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This paper examines a method to control adaptively the structural vibration intensity in a beam. An 
algorithm is developed to estimate the total, instantaneous structural intensity, using finite-difference 
techniques. In addition, algorithms based on the filtered-x least-mean-squares algorithm are 
developed to adaptively control the intensity. To investigate the effectiveness of adaptive control of 
structural intensity, a number of control actuator/error sensor configurations are used. Adaptive 
control is implemented at resonance and off-resonance frequencies, and the performance is 
evaluated by means of a separate accelerometer located in the structural far field. Experimental 
results demonstrate several trends. First, controlling the acceleration is considerably more effective 
when the error sensor is located in the far field rather than in the near field. Furthermore, controlling 
acceleration is more effective than controlling intensity, when the error sensors are in the far field. 
Conversely, when the error sensors are in the near field, the attenuation achieved by controlling 
intensity is comparable to or greater than that achieved by controlling acceleration. 

PACS numbers: 43.40.Vn, 43.40.Cw 

INTRODUCTION 

Vibration control has long been a subject of interest in a 
large number of applications. Over the past few decades, 
there has been growing interest in the area of active vibration 
control for applications where passive control is ineffective. 
Nonadapative active control of structural vibrations was 
studied in the 1950's, when Olson • generalized his "elec- 
tronic sound absorber" to control vibrations. Adaptive con- 
trol of structural vibrations was studied in the 1960's, when 
Bonesho and Bollinger 2 described how to build a "self- 
optimizing vibration damper." The device used an analog 
control circuit to vary the damper's stiffness. With recent 
developments in computer technology, most notably speed of 
processing, active control studies have become more preva- 
lent. A large number of studies have been related to actively 
controlling flexible space structures. In this area, a number of 
control approaches and algorithms have been examined, in- 
cluding methods such as modal control and distributed- 
parameter control. 3-6 

In recent years, much research has also been performed 
applying and generalizing the filtered-x algorithm developed 
by Widrow and Stearns. 7 Elliott et al. demonstrated how the 
filtered-x algorithm can be extended to control multiple error 
inputs. 8 In 1990, Sommerfeldt and Tichy 9 extended this ap- 
proach to provide for real-time system identification and for 
multiple-error, multiple-output control. In 1991, 
Sommerfeldt •ø applied this algorithm, most notably, to the 
case of four error sensors and four control actuators. A simi- 

lar algorithm has also been developed to control sound 
fields. TM 

There have been several studies of measurements of vi- 

bration intensity. In 1970, Noiseux described a method for 

a)Current address: 1238F East Broad St., Montoursville, PA 17754. 

measuring the "power flow" in beams. In 1984, Pavic •3 de- 
scribed a method for measuring the intensity using an array 
of velocity transducers. His scheme employed a four-point 
finite-difference method to calculate the spatial derivatives 
needed to estimate the structural intensity. Recently, Hayek 
et al. TM studied several finite-difference methods that could 

be used to compute these spatial derivatives. 
Fewer studies have investigated the control of vibration 

intensity. Redman-White et al. •5 investigated the active con- 
trol of flexural wave power flow in 1987. In 1991, Pan and 
Hansen •6 performed an analysis of the control of power flow. 
Their study included an investigation into the effect of the 
orientation of the control actuator. Their results showed, no- 
tably, that, in order to control power flow effectively, the 
control force must be applied within a few degrees of the 
normal. Pan and Hansen •7 compared the active control of 
acceleration with the active control of vibration intensity for 
a beam and found that effective control could be achieved 

using a single accelerometer error sensor, if the accelerom- 
eter was positioned more than about 0.75h from any sources 
or discontinuities, where h represents the structural wave- 
length. In addition, Elliott and Billet •8 also investigated the 
control of flexural propagating waves in a beam using a 
single error accelerometer located in the structural far field. 
While they did not control the intensity explicitly, they did 
demonstrate the ability to attenuate the propagation of a 
broadband excitation in the dispersive medium over a fairly 
large bandwidth, by minimizing the acceleration at the single 
far-field sensor. 

This paper develops an active control method designed 
to minimize the structural intensity associated with bending 
waves in a structure. The method is applicable to applica- 
tions where the vibration that propagates in a structure is to 
be minimized. Another possible application involves control- 
ling radiation from structures where the source is coupled to 
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the radiating structure by a defined structural path. In such a 
case, controlling the structural intensity through this path 
will also minimize the resulting radiation. 

