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This paper examines numerically the use of arrayed shaped polyvinylidene fluoride film sensors to
obtain an estimate of the far-field radiated power from a clamped-clamped Bernoulli—-Euler beam
excited by a sinusoidal point force. Distributed sensors are designed that are sensitive to the radiated
power. Fourier analysis of point and distributed sensor outputs is used to estimate the beam’s
radiated power. The numerical results of the estimated power obtained from the point and
distributed sensors are compared to those predicted by the theoretical model and the performance of
the two sensor types is assessed. The results show that the shaped sensors provide a reasonable
estimate of the strain transforms over the region of interest, when compared to the exact theoretical
predictions, for the first five beam resonance frequencies and for frequencies located approximately
midway between resonance frequencies. The distributed sensors also give consistently better
predictions of the strain transforms for all frequencies considered when compared to the point sensor
results. The power predictions using shaped sensors range-fibrto 3 dB relative to the exact
theoretical results for most of the frequencies analyzed. This contrasts to the 36—68 dB range of
relative power estimates using point sensors. 1@97 Acoustical Society of America.
[S0001-496607)02606-4

PACS numbers: 43.40.Rj, 43.38.F€BB]

INTRODUCTION achieving this is to use distributed sensors mounted to the
structure.

A number of methods exist to obtain the acoustic radia-  Using distributed sensors allows the fabrication of sen-
tion from a vibrating structure. Examples include an analyti-sors that are sensitive to specific vibrational characteristics of
cal model of the structure to predict radiated power, microthe structure. Work done by Burke on a pinned beam illus-
phones to perform far-field or intensity measurements, otrates the use of shaping polyvinylidene fluori@VDF)
accelerometers to obtain the structure’s vibrational responsélm, a piezoelectric material, in terms of singularity func-
A known model assumption has the benefit of not requiringions to design a sensor that is sensitive to the beam’s veloc-
additional financial, weight, or space costs, but normally canity or moment at a specific locatidnBurke demonstrated
not model the structure completely and lacks the ability to"OW @ sensor with a given width at one end of the beam that
adapt to changes in the system. Using transducers to colleggcreases linearly to zero at the other end is sensitive to the
real-time data allows the prediction of radiated power everP&M's moment at the tip with the nonzero film width. Burke
when system parameters change. If transducers are used, {f&S @IS0 extended this work to two-dimensional systems.

physical quantity to be measured and the location of théNeighting functions that produce sensors that are sensitive
sensors are important considerations to the modal vibration of a structure were demonstrated by

Lee and Moor?. Other shape functions and their benefits are

The radiation from a structure can be determined by, ) L .
lacing transducers away from the structure. as is the ca discussed in Refs. 4—6. These works are significant in that
P 9 y ' ey discuss the use of shape functions and windows to

when using m|c_rophones to record the pressure levels n th chieve frequency or wave number roll-off with distributed
surrounding fluid. Unattached sensors have the benefit

ensors.
having little or no effect on the behavior of the system under  piserete sensors can also be used to obtain wave number

consideration and measure only what is radiated when impl&xformation. Maillard and Fuller used an array of accelerom-
mented properly. However, locating transducers off thesters and digital signal processing to achieve the desired
structure is often not suitable due to environmental conyaye-number filterind. This is accomplished by passing the
straints. Mounting sensors directly on the structure, for in-accelerometer information through an array of finite impulse
stance by using accelerometers, can solve this problem. lgsponse filters that process the data to provide information
addition, this type of sensor is not influenced by secondaryn specific wave-number components. The wave-number fil-
pathways and might be better for implementing active contering is achieved through software, as opposed to distributed
trol of the structure. Since the desire is to determine th&ensors.

radiated power, transducers that are sensitive to radiation, This paper presents results of a numerical investigation
not simply vibration, are required. One possibility for using an array of shaped PVDF sensors to act as low-pass
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y TABLE |. Beam parameters used in the theoretical model.

