensor length. Note
that l p is the Hamming window length determined to provi
the desired wave-number filter characteristics and is not n
essarily equal toa1b. For example, ifs(x,x,0) is not part
of the structure ands(x,x>0) is part of the structure, the
a50 andb5 l p/2. The corresponding Fourier transform
the shape function is

S~kx!5E
2a

b

s~x!e2 jkxx dx. ~14!

The sinc function provides the low-pass filter charact
istics for the wave-number spectrum. A nontruncated s
function would provide perfect low-pass wave-number filt
ing of the signal, while a finite function length causes t
resulting signal to be nonzero for the domainukxu.kc . The
Hamming window was chosen to provide a smooth roll-
of the signal to minimize leakage when the discrete Fou
transform is used.

A closed-form solution for the integral of Eq.~14! is not
possible. However, by making use of the convolution pro

FIG. 4. Wave-number response of shape function forl p50.6 m andkc
56 m21. The solid vertical lines indicate the Nyquist wave numbers.

TABLE III. Location of point and patch sensors on the beam.

Patch number xs2a (m) xs (m) xs1b (m)

1 0 20.114 0.186
2 0 0.114 0.414
3 0.043 0.343 0.643
4 0.271 0.571 0.871
5 0.500 0.800 0.914
6 0.728 1.028 0.914
3479 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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erties of the Fourier transform, the perfect low-pass prope
of the sinc function and the finite window lengthS(kx) can
be written in terms of the Fourier transform of the Hammi
window. The resulting expression is given by

S~kx!5
e2 jkcxskx

kc
E
kx2kc

kx1kc
ej ~kc21!xsbH~b!db, ~15!

whereH(kx) is the Fourier transform of the Hamming win
dow. For the special case ofxs50, Eq. ~15! reduces to

S~kx!5
1

kc
E
kx2kc

kx1kc
H~b!db. ~16!

Figure 3 plots the functionS(kx) in Eq. ~16! for various
values ofkcl p anda5b5 l p/2.

V. NUMERICAL MODEL AND SIMULATIONS

The desire is to design an array of distributed sens
that can be used to estimate a beam’s radiated power ov
given frequency range. Since the array is intended to be u
over a range of frequencies, the tuning of the system t
specific frequency or set of frequencies is not an accept
solution. The three design parameters considered are
number of sensors, the full patch length, and the cutoff w
number.

A. Description of model and parameters

The beam system is identical to that outlined in Sec
The amplitude of the forcing function is set to unity and t
forcing location is 0.64 m~0.7 L! for all runs. The frequency

FIG. 5. Schematic showing patch and point sensor locations on the b
Squares indicate point sensors.

FIG. 6. Numerical frequency response for patch 3.~a! Magnitude and~b!
phase.
3479L. Scott and S. D. Sommerfeldt: Estimating acoustic radiation
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FIG. 7. Fourier transform of strain response for resonance 1~40.07 Hz!. Legend: ——— theoretical response, –– patch response, –•– point response,
and u acoustic wave number.
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of the forcing function changes for the various tests carr
out. To determine the number of sensors required, one m
first calculate the center to center sensor spacingDx, which
is dependent upon the highest fluid wave number to be
cluded in the analysis. The application of interest in t
paper is active control of radiation from structures, and
thus concerned primarily with the low-frequency behavior
the beam. Therefore, analysis will be limited to radiation in
air for frequencies only up to the fifth beam resonance
quency.

Using a fluid wave speed of 343 m/s and a value of 5
Hz for the fifth resonance frequency, the highest wave nu
ber of interest is 9.8 m21. The maximum sensor spacing a
lowed to sufficiently sample up to this wave number, as
forth by the Nyquist criterion, is 0.32 m. Using this sens
spacing and requiring that the first and last sensors wh
center positions,xs , are located on the beam be plac
Dx/2 m from the beam ends, the minimum number of s
sors required is three. A margin of safety is added by sp
fying that there be at least four sensors with center positi
on the beam. The resulting sensor spacing is 0.23 m, w
can resolve wave numbers up to 13.75 m21.