I. CALCULATION OF INTENSITY 

A. Description of intensity 

The instantaneous structural intensity associated with 
bending waves in a beam is given at any point as the sum of 
two terms, which will be referred to as the force term and the 
moment term. The force term is given by the product of the 
shear force and transverse velocity and can be expressed as 

o•3• o• 
r=m (1) 

where F is the shear force, v is the transverse velocity, E is 
Young's modulus, I is the area moment of inertia, and •(x,t) 
is the transverse displacement of the beam. The moment term 
is given by the product of the bending moment and rotational 
velocity, and can be expressed as 

mll=-Ei Ox 20x Or' (2) 
where M is the moment and 11 is the rotational velocity. Thus 
the total instantaneous intensity can be expressed as 

II=EI o-•j •--EI •x 2 at •x' (3) 
To gain a greater understanding of some of the control 

issues, it will be useful to investigate briefly the time- 
averaged intensity. To this end, consider the problem of con- 
trolling the energy propagating in an infinite beam, with an 
excitation force, Fn ejøøt, located at x=0, and a complex con- 
trol force, 

•c e•'øt= (Fc,• + jFc,•)d 'øt, (4) 
located at x=L, where j - x/-1. Here, Fn is taken to be 
real with no loss in generality, and the region of interest is 
taken to be x•>L. The time-averaged intensity corresponds to 
the propagating component of the structural intensity and can 
be expressed as 

1[ i [ (II)t = • Rc WI a-• -•' - • Re E1 o9-•7 at •x / ' 
(5) 

The two control methods considered are the control of time- 

averaged intensity and the control of the transverse accelera- 
tion at a point Xo•>L. 

The control of time-averaged intensity is considered 
first. The displacement of the beam can be represented by 

•(x, t) = (j/4EIk3)( -Fn e-j•'x + jFne-•'X-•ce-J•'(r-x) 

+ j•ce-•'(t•-x))d 'øt, O•<x•<L, (6) 

= (j/4EIk 3) ( - Fne -j•,x + jFne- •,x_ •ce-•,(x-t•) 

+ j•ce-•'(x-t•))d'øt, x•L, (7) 

where k is the flexural wave number. For simplicity, internal 
structural losses have been neglected in this formulation. 
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FIG. 1. Beam displacement for the case of minimizing structural intensity 
(solid line) and acceleration (dotted line). The control source is located at 
kœ = 10, and the error sensor for minimizing acceleration is located at 
kx0=11. 

Losses can be readily included, but they do not affect the 
general nature of the results. Performing the necessary de- 
rivatives and substituting these expressions into Eq. (5) gives 

(II)t=32Eik 3 [2en2+4enec, R cos(kL) 
-- 4enec, I sin(kL) + 21Pcl2]. (8) 

In order to determine the desired control, the time-averaged 
intensity is minimized with respect to the real and imaginary 
components of the control force, leading to the optimal con- 
trol force 

Pc = -Fn e-jkz. (9) 

It can be seen that the optimal control force is equal in mag- 
nitude to the primary force, with an appropriate phase shift to 
guarantee force cancellation at the control source location. 
Substituting this into Eq. (8) leads to (II)t=0 for x•>L, 
which indicates that no energy propagates past the control 
source location. Further, substituting Eq. (9) into Eq. (7) 
yields 

•(x,t)= -(Fne-•'X/4EIk3)(1-e•a•e-J•a•)eJøøt, x•>L, 
(10) 

indicating that •(x,t) decays exponentially to 0 for x)L. An 
example of the displacement field is shown in Fig. i for the 
case where the frequency and source separation are such that 
kL = 10. It is important to note that the results obtained for 
the time-averaged intensity and displacement hold for any 
location xo•L of the intensity measurement used for con- 
trol. 

An analogous development can be carried out for the 
control of the acceleration at a single point, corresponding to 
an error sensor location. Setting the acceleration at a point, 
xo)L, equal to zero and solving for xff½ yield 

- e -J!•xO + j e - !•xo 
xff½= _j•,(•0_r) _•,(•0_r) Fn. (11) e -je 

Substituting this into the expression for displacement yields 
an expression that, in general, does not vanish for x •L. An 
example of this for the case kL - 10 is also shown in Fig. 1. 
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If, however, the point x 0 is far removed from L, such that 
k(xo-L)>> 1, the control force reduces to 

Pc = --e-jkLFn . (12) 

This is the same control force as in Eq. (9) for the case of 
controlling the time-averaged intensity at any point x•>L. 
These results are consistent with the work of Pan and 

Hansen, 17 as well as Elliott and Billet. 18 As is the case with 
intensity control, substituting this control force into the ex- 
pression for displacement at x•>L results in •(x,t) decaying 
exponentially to 0 for x>L. Thus controlling acceleration is 
only effective in general if the error sensor is located far 
(relative to a wavelength) from the source or any boundaries 
or discontinuities. In any but the simplest structures, this is 
difficult if not impossible. 