‘ Parameter Symbol Value
|
|
» | F Length L 0.914 m
7 Width w 0.0508 m
Height h 0.006 35 m
Young’s modulus E 71 GPa
> X Mass density p 2700 kg/mi
Damping loss factor 7 0.05
| | 7
0 %o L . . . .
thickness. The specific beam values used in the analytical
FIG. 1. Schematic of beam geometry for the system. model are presented in Table I.

filters of the spatial strain transform. An analytical model of B- Natural frequencies

a clamped-clamped Bernoulli-Euler beam is presented t0  Tne transcendental equation for the system, obtained by

optain the beam’s strai'n response, which is then used to Qté‘etting the forcing function to zero in ER) and applying
tain the response of point and distributed sensors. The choigge appropriate boundary conditions, is

of the distributed sensor shape is also investigated. Finally,
the radiated power estimates using point and distributed sen- COSkpL)cosk,L)=1, 3)
sors are compared to those predicted by theory.

- pw2 1/4 B h
b™ E* KZ ) K= \/sz
wherek, is the beam bending wave numbeis the mass

The one-sided far-field acoustic power per unit widthdensity of the beam, and is the radius of gyration for a
radiated from a beam undergoing sinusoidal vibration can béectangular section.To obtain the undamped natural fre-

I. ACOUSTIC RADIATION FROM STRUCTURES

expressed as guencies, the damping loss factor was set to zero in the tran-
) scendental equation. The first five roots fgL and their
_wpr (ki V(K dk n corresponding frequencies are shown in Table II.
X 1

B E *kf \ k?_ k)2<
where o is the angular frequency; is the fluid density, C- Forced solution

V(k) is the spatial Fourier transform of the beam velocity, ~ The equation of motion can also be solved to obtain an
ky is the beam wave number, akg is the total fluid wave expression for the beam displacement response. Polyvi-
number? Equation (1) shows that only the wave number nylidene fluoride(PVDF) generates a voltage signal that is

components with magnitude less than or equatstowhich  proportional to the strain. Therefore, an analytical expression

are referred to as supersonic wave numbers, contribute to thgr strain is desired. The strail, can be obtained from the
far-field sound radiation. Therefore, if a suitable velocity displacement using the relationship

wave-number spectrum is obtained, an estimate of the radi- 5
ated power from the structure can be made using (Eg. e(x,t)=—y J g(é't) _ e, x=[0x],
Since the strain in the beam is related to the displacement, ' X €(X,t), X=[Xxq,L],
and hence the velocity, the strain wave-number transform L2
can also be used to estimate the radiated power of the beam. e1(x,1) = = yky{Agl costkpx) +codkpx)
+ B4[ sinh(kyx) + sin(k,x) ] e’ !, (4

A. System model e2(%,) =~y Ks{A cosliky(x—x1)]
The system studied is a Bernoulli—Euler damped beam

+B, si —x)]— -
of lengthL with clamped ends¢see Fig. 1 The equation of Bz sinflkp(Xx=x1) ]~ C2 cogkp(x—x1)]

motion for this system can be expressed as — D, simky(x—x;) ]} el
I*E(X, 1) FPE(X,T) ot Here,y is the distance from the neutral axis; the subscripts 1
E*I P +m 12 =Fod(x—xg)e'“",
. 3 ) TABLE Il. Roots and frequencies of beam characteristic equation.
E*=E(1+j%n), I=bh%12,

. . . o . M kL F H
where ¢ is the displacement in thg direction, E is the ode b requencyHz)
Young's modulus,l is the second moment of the cross- 1 4.73 40.07
sectional area for a rectangular cross sectioris the mass g 11-?)*3 ;ig-‘ég
per unit length of the beant; is the magnitude of the forc- 2 1414 357.92
ing function, §(x) is the Dirac delta functiony is the damp- 5 17.28 534.67

ing loss factorp is the width of the beam, artais the beam
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and 2 refer to the beam sections before and after the excita-

tion point, respectivelyx=0 refers to the left-hand side of A= e 3y B1=V3A1, Ax=V4Ag,

each section; and; =X, andx,=L—X, refer to the right- b8 (5
hand side of sections one and two, respectively. The sub- B2=V7A1,  Co=VsA;, Da=VeAy,

scripted letters in Eqg4) are constants defined as and theV; terms are constants given by

|
V.o (shy+siy)(sh, co,—chy, sip) —(chy—coy)(sh, si,—ch, co,— 1)
v 2(1-chy coy) ’
Voe (chy—coy)(shy co,—chy, sip) —(shy —siy)(sh, si,—ch, co,— 1)
2 2(1-chy coy) ’
V;—ch;
V= sh—V,’
_V4+(s}‘b si,—ch, c0,) Vs VY ch,+ Vs co,+ Vg siy
6~ shyco,—chpsi, ' 7 sh, '