The next parameters to be calculated are the patch le
and cutoff wave number, which define the shape functi
3480 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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These two parameters are chosen to attenuate the w
number components above the highest wave number res
able as calculated above. Ideally, the sensors would pro
very large attenuation above the design cutoff wave num
such as that provided by the (kcl p)530 curve in Fig. 3.
However, if a cutoff wave number of 9.8 m21 is chosen, the
corresponding patch length of 3.06 m becomes excessi
large for the beam. Alternatively, if a more reasonable pa
length of 0.5 m is chosen, then the corresponding cu
wave number of 60 m21 becomes excessively large for th
sensor spacing chosen.

A compromise between the patch length and cut
wave number must be made. A patch length of 0.6 m an
cutoff wave number of 6 m21 provides a reasonable compro
mise. This combination of parameters provides attenua
of approximately 6 dB at 9.8 m21, approximately 11 dB at
13.75 m21, and 20 dB or more for wave numbers abo
18 m21 ~see Fig. 4!. Although these attenuation levels are n
as high as one might desire, the length and cutoff wa
number values chosen provide sufficient attenuation
higher wave numbers to obtain reasonable estimates of
spectrum over the frequency and wave-number range o
terest.

To estimate the radiated power, the frequency dom
3480L. Scott and S. D. Sommerfeldt: Estimating acoustic radiation
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FIG. 8. Fourier transform of strain response for resonance 3~216.52 Hz!. Legend: ——— theoretical response, –– patch response, –•– point response,
and u acoustic wave number.
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response of each patch is obtained from the time-dom
signal using a temporal Fourier transform. A spatial discr
Fourier transform~DFT! of the array of frequency domai
signals then provides an estimate of the wave-number s
trum. Given the excitation frequency, the fluid wave numb
can be determined. This fluid wave number and the wa
number spectrum can then be used to estimate the rad
power by implementing Eq.~11!.

The full patch length of 0.6 m means that there are
full or partial patches on the beam. Table III provides t
center and end-point locations for each patch and Fig
shows a schematic of the patch locations on the beam.

For comparison purposes, point strain sensors on
beam are also modeled. Six equally spaced point sen
were placed along the length of the beam. The location
these sensors on the beam are 0, 0.183, 0.366, 0.548, 0
and 0.914 m~see Fig. 5!. Note that no consideration wa
given to the optimal placement of the point sensors.

B. Numerical results

Two types of numerical tests were carried out. The fi
is a frequency response for each patch. This was acc
plished by sweeping the driving frequency of the force o
3481 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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the desired frequency range and recording the response
of each patch. The frequency response of patch 3 is show
Fig. 6.

The second type of test is a spatial DFT of the s
patches at a given frequency, which corresponds to the s
wave-number transform. First the model was driven at 40
Hz, which corresponds to the first beam resonance
quency, and the patch levels recorded. A DFT of the d
was then taken to obtain a strain transform spectrum. T
procedure was repeated for the frequencies 110.45, 216
357.92, and 534.67 Hz, which correspond to the next f
resonance frequencies of the beam. In addition to the p
strain transforms, the theoretical and point strain transfo
were also calculated for these frequencies. Sample plot
these results are shown in Figs. 7–9. Next, the excita
frequency was set to 75, 160, 300, and 450 Hz, which
frequencies approximately midway between the resona
frequencies, and again a DFT of the strain results was ca
lated. Samples of these results are shown in Figs. 10 and

Two items must be noted concerning these plots. Fi
to offset the attenuation of the strain field due to the sh
function, the shape function was normalized so that the in
gral of the shape function for a full patch was unity,12 i.e.,
3481L. Scott and S. D. Sommerfeldt: Estimating acoustic radiation
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FIG. 9. Fourier transform of strain response for resonance 4~357.92 Hz!. Legend: ——— theoretical response, –– patch response, –•– point response,
and u acoustic wave number.
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20.3

0.3

s~x!dx51. ~17!