The theoretical advantage of controlling intensity, time- 
averaged at least, is that the error sensor can be located as 
close to the control source as geometrical constraints allow. 
Thus, with complex structures, this suggests that the vibra- 
tional energy could be confined to desired regions within the 
structure. 

B. Intensity calculation 

A number of ways of determining structural intensity 
have been studied in the past few years. Sensors ranging 
from accelerometers, strain gauges, and force gauges to laser 
velocimeters, vibrometers, and near-field acoustic hologra- 
phy have been employed in this endeavor. In this study, ac- 
celerometers are chosen for the measurement of total, instan- 
taneous intensity. A one-dimensional array of five 
accelerometers positioned on the top of the beam is used. 
The accelerometer positions are numbered sequentially, with 
the signal at position i at time t being referred to as ai,t. 

In Eq. (3) the total, instantaneous intensity is expressed 
as a function of the transverse displacement. If a time- 
harmonic vibration with frequency •o 0 is assumed, then the 
displacement, as a function of the transverse acceleration, 
can be written as 

•(x,t) = - (1/O)o2)a(x,t). (13) 

With this expression for •, the total, instantaneous intensity 
at position 3, the center of the array, is expressed as 

-- 1 03a3 -- 10a 3 -EI -- II3=E1 •0 • Ox 3 •00 • Ot 0•02 Ox 2 

(--1 02a3) gI 03a3 0a 3 02a3 02a3) X •002 0t 0x •004 •X 3 8t 8x 2 8t 0x ' 
(14) 

In order to evaluate this expression for structural intensity, 
the various time and space derivatives of the acceleration at 
position 3 must be estimated. 

The time differentials of the accelerations are estimated 

using a backward finite-difference scheme, with error on the 
order of •, where r is the time increment between samples. 
A backward finite-difference scheme is used since only those 
accelerations up to and including the time at which the time 
derivatives are desired are available. The space differentials 

are estimated using a central finite difference scheme, with 
error on the order of A 2, where A is the spacing between 
accelerometers. 

Assuming the necessary partial derivatives have been 
calculated, the total instantaneous intensity can be estimated. 
Because the finite-difference operations are performed on ac- 
celerations, and not displacements, a double integration must 
be performed. This double integration is achieved by multi- 
plying each term by -1/•o02, where •o 0 is the frequency of 
excitation, as shown in Eq. (14). This implies that this 
method of calculating intensity is only valid for single fre- 
quencies, with the frequency of excitation known. 

II. CONTROL ARCHITECTURE 

This section briefly describes the algorithms used to 
implement the control systems investigated. Both system 
identification and control are performed adaptively in real 
time and will be discussed briefly. The projection algorithm 
is used for system identification, and the filtered-x least- 
mean-squares algorithm is used to update the control filters. 

A. System identification 

The algorithm used for system identification is the pro- 
jection algorithm or the normalized least-mean-squares 
(NLMS) algorithm. In this application of the algorithm, there 
is assumed to be one error sensor, measuring the error signal, 
e(rn), where rn is a discrete time index. The system identi- 
fication algorithm estimates the transfer functions correlating 
the reference input signal and the control signals to this error 
signal. This method for updating the system identification 
vectors has been described earlier. 9 As shown in this earlier 
work, if •(rn + 1) represents a vector of all the transfer func- 
tion coefficients used to represent the system, and (I)(rn) 
represents a vector of the control signal outputs and the ref- 
erence signal inputs, the update equation for the transfer 
function coefficients can be expressed as 

a(I)( m ) 
•)(m + 1) = •(m) + b+•r(m)•(m) 

X[ e(m)- •)t(m) ß (m)]. (15) 
Here, •(m) is the signal being estimated by the system iden- 
tification algorithm, a is a convergence parameter (chosen to 
be 0<a < 2 for stability), and b is a small, positive constant 
used to ensure that there is no division by zero. 

B. Control of acceleration 

The algorithm used for the control filter update is the 
filtered-x least-mean-squares algorithm. ? This algorithm is 
used to determine the N control signals, yn(m), which mini- 
mize a mean-squared-error signal. The control signals are 
obtained by convolving the reference input, x(m), with the 
control filter coefficients, Wn(m). These control filters are 
each represented by a finite impulse response (FIR) filter 
vector with I coefficients: 

WnT(m)--=[Wno(m)Wnl(m)' "Wn(i_l)(m)]. (16) 
The input signal, x(m), is represented in vector form as 
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X•(m)=[x(m)x(m - 1)...x(m-I+ 1 )]. (17) 

A convolution sum of these two signals gives the nth control 
output 

I-1 

yn(m) = • Wni(m)x(m-i)= WnrX, 
i=0 

(18) 

where Wni(m) are the nth control filter coefficients at time m, 
yn(m) is the nth control filter output at time m, and x(m-i) 
is the input to the control filters at time m-i. A composite 
control filter vector can be formed as the concatenation of the 