For compactness, Eq&) and subsequent equations use the following notation to express frequently occurring trigonometric
and hyperbolic constants:

si=sin(kpXx;), cg=codkpX;), sh=sinhkyx;), ch=coshkyX;), (7)

where the indexi, can take the value 1 or 2. The spatial Fourier transform of the stdlg,,t), is given by

(6)

V4:V1+V2V3, V5=Ch1—C01+(Shl—Si1)V3—V4,

V8= - Shl-l-Sil— (Ch1+C01)V3_ V6+ V7 .

L ) A ) A )
E(Ky,t)= f e(x,1)e 1 dx= —yk2! s [(Ky Shyt Ky chye 00— jk, ] — =5y [(—ky Sig+ jky cope R jk,]
0 kb+ kX kb_k)(

1 ) » B, - o
Tiarie ko etk shye ooa— ]~ =iz (o cort ko siye ks g, ]

. . B .
(ko shy+ jky chple K —jk e Tha]+ 2k2 [(Ko Chy+ jky shy)e ™I
X

2
el
Ko+ ks Ko+

—jk Co T ikl 11 @ik
—kpe™! XX1]—W[(kb Si;— jKx cop)e o+ ke ]
b~ Rx

D2 ; Sy a— ikl —jkyx jot
- kﬁ—kz [(ky, cotjky sip)e™ %=+ ke  1X1] el @t (8)
X

A typical strain response and strain transform spectrum i§Jsing Eq. (10) and assuminge!“! time dependence, the

shown in Fig. 2 for a unit force located &= 0.64 m. power can be written in terms of the strain transform. This
equation is
Il. POWER IN TERMS OF THE STRAIN TRANSFORM w?’pf fkf |E(kx)|2
. : L : : =102 dk. 11
Given the strain transform, it is desirable to obtain an Amy® )k ij/k?—kf
expression for radiated power in terms of this quantity. Mak-
ing use of the relationship between the Fourier transform of
a function,F(k,), and the Fourier transform of th&h de- || POINT SENSORS VERSUS DISTRIBUTED
rivative of this function,f("(x),° namely SENSORS
T} = (jky)"F(ky), (9) Individual strain sensors must be used to obtain an esti-

he displ d . ‘ lated b hmate of the beam wave-number spectrum. If point sensors
the displacement and strain transforms are related by thg,q used, a sufficiently large number of sensors must be used

equation to resolve the highest wave-number components of the
5 wave-number spectrum. This number is based on the Nyquist
E(ky) =ykD(Ky). (100 criterion and if it is not met, then aliasing problems occur.
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x 107 . reduced and the number of sensors used can potentially be

1 T T T T T T T T
: : reduced.
; A distributed strain sensor placed on the beam will out-
put an electric signal proportional to the integrated strain
: : over the area of the sensor. In equation form this proportion
can be written as
l'5() ()Il 0I2 0I3 0I4 OTS OI6 0t7 0I8 0I9 1
x/L
(@ Xgtb
-80, J ! J i Ed(xs vt) = G(X,t)S(X)dX, (12)
LIQOE e e e [T . Xg—a
g
-; CI2OF e e T e e Ty
R LI RPN REE IERERIR AT ERRE . o . .
R 160k T e wheree, is the distributed strain resulkg is the center po-
g_lgo .............................. OO OO OOROOR SOPOTO sition of the sensor;—a andxg+b correspond to the mini-
200 . ; i 0 . mum and maximum locations of the patch, respectively, and
15 2 5 . . .
0 ’ e s(x) is an arbitrary shape function. The form of the shape
®) function used in this research is discussed in the next section.
FIG. 2. Theoreticala) strain and(b) Fourier transform of strain for reso-
nance 3.