The application of this normalization introduces a shift
10.5 dB to the filtered strain transforms. Second, to acco
for aliasing associated with the point sensors, the point st
transforms were shifted by25.4 dB. This number represen
the average overestimation of the point sensors at the
four resonance and first two off-resonance frequencies w
compared to the maximum level of the theoretical str
transforms. The use of this correction for the point spec
assumes that the maximum level of the point spectr
should match the maximum level of the theoretical spectr
if the peak of the theoretical spectrum lies below the po
Nyquist wave number.

The final computations involve calculating the integ
of uE(kx)u2 over the range of supersonic wave numbers a
estimating the radiated power from the beam using the st
transform results. Specific strain integrals were evaluate
the first five resonance frequencies and four frequencies
tween the resonance frequencies. Power estimates wer
tained by performing a frequency sweep and implemen
Eq. ~11!. The integral calculations use Simpson’s 1/3 rul13

to approximate the strain transform integral and the integ
in Eq. ~11!. To circumvent problems associated with t
3482 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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poles at2kf , 0, andkf of the radiated power equation, th
range of integration used was20.95kf<kx<20.05kf and
0.05kf<kx<0.95kf . Each wave-number range was then d
vided into 50 equally spaced intervals and the theoreti
patch, and point transforms calculated. Shift factors were
plied to the point and distributed strain transforms, as
plained in the preceding paragraph. The results of the p
and patch strain integral are presented in Table IV. T
power predictions are presented in Fig. 12.

C. Discussion

The frequency response for patch 3~Fig. 6! clearly
shows the expected first five resonances of the beam.

The strain transforms~Figs. 7–11! show that the patch
results follow the theoretical values reasonably well
structural wave numbers below the fluid wave number, wh
the point results show significant differences from the th
retical results, not only in level, but also in form. Examinin
the predicted response at the first resonance frequency~Fig.
7! shows a number of key elements. The theoretical val
go to zero at low wave numbers. This is an expected res
given the relationship between the strain and displacem
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FIG. 10. Fourier transform of strain response for 75 Hz. Legend: ——— theoretical response, –– patch response, –•– point response, andu acoustic wave
number.
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s to
the-
spatial transforms@see Eq.~10!# and is expected for all fre
quencies. The patch results show excellent agreement
the theoretical results. The patch result tends towards ze
low wave numbers with a level of approximately2170 dB
atkx50. Conversely, the point results differ sharply from t
theoretical values. The point result has a local maxim
level near zero wave number and does not follow the sh
of the analytical solution below the fluid wave number. Th
high level at low wave number is due to aliasing proble
associated with the point sensors.

Given the sensor spacing and using the Nyquist cr
rion, the highest wave numbers that the point and patch
rays can resolve are 17.19 and 13.75 m21, respectively. As
can be seen from the theoretical curve, the strain transf
levels are high above thesekmax values. Unlike the patches
which provide wave-number filtering to reduce the level
the high wave-number components, the point sensors
vide no filtering and all of the wave-number compone
abovekmax are aliased back to the lower spectral lines. A
other aspect that is apparent in Fig. 7 is the wrapping ch
acteristic associated with the DFT. Both the point and pa
results show a symmetry about their respectivekmax values.

Looking at the results of the third resonance~Fig. 8!,
one sees that the patch array has a similar shape to the
3483 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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oretical curve. However, the locations and levels of th
maxima do not correspond. The patch response over
mates the theoretical value by approximately 6 dB for po
tive wave numbers and underestimates the theoretical l
by a similar amount for negative wave numbers. A deviat
at low wave number is noticeable on the patch curve. Ho
ever, this deviation occurs in the vicinity of2180 dB and
does not have a significant effect on the overall shape of
curve. The point curve does not follow the shape of the t
oretical curve and again has a high response at low w
numbers.

The response at the fourth resonance~Fig. 9! also shows
a marked difference between the theory and patch levels.
levels of the patch response are higher than the theore
values from a wave number of approximately 0.6–5 m21 and
lower than the theoretical values from 5 m21 up to the maxi-
mum wave number of interest, which is the fluid wave nu
ber at 6.56 m21. The patch level falls below the theoretic
level for most of the negative wave-number range of intere
The point levels are again significantly different from th
theoretical values, with the maximums occurring well befo
the theoretical values.