N control filter vectors: 

Wr(m)--[W•r(m) W2r(m) ... W•(m)]. (19) 

The optimal solution for the control filter vector is taken 
to be the solution that minimizes the mean-squared-error sig- 
nal. The filtered-x algorithm is a steepest descent algorithm 
based on the concept of updating the control filter coeffi- 
cients according to the negative of the gradient with respect 
to the filter coefficients of the mean-squared error, so that the 
control filters converge to the optimal solution in an iterative 
manner. The mean-squared error is approximated by the in- 
stantaneous squared error, e2(m). This error signal e(m) is 
not necessarily the same as the error signal used in the sys- 
tem identification algorithm, e(m). The update equation is 
expressed as 

W(m+ 1)= W(m)- IXoVwe2(m). (20) 

The convergence parameter P•o is a parameter chosen to en- 
sure convergence and stability, and a method for determining 
/-to has been discussed in earlier literature. m The squared 
error e2(m), in least-mean-squares-based algorithms, is de- 
sired to be quadratic in W. 7 Thus, for controlling accelera- 
tion, e(m) is equal to the acceleration. This acceleration is 
chosen to be that at the position 3• 3 . In this study, one 
control actuator is used to control the acceleration. There is, 
therefore, a single control filter and a single control path 
transfer function filter. Analogous developments have been 
performed previously, ø-n and the reader is referred to this 
literature for a complete development. The result of these 
developments is that the update equation for the control filter 
coefficients can be expressed as 

W(m + 1)= W(m)- I. te(m)R(m), (21) 

where/x=2p•0 is a parameter chosen to ensure convergence 
and stability, and R(m) is the filtered-x reference signal, ob- 
tained by convolving the input reference signal with the con- 
trol path transfer function. One should note that the error 
signal used for system identification, e(m), is also the accel- 
eration; that is, 

e(m)=e(m)=a3(m). (22) 

The two error signals are the same in this case because the 
filtered quantity that the system identification algorithm is 
trying to model, R, corresponds to the same acceleration that 
the control algorithm is trying to minimize. 

C. Control of intensity 

The intensity control application of the filtered-x algo- 
rithm is not as straightforward as the acceleration control. 
This is because the total, instantaneous intensity is already a 
quadratic quantity in W, unlike the acceleration. This can be 
seen in that F, v, M, and f/are each linear in W. Therefore, 
the force term Fv, the moment term M l l, and, subsequently, 
the intensity are each quadratic in W. In order to have e2(m) 
quadratic in W, e(m) is set equal to the square root of in- 
tensity. If II represents the instantaneous intensity, then the 
update equation can be expressed as 

W(m + 1 )= W(m)-/X0VwlI. (23) 

To obtain an expression for the gradient, the intensity can be 
expressed as 

II=EI 3•-x v dt. v -EI •xx fl dt. fl , (24) 
where use has been made of the fact that 

n = --. (25) 
3x 

Further, if v and 11 are separated into a primary component 
(the response with no control) and a component due to the 
control, they can be represented by 

v= v0 + H•Ty, II = no + H•Y, (26) 
where H,, and Ha represent the control path transfer func- 
tions from the control signal to the velocity and angular ve- 
locity, respectively, at the error sensor array. By interchang- 
ing the order of summation, as is done in analogous 
developments, 9-n v and II can also be expressed as 

v = v 0 + WrRv, 1• = 1• 0 + WTRii, (27) 

where R,, and R n are given by H•Tx and H•X. Substituting 
these expressions into Eq. (24), the intensity can be ex- 
pressed as 

H=EI •x 3 (vo+WTRv)dt.(vo+WTRv) 

-EI •xx (flø+WrRn)dt'(flø+WrRn) ' 
(28) 

Taking the gradient with respect to W yields 

VwlI =El 8•-x R• dr.( Vo + WrR•) 

+El 8•-x (%+ WrR•)dt'R• 

-EI •xx Ra dt.(l10+WrRa) 

-EI •xx (110+WrRa)dt.Ra . (29) 
This equation can be simplified by using the expressions for 
the force and moment. Thus the gradient can be written as 
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FIG. 2. Schematic of the experimental setup. 