The Nyquist criterion specifies that a minimum of two sen-Iv. THE SHAPE FUNCTION

sors per wavelength must be used for the shortest wavelength

that exists. A distributed strain sensor effectively integrates the
The number of sensors required to obtain a wavestrain over the sensor area and a shape function can be in-

number spectrum estimate without aliasing problems can b&oduced to vary the width of the sensor. This shape function

reduced by the use of distributed sensors. Distributed sensocan be chosen to provide spatial filtering. For this paper the

can be fabricated to reduce the sensitivity of the sensors tshape function was chosen to provide low-pass filtering in

higher wave-number components. In this way, the aliasing ishe wave-number domain and is defined as

0 !
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i || R R REEE’ SEERREERY Lo
(=]
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FIG. 3. Wave-number response of shape functidgl,j values shown are
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FIG. 4. Wave-number response of shape functionlfsr 0.6 m andk;
=6 m . The solid vertical lines indicate the Nyquist wave numbers.

S(X)=h(x—Xg)sind ke(X—Xs)],

X
h(x)= 0'54+O'4600€27TE)’ —asx<b, (13
0, x<—a, x>b,
sin(x
sing x)= ri)’

whereh(x) defines a Hamming windoW, k, is the positive
cutoff wave number, andi, is the full sensor length. Note
thatl, is the Hamming window length determined to provide

05
xfL

FIG. 5. Schematic showing patch and point sensor locations on the beam.
Squares indicate point sensors.

erties of the Fourier transform, the perfect low-pass property
of the sinc function and the finite window leng8tk,) can

be written in terms of the Fourier transform of the Hamming
window. The resulting expression is given by

Ky

f +
kx—ke

e7 J kCXSkX

Stk =— ok UiH(gap, (19

whereH(k,) is the Fourier transform of the Hamming win-
dow. For the special case gf=0, Eq.(15) reduces to
Ky +

J

Figure 3 plots the functior8(k,) in Eqg. (16) for various
values ofk |, anda=b=1,/2.

kC
H(B)dB.

C

(16)

X

V. NUMERICAL MODEL AND SIMULATIONS

The desire is to design an array of distributed sensors
that can be used to estimate a beam'’s radiated power over a
given frequency range. Since the array is intended to be used
over a range of frequencies, the tuning of the system to a
specific frequency or set of frequencies is not an acceptable

the desired wave-number filter characteristics and is not NeGolution. The three design parameters considered are the

essarily equal ta+b. For example, is(x,x<<0) is not part
of the structure and(x,x=0) is part of the structure, then
a=0 andb=1,/2. The corresponding Fourier transform of
the shape function is

number of sensors, the full patch length, and the cutoff wave
number.

A. Description of model and parameters

The beam system is identical to that outlined in Sec. I.

s(x)e Tk dx.
a

stk = 14

The amplitude of the forcing function is set to unity and the
forcing location is 0.64 n§0.7 L) for all runs. The frequency
The sinc function provides the low-pass filter character-
istics for the wave-number spectrum. A nontruncated sinc
function would provide perfect low-pass wave-number filter-
ing of the signal, while a finite function length causes the _ ;5
resulting signal to be nonzero for the doméig|>k.. The 2

B
Hamming window was chosen to provide a smooth roll-off ¢

]

-1004

-140

of the signal to minimize leakage when the discrete Fourie & 4 :
transform is used. : :
A closed-form solution for the integral of E€L4) is not 8% 100 o e w0 500
. . . Tequent
possible. However, by making use of the convolution prop- “ (;y
1 ! ! ! '
TABLE lIl. Location of point and patch sensors on the beam. 05k b ST IOV ool ]
=3 N N
= N M .
Patch number Xsfa(m) Xs (m) X5+b(m) % o= ................ ..............
1 0 ~0.114 0.186 & sk i ST Ny S ............... ...............
2 0 0.114 0.414 A : : : ;
3 0.043 0.343 0.643 o 100 200 30 20 500 500
4 0.271 0.571 0.871 Frequency (Hz)
5 0.500 0.800 0.914 ®)
6 0.728 1.028 0.914 FIG. 6. Numerical frequency response for patch&.Magnitude andb)
phase.
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FIG. 7. Fourier transform of strain response for resonan¢é0107 H32. Legend: theoretical response, —— patch response, peint response,

and| acoustic wave number.