The off-resonance response plots show similar result
the resonance plots. That is, the patch results follow the
3483L. Scott and S. D. Sommerfeldt: Estimating acoustic radiation
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FIG. 11. Fourier transform of strain response for 300 Hz. Legend: ——— theoretical response, –– patch response, –•– point response, andu acoustic wave
number.
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oretical curve below the fluid wave number while the po
response is affected by aliasing. The aliasing problem for
point array seems to be apparent at each driving freque
and could be due to the mixture of multiple modes of t
beam. As before, the low wave-number deviations in
patch response become more pronounced at higher freq
cies, but are still well below the maximum levels.

The values for the integrals of the squared magnitude
the strain transform in Table IV show that the patch resu

TABLE IV. Integral of magnitude squared strain transform for patch a
point arrays.

Frequency~Hz!

* uE(kx)u2 dkx ~dB re: theory!

Patch sensors Point sensors

40.07 20.1 30.9
110.45 20.4 26.5
216.52 20.4 27.6
357.92 21.6 20.9
534.67 3.0 19.5
75 20.1 20.2
160 20.4 20.6
300 21.0 15.8
450 0.7 19.5
3484 J. Acoust. Soc. Am., Vol. 101, No. 6, June 1997 B.
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range from21.6 to 3.0 dB when compared to the theoretic
results. These deviations from the theoretical results, wh
are the integral estimates for resonances four and five,
not surprising considering the differences in the strain tra
forms predicted by theory and the patch array. Predicti
for the other frequencies studied are all within 1 dB of t
theoretical result. Unlike the patch results, the integral us
the point sensors overestimated the theoretical values
15.8–30.9 dB. These high overestimation predictions
caused by aliasing problems associated with the point ar

Since the ultimate goal of this research is to determin
shaped sensors can provide a means for obtaining an ac
able estimation of the radiated power, the power results p
sented in Fig. 12 provide an excellent criterion for assess
the performance of the point and patch sensors. As with
results for the integrals of the squared magnitude, the po
calculations show the power calculations using the pa
sensors are significantly better than the power results u
the point sensors, when compared to the theoretical val
Both the point and patch results show a marked increas
predicted radiated power at low frequencies. However
only the frequency range between 20 and 600 Hz is con
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ered, the spread for the patch sensor estimates is21 to 3 dB,
while the point sensor estimates have a spread of 36–68

VI. CONCLUSIONS

This paper presents a technique to obtain the far-fi
radiated power from a one-dimensional structure using
array of shaped polyvinylidene fluoride sensors. The dist
uted sensors are shaped to act as low-pass wave-numb
ters, since the radiated power depends only on the struc
wave-number components whose magnitudes are less th
equal to the fluid wave number.

The results show that the shaped sensors provide a b
approximation to the theoretical strain transform than do
point sensors. This is verified by the form of the function
presented by plotting the individual strain transforms, and
integrating the squared magnitude of the strain transfo
and comparing the results to the theoretical values. Ove
these results indicate good agreement with the analytical
dictions. The errors for the integral of the squared magnit
of the strain transforms are all 3 dB or less when using
shaped sensors, compared to at least 15.8 dB when usin
point sensors.

Power estimates using the strain transform results s
that patch estimations are again considerably better than
point estimations when compared to the theoretical pre
tions. The power results indicate that the use of shaped

FIG. 12. Estimated power of patch and point arrays. Legend: –– p
response and –•– point response.
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sors, as described in this paper, can provide a better esti
of a structure’s radiated power than the use of discrete p
sensors. The estimated powers using the shaped senso
all within 3 dB of the actual power for most of the frequen
range, while those using discrete point sensors overestim
the level by at least 36 dB for the same frequency ran
These results indicate the ability for shaped sensors to
vide significantly improved power estimates for applicatio
that estimate radiated power from structural measureme
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