VwlI =El r?-•- x R v dt. v+F.R,, 

-EI •x Rn dt.fl + M.Rn . (30) 

This expression is exact, but it is impractical for implemen- 
tation on a real-time DSP board. To achieve a practical con- 
trol scheme for implementation, two sets of heuristic as- 
sumptions are used to obtain approximations of this gradient. 
For the first approximation, the assumptions are made that 
the third partial derivative with respect to x yields a factor of 
j k 3, that the first partial derivative with respect to x yields a 
factor of -jk, and that the integral with respect to time 
yields a factor of 1/j 6o 0 . (j is again x/-1, k is the flexural 
wave number, and 6o 0 is the driving frequency.) It should be 
noted that these assumptions correspond to assuming time- 
harmonic excitation, and thus implementing the resulting al- 
gorithm requires a knowledge of the driving frequency. Us- 
ing these assumptions in Eq. (30) allows the gradient to be 
approximated by 

EIk 3 EIk 
VwlI•• R,,.v+F.R,,+ • fI.R•+M-R•. (31) 

6o0 6o0 

One of the possible limitations is that the signs of the various 
terms depend on the type of wave that is considered. The 
signs chosen here correspond to a propagating wave in the 
+ x direction. Obviously, if another type of wave dominates 
the vibration field, some of the phases in the gradient will be 
wrong, which may affect the performance of the control sys- 
tem. Since Ra and R• correspond to an angular velocity and 
a transverse velocity, respectively, they are related according 
to 

Rn= •xx {R•}. (32) 

If the derivative is again replaced by -jk, Ra can be ap- 
proximated as 

Rn• -jkRv. (33) 

These results allow the gradient to be approximated as 

EIk EIk 2 •.v+F-j •.fl-jkM Vw H •R• 6o0 6o0 (34) 

A simplification of Eq. (34) can be obtained by again assum- 
ing a time-harmonic, propagating wave in the + x direction. 
In this case, 

o •3• EIk 3 o •2• Elk 
- = (35) - v, M = -EI r?•- • 6oo F = E I r?•- x 6oo 

Using these results in Eq. (34) allows the gradient to be 
approximated by 

2EIk 2 
V wH • • R•(k v - j f/). (36) 

6o0 

This expression cannot be implemented using the real values 
obtained from accelerometers. However, the phase shift of 
-j associated with the angular velocity can be recognized as 
a time delay in the time domain. If the excitation signal is 
time-harmonic, as assumed, this phase shift between the two 
terms in the gradient can be accounted for in the frequency 
response of the adaptive control filter, which makes it fea- 
sible to use a gradient approximation of the form 

2EIk 2 
VwH • • R•(kv+ fl). (37) 

6o0 

Thus, under the assumptions of a time-harmonic excitation 
dominated by a propagating wave in the +x direction, the 
update expression can be expressed as 

W(m+ 1)=W(m)-lze(m)R•, (38) 

where 

e(m)=kv+ fl (39) 

is the effective error signal for the control algorithm. It 
should be noted that this is not the effective error signal for 
the system identification algorithm. The system identification 
error signal is the velocity, i.e., 

e(rn ) = v, (40) 

since the system identification algorithm is trying to model 
the filtered quantity Rv. 

In addition to several possible error signals, three differ- 
ent actuator configurations are considered. These consist of 
controlling the beam with a control force, a control moment, 
or both a collocated force and moment. The force output is 
calculated with one control filter and is sent to two control 

shakers, such that yc•(m)=Yc2(m)=y•(m), where Yci(m) is 
the signal to the ith control shaker and y •(m) is the control 
filter output. The control shakers are positioned close to each 
other (relative to a wavelength), so that the effect on the 
beam approximates a force applied at a point halfway be- 
tween the shakers. 

The moment output is also calculated with one control 
filter. This moment output is sent phase-reversed to the con- 
trol shakers, such that yc•(m) = -Yc2(m)-y2(rn). For con- 
trol shakers positioned close to each other, the effect on the 
beam approximates a moment, or couple, applied at a point 
halfway between the shakers. 

The force-moment actuator configuration for control is a 
superposition of the force configuration and the moment con- 
figuration. The force output is calculated with one control 
filter, and the moment output is calculated with a second 
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FIG. 3. Error sensor acceleration level with and without control, with the 
sensor relatively far from the control actuator (296 Hz). 

control filter. The force output is sent in phase to both shak- 
ers, while the moment output is sent phase-reversed to the 
two shakers, such that Ycl and y c2 are given by 

yc•(m)=y•(m)+ y2(m), Yc2(m)=y•(m)-y2(m). 
(41) 

III. EXPERIMENTAL SETUP 

The system description is divided into two parts: the 
structure being controlled and the control system imple- 
mented to control it. The structure to be controlled in this 

study consists of a thin-walled, square, hollow steel beam, 
one end of which is embedded in a box of sand. The other 

end is supported with a compliant rubber band, in a manner 
that does not significantly alter the dynamic loading on the 
beam. 

The steel beam has cross-sectional dimensions of 1.6 

cmX 1.6 cm, wall thickness of 1.27 mm, and total length 1.53 
m. In addition, the density (p)=7.70X103 kg/m 3, the cross- 
sectional area (A) = 74.0 X 10 -6 m 2, the modulus of elastic- 
ity (E)= 187X 10 9 Pa, and the area moment of inertia 
(1)=2.71X10 -9 m 4. 