of the forcing function changes for the various tests carriedrhese two parameters are chosen to attenuate the wave-
out. To determine the number of sensors required, one musiumber components above the highest wave number resolv-
first calculate the center to center sensor spadirRgwhich  able as calculated above. Ideally, the sensors would provide
is dependent upon the highest fluid wave number to be invery large attenuation above the design cutoff wave number,
cluded in the analysis. The application of interest in thissuch as that provided by thek{,)=30 curve in Fig. 3.
paper is active control of radiation from structures, and isHowever, if a cutoff wave number of 9.8 This chosen, the
thus concerned primarily with the low-frequency behavior ofcorresponding patch length of 3.06 m becomes excessively
the beam. Therefore, analysis will be limited to radiation intolarge for the beam. Alternatively, if a more reasonable patch
air for frequencies only up to the fifth beam resonance frelength of 0.5 m is chosen, then the corresponding cutoff
guency. wave number of 60 m' becomes excessively large for the
Using a fluid wave speed of 343 m/s and a value of 535%ensor spacing chosen.
Hz for the fifth resonance frequency, the highest wave num- A compromise between the patch length and cutoff
ber of interest is 9.8 mt. The maximum sensor spacing al- wave number must be made. A patch length of 0.6 m and a
lowed to sufficiently sample up to this wave number, as setutoff wave number of 6 m* provides a reasonable compro-
forth by the Nyquist criterion, is 0.32 m. Using this sensormise. This combination of parameters provides attenuation
spacing and requiring that the first and last sensors whosef approximately 6 dB at 9.8 i, approximately 11 dB at
center positionsxs, are located on the beam be placed13.75 m?, and 20 dB or more for wave numbers above
Ax/2 m from the beam ends, the minimum number of sen18 m ™! (see Fig. 4 Although these attenuation levels are not
sors required is three. A margin of safety is added by specias high as one might desire, the length and cutoff wave-
fying that there be at least four sensors with center positionaumber values chosen provide sufficient attenuation of
on the beam. The resulting sensor spacing is 0.23 m, whichigher wave numbers to obtain reasonable estimates of the
can resolve wave numbers up to 13.75m spectrum over the frequency and wave-number range of in-
The next parameters to be calculated are the patch lengtirest.
and cutoff wave number, which define the shape function. To estimate the radiated power, the frequency domain
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FIG. 8. Fourier transform of strain response for resonan¢218.52 Hz. Legend: theoretical response, —— patch response,peint response,

and| acoustic wave number.

response of each patch is obtained from the time-domaithe desired frequency range and recording the response level
signal using a temporal Fourier transform. A spatial discretef each patch. The frequency response of patch 3 is shown in
Fourier transform(DFT) of the array of frequency domain Fig. 6.

signals then provides an estimate of the wave-number spec-  The second type of test is a spatial DFT of the six
trum. Given the excitation frequency, the fluid wave numberyaiches at a given frequency, which corresponds to the strain
can be determined. This fluid wave numbgr and the WaVER ave-number transform. First the model was driven at 40.07
number spectrum can then be used to estimate the radiat

power by implementing Eq11) z, which corresponds to the first beam resonance fre-
The full patch length 01; 0_'6 m means that there are sixJUeNCy; and the patch levels recorded. A DFT of the data
full or partial patches on the beam. Table Il provides theWas then taken to obtain a strain transform spectrum. This

center and end-point locations for each patch and Fig. procedure was repeated for the frequencies 110.45, 216.52,
shows a schematic of the patch locations on the beam.  357.92, and 534.67 Hz, which correspond to the next four

For comparison purposes, point strain sensors on theesonance frequencies of the beam. In addition to the patch
beam are also modeled. Six equally spaced point sensostrain transforms, the theoretical and point strain transforms
were placed along the length of the beam. The locations ofvere also calculated for these frequencies. Sample plots of
these sensors on the beam are 0, 0.183, 0.366, 0.548, 0.73&ese results are shown in Figs. 7—-9. Next, the excitation
and 0.914 m(sge Fig. % Note that no cpnsideration was frequency was set to 75, 160, 300, and 450 Hz, which are
given to the optimal placement of the point sensors. frequencies approximately midway between the resonance

frequencies, and again a DFT of the strain results was calcu-
lated. Samples of these results are shown in Figs. 10 and 11.
B. Numerical results Two items must be noted concerning these plots. First,

Two types of numerical tests were carried out. The firsito offset the attenuation of the strain field due to the shape
is a frequency response for each patch. This was acconfnction, the shape function was normalized so that the inte-
plished by sweeping the driving frequency of the force overgral of the shape function for a full patch was urfifyi,e.,
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FIG. 9. Fourier transform of strain response for resonan¢g54.92 Hz. Legend: theoretical response, —— patch response,peint response,
and| acoustic wave number.
0.3 poles at—k;, 0, andk; of the radiated power equation, the
f_oss(x)dx= 1. (17 range of integration used was0.95<k,< —0.0%; and

0.0%;=<k,=<0.9%; . Each wave-number range was then di-
The application of this normalization introduces a shift ofvided into 50 equally spaced intervals and the theoretical,
10.5 dB to the filtered strain transforms. Second, to accoungatch, and point transforms calculated. Shift factors were ap-
for aliasing associated with the point sensors, the point straiplied to the point and distributed strain transforms, as ex-
transforms were shifted by 5.4 dB. This number represents plained in the preceding paragraph. The results of the point
the average overestimation of the point sensors at the firsind patch strain integral are presented in Table IV. The
four resonance and first two off-resonance frequencies whegower predictions are presented in Fig. 12.
compared to the maximum level of the theoretical strain
transforms. The use of this correction for the point spectra
assumes that the maximum level of the point spectrum
should match the maximum level of the theoretical spectrun& Di _
if the peak of the theoretical spectrum lies below the point™ Iscussion
Nyquist wave number. The frequency response for patch(Big. 6) clearly

The final computations involve calculating the integral shows the expected first five resonances of the beam.

of |E(k,)|? over the range of supersonic wave numbers and  The strain transformgFigs. 7—11 show that the patch
estimating the radiated power from the beam using the strairesults follow the theoretical values reasonably well for
transform results. Specific strain integrals were evaluated atructural wave numbers below the fluid wave number, while
the first five resonance frequencies and four frequencies behe point results show significant differences from the theo-
tween the resonance frequencies. Power estimates were dletical results, not only in level, but also in form. Examining
tained by performing a frequency sweep and implementinghe predicted response at the first resonance frequgtgy
Eq. (11). The integral calculations use Simpson’s 1/3 Hile 7) shows a number of key elements. The theoretical values
to approximate the strain transform integral and the integrafjo to zero at low wave numbers. This is an expected result,
in Eqg. (11). To circumvent problems associated with the given the relationship between the strain and displacement
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FIG. 10. Fourier transform of strain response for 75 Hz. Legend:
number.

theoretical response, —— patch respopsit-+esponse, arnjdacoustic wave

spatial transform$see Eq.(10)] and is expected for all fre- oretical curve. However, the locations and levels of their
guencies. The patch results show excellent agreement witlnaxima do not correspond. The patch response overesti-
the theoretical results. The patch result tends towards zero atates the theoretical value by approximately 6 dB for posi-
low wave numbers with a level of approximatelyl70 dB  tive wave numbers and underestimates the theoretical level
atk,= 0. Conversely, the point results differ sharply from the by a similar amount for negative wave numbers. A deviation
theoretical values. The point result has a local maximumat low wave number is noticeable on the patch curve. How-
level near zero wave number and does not follow the shapever, this deviation occurs in the vicinity of 180 dB and
of the analytical solution below the fluid wave number. Thisdoes not have a significant effect on the overall shape of the
high level at low wave number is due to aliasing problemscurve. The point curve does not follow the shape of the the-
associated with the point sensors. oretical curve and again has a high response at low wave