One end of the beam is embedded in a box of sand in 

order to introduce absorption at the boundary and, hence, 
reduce the magnitude of the reflection coefficient from the 
value of 1.0 associated with a purely free termination. The 
length of the beam outside the sand is 1.25 m. A lossless 
beam and a reflection coefficient of 1.0 at the boundary re- 
sults in a standing wave field only and, therefore, only reac- 
tive (or imaginary) intensity is generated. Reducing the re- 

17.5 

dB/div. 

-120 
0 296 592 888 1184 1 480 

Freq. (Hz) 

FIG. 5. Far-field acceleration level with and without control, with the sensor 
relatively far from the control actuator (296 Hz). 

flection coefficient at the boundary reduces the reflected 
wave and allows the propagating wave component to domi- 
nate the wave field. This results in a significant active (or 
real) intensity component. If the termination is anechoic, cor- 
responding to the reflection coefficient having a value of 0.0, 
then the intensity is entirely active. Previous studies on 
beams with the same properties and similar terminations 
have shown that the reflection coefficient is approximately 
0.254+j0.044 at 5000 Hz and 0.536+j0.058 at 500 
Hz. 14'19 Therefore, for the frequency range used for this 
study (140-520 Hz), a combination of active and reactive 
intensity is expected. 

The beam is excited at its free end with a Ling Dynamic 
Systems (LDS) model V203 magnetic driven vibrator. The 
LDS V203 shaker is connected to the beam by a stinger to 
insure the delivery of a moment-free transverse force to the 
beam. The stinger is relatively flexible in its transverse di- 
rection, in order to minimize the transfer of any moment to 
the beam due to misalignment. 

The control system consists of three parts' the input sen- 
sors, the processor, and the output actuators. The six input 
signals to the control system originate from five PCB model 
336A accelerometers and the signal from the signal generator 
that drives the primary excitation shaker. The signals from 
the accelerometers, which have a spacing of 4 cm, are used 
to calculate the error signals (the error signal in acceleration 
control is the third acceleration signal). The signal from the 
signal generator is used as the control filter input x(m). The 
digital control algorithm is implemented on a Spectrum Sig- 
nal Processing Inc. DSP96002 digital signal processing 
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0 296 592 888 1184 1 480 0 296 592 888 1184 1480 
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FIG. 4. Error sensor acceleration level with and without control, with the 
sensor relatively near to the control actuator (296 Hz). 

FIG. 6. Far-field acceleration level with and without control, with the sensor 
relatively near to the control actuator (296 Hz). 
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FIG. 7. Typical error function for controlling intensity, with and without 
control (488 Hz). 

board, interfaced with a Spectrum 32-channel 12-bit analog 
input board and a 16-channel analog output board. For the 
case of acceleration control there is one output signal, while 
for the case of intensity control (force only, moment only, or 
force and moment) there are two output signals. The control 
shakers used are LDS model V102 magnetic driven vibra- 
tors, which also use stingers to control the beam in the same 
manner as the V203 excitation shaker. A schematic of the 

experimental setup as described can be seen in Fig. 2. 

IV. RESULTS 

This section presents some of the experimental results 
that were obtained using various active control configura- 
tions. There are two items that should be noted. The first is 

that for convenience in examining the following frequency 
domain plots, the vertical divisions are placed at multiples of 
the driving frequency. The second is that, because of limits 
of the output board, the intensity and error function signals 
are scaled to avoid clipping while realizing the resolution 
potential of the D/A converter. This scaling of the signals is 
invariant within a given setup/frequency permutation. The 
result is that specific values are compared within a setup/ 
frequency permutation; however, only relative reductions are 
to be compared otherwise. 

There are several aspects of the control results exam- 
ined. First, we discuss the method of controlling accelera- 
tion, which works significantly better with the error sensor 
positioned relatively far from, rather than relatively near to, 
the control actuator. It is desired to have the sensors in either 
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FIG. 8. Intensity estimated from the error sensor array, with and without 
control (488 Hz). 

FIG. 9. Far-field acceleration level with and without control when control- 

ling the intensity with the sensor array relatively far from the control source 
(488 Hz). 

the near field or the far field. However, because of the length 
of the beam, there are some cases where it is not possible to 
have the sensors far enough away from the control source to 
say conclusively that the sensors are in the far field. Thus the 
terminology "relatively near" and "relatively far" has been 
adopted to distinguish the two error sensor configurations. 
The case of relatively near corresponds to a spacing between 
the control shakers and the sensor array (center to center) of 
15 cm, while relatively far corresponds to a spacing of 75 
cm. Second, we discuss the general trends of controlling 
structural intensity with the error sensor positioned relatively 
far from the control actuator. A third aspect examined is in- 
tensity control with the error sensor positioned relatively 
near to the control actuator. Related to this is a discussion of 

the general trend of frequency dependence associated with 
controlling intensity. Finally, a brief discussion is given of 
the trends in actuator configuration dependence for intensity 
control. 

It was shown earlier that controlling the acceleration of 
the beam should be much more effective with the error sen- 

sor positioned relatively far from, rather than relatively near 
to, the control actuator. Figures 3 and 4, for forced excitation 
at 296 Hz, show the local acceleration at the error acceler- 
ometers when the acceleration is controlled with the error 

sensor located relatively far from or near to the control ac- 
tuator, respectively. For both configurations, the local attenu- 
ation is comparable, with the error acceleration being attenu- 
ated by over 60 dB in both cases. However, if one examines 
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FIG. 10. Far-field acceleration level with and without control when control- 

ling the acceleration with the error sensor relatively far from the control 
source (488 Hz). 
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FIG. 11. Far-field acceleration level with and without control when control- 

ling the intensity with the sensor array relatively near to the control source 
(488 I-iz). 

FIG. 13. Far-field acceleration level with and without control when control- 

ling the intensity with the sensor array relatively near to the control source 
(340 Hz). 

Figs. 5 and 6, this comparable reduction in the error accel- 
eration does not result in comparable reductions in the down- 
stream acceleration signal. In Fig. 5, it can be seen that con- 
trolling acceleration with the error sensor positioned 
relatively far from the control actuator results in more than a 
50-dB reduction in the downstream acceleration signal, 
while in Fig. 6 it can be seen that controlling acceleration 
with the error sensor positioned relatively near to the control 
actuator results in approximately a 20-dB reduction in the 
downstream acceleration signal. These results are in agree- 
ment with the expectations discussed above. 

It was noted earlier that controlling the intensity and 
controlling the acceleration should yield comparable results 
with the error sensor located in the farfield. Figure 7, for 
forced excitation at 488 Hz, shows a representative example 
of the error function signal when controlling intensity for the 
error sensor in either the near field or the far field. One can 

see that the error function signal is attenuated by approxi- 
mately 50 dB. The intensity signal, as shown in Fig. 8, also 
at 488 Hz, is reduced as well. The peak at 2to 0, 976 Hz, is 
reduced on the order of 55 dB, while the dc value is reduced 
approximately 22 dB. The downstream acceleration signal 
for an excitation frequency of 488 Hz is reduced approxi- 
mately 20 dB (Fig. 9) through implementation of this inten- 
sity control scheme. This is in contrast to the more than 
40-dB reduction in the downstream acceleration achieved 

through the implementation of the acceleration control 
scheme, as shown in Fig. 10. The fact that the acceleration 

control performs better than the intensity control when the 
error sensor is positioned relatively far from the control ac- 
tuators is not surprising, because of the numerical noise as- 
sociated with the finite-difference schemes degrading the er- 
ror function signal. 

With the error sensor positioned relatively near to the 
control actuators, the theory presented above indicates that 
the intensity control should outperform the acceleration con- 
trol. The results obtained over the range of configurations 
tested are not conclusive, but seem to indicate that it is pos- 
sible to obtain improved attenuation using intensity control. 
Figure 11 shows the control achieved for a 488-Hz excitation 
when the intensity was controlled with the error sensor near 
the control actuators, while Fig. 12 shows the corresponding 
control achieved when the acceleration was controlled. The 

reduction in the downstream acceleration is on the order of 

17 dB when controlling the intensity, while the reduction 
when controlling the acceleration is approximately 10 dB. 
Another example of intensity control performing better than 
acceleration control is shown in Figs. 13 and 14. In Fig. 13, 
the downstream acceleration signal resulting from intensity 
control at 340 Hz is shown to be attenuated by approxi- 
mately 17 dB. This is compared to the reduction in down- 
stream acceleration resulting from acceleration control, 
which is shown in Fig. 14 to be approximately 4 dB. How- 
ever, it should be noted that in a number of the tests run, the 
intensity control does not perform as well as the acceleration 
control. In performing the tests, several trends are identified 

20 

17.5 

dB/div. 

.•_ 

-120 
0 488 976 1464 

Freq. (Hz) 

20 

17.5 

dB/div. 

I 

-120 
0 340 

No Control I_' ......... Control 
i i 

c i 

i i 

i i 
i 

•- r -i ....... 

i i 

i 

6•0 1020 1360 
Freq. (Hz) 

FIG. 12. Far-field acceleration level with and without control when control- 

ling the acceleration with the error sensor relatively near to the control 
source (488 Hz). 

FIG. 14. Far-field acceleration level with and without control when control- 

ling the acceleration with the error sensor relatively near to the control 
source (340 Hz). 
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FIG. 15. Error function for controlling intensity with the error sensor array 
relatively near to the control source (140 Hz). 

that may contribute to these difficulties. Some of these trends 
and problems will be identified below. 

One problem associated with intensity control is that of 
frequency dependence, in that the control scheme tends to 
work better at higher frequencies. It is thought that this oc- 
curs because the error function has a higher signal-to-noise 
ratio (SNR) at these higher frequencies. Figures 15 and 16 
show two representative examples. The error signal in Fig. 
15 (140 Hz) has a SNR of about 25 dB, while the SNR in 
Fig. 16 (488 Hz) is about 45 dB. For the corresponding at- 
tenuation of the downstream acceleration, the acceleration is 
essentially unchanged at 140 Hz, while an attenuation of 
about 17 dB is observed at 488 Hz. One possible contribu- 
tion to this frequency dependence involves the accelerometer 
spacing in terms of the flexural wavelength h. The spacing 
between accelerometers is 4 cm. At the highest frequency 
tested (520 Hz), this corresponds to about 0.067 h, while at 
the lowest frequency (140 Hz), this accelerometer spacing 
corresponds to about 0.034 h. For the spatial finite differenc- 
ing schemes used, neighboring acceleration values are sub- 
tracted in order to approximate the spatial derivatives. If 
these signals are almost equal, more error will be introduced 
with a finite bit accuracy processor than if the signals are not 
almost equal. Lower frequencies correspond to positioning 
the accelerometers closer, relative to a wavelength, which 
ensures that the neighboring values will be almost equal. 

An additional contribution to the frequency dependence 
involves the ratio of the driving frequency to the sampling 
frequency. This effect is analogous to the one for geometrical 
spacing just discussed. Successive (in time) signals are sub- 
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FIG. 16. Error function for controlling intensity with the error sensor array 
relatively near to the control source (488 Hz). 

tracted to give an approximation of the time derivatives. The 
closer these signals are to being equal, the more processing 
error will be introduced into the derivative approximation. 
Thus sampling the lower-frequency signals at a relatively 
high sampling frequency ensures that the successive samples 
are closer to being equal in value and leads to larger errors. 
The sampling frequency here was chosen to be 8 kHz, which 
works quite well for the higher frequencies, but not as well 
for the lower frequencies (<300 Hz). 

A final contribution to the frequency dependence con- 
cerns the structural wavelength relative to the error sensor 
location and beam length. One should recall that a + x trav- 
eling wave is assumed in the development of the intensity 
error functions. At lower frequencies, the wavelength in- 
creases, which increases the range over which evanescent 
waves are significant. The more the field is affected by waves 
other than + x traveling waves, the less valid the error func- 
tion is, and the less the calculated error function relates to the 
true gradient of intensity. 

A final issue concerning intensity control is that of con- 
trol actuator configuration dependence. For the configura- 
tions tested, it was found that there are no strong perfor- 
mance trends in using a force actuator, a moment actuator, or 
both. The control obtained using any of these configurations 
was found to be comparable. 

v. CONCLUSIONS 

The goals of this study were to develop, implement, and 
evaluate several algorithms for the adaptive vibration control 
of the total, instantaneous structural intensity in a beam. A 
measurement algorithm based on finite-difference schemes 
was developed for calculating the necessary partial deriva- 
tives in both space and time. A control algorithm based on 
the filtered-x algorithm was developed to minimize the struc- 
tural intensity in the beam. The various intensity control 
schemes were evaluated relative to acceleration control by 
means of a downstream acceleration signal. Evaluation of the 
results from these tests lead to several conclusions. 

The first conclusion is that acceleration control was 

more effective with the error sensor in the far field than in 

the near field, which was predicted. Furthermore, with the 
error sensors positioned relatively far from the control actua- 
tors, controlling acceleration was more effective than con- 
trolling intensity, using the algorithms developed in this 
study. Although theory predicts that the two schemes should 
perform equally well, noise in the effective error signal de- 
grades the effectiveness of the intensity control algorithm. 

With the error sensors positioned relatively near to the 
control actuators, the attenuation achieved by controlling in- 
tensity was comparable to or greater than that achieved by 
controlling acceleration. It was predicted that this attenuation 
should always be greater when controlling intensity than 
when controlling acceleration. It is thought that the reasons 
for the degraded performance when controlling the intensity 
include the frequency dependence of the control schemes 
and numerical noise in the computation of the error function 
signal. Signal noise was a problem at all frequencies. This 
noise consists of electronic noise from the accelerometers 

and numerical noise from the finite-