Given the sensor spacing and using the Nyquist critenumbers.
rion, the highest wave numbers that the point and patch ar- The response at the fourth resonafi€ig. 9) also shows
rays can resolve are 17.19 and 13.75'nrespectively. As a marked difference between the theory and patch levels. The
can be seen from the theoretical curve, the strain transforrievels of the patch response are higher than the theoretical
levels are high above the&g,,, values. Unlike the patches, values from a wave number of approximately 0.6—5'rand
which provide wave-number filtering to reduce the level oflower than the theoretical values from 5 up to the maxi-
the high wave-number components, the point sensors pranum wave number of interest, which is the fluid wave num-
vide no filtering and all of the wave-number componentsber at 6.56 m*. The patch level falls below the theoretical
abovek,.x are aliased back to the lower spectral lines. An-level for most of the negative wave-number range of interest.
other aspect that is apparent in Fig. 7 is the wrapping charfhe point levels are again significantly different from the
acteristic associated with the DFT. Both the point and patcltheoretical values, with the maximums occurring well before
results show a symmetry about their respeckiyg, values.  the theoretical values.

Looking at the results of the third resonan@ég. 8), The off-resonance response plots show similar results to
one sees that the patch array has a similar shape to the thige resonance plots. That is, the patch results follow the the-
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FIG. 11. Fourier transform of strain response for 300 Hz. Legend:
number.

theoretical response, —— patch respopsit-+esponse, andacoustic wave

oretical curve below the fluid wave number while the pointrange from— 1.6 to 3.0 dB when compared to the theoretical
response is affected by aliasing. The aliasing problem for theesults. These deviations from the theoretical results, which
point array seems to be apparent at each driving frequencyre the integral estimates for resonances four and five, are
and could be due to the mixture of multiple modes of thepnt surprising considering the differences in the strain trans-
beam. As before, the low wave-number deV|a_t|ons n theTorms predicted by theory and the patch array. Predictions
patch response become more pronounced at higher frequei%—r the other frequencies studied are all within 1 dB of the

cies, but are still well below the maximum levels. heoretical result. Unlike the patch results, the integral usin
The values for the integrals of the squared magnitude o% ' P ' 9 9

the strain transform in Table IV show that the patch resultdn€ POint sensors overestimated the theoretical values by
15.8-30.9 dB. These high overestimation predictions are

TABLE 1V. Integral of magnitude squared strain transform for patch and Cause.d by allasmg prOblemS aS_SOC|ated W't_h the point farr?y'
point arrays. Since the ultimate goal of this research is to determine if
shaped sensors can provide a means for obtaining an accept-
able estimation of the radiated power, the power results pre-

J|E(k,)|? dk, (dB re: theory

Frequency(Hz) Patch sensors Point sensors  sented in Fig. 12 provide an excellent criterion for assessing
40.07 —01 30.9 the performance of the point and patch sensors. As with the
110.45 -04 26.5 results for the integrals of the squared magnitude, the power
gégg; :(1)'2 ;g'g calculations show the power calculations using the patch
534.67 3.0 195 sensors are significantly better than the power results using
75 -01 20.2 the point sensors, when compared to the theoretical values.
160 —04 20.6 Both the point and patch results show a marked increase in
300 -1.0 15.8 . . . :
450 0.7 195 predicted radiated power at low frequencies. However, if

only the frequency range between 20 and 600 Hz is consid-
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120 , : , ! ! sors, as described in this paper, can provide a better estimate
§ : : § : of a structure’s radiated power than the use of discrete point
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: : § : ; all within 3 dB of the actual power for most of the frequency

! . range, while those using discrete point sensors overestimate
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2 the level by at least 36 dB for the same frequency range.
g oF : ; : : : These results indicate the ability for shaped sensors to pro-
T vide significantly improved power estimates for applications
2 ol that estimate radiated power from structural measurements.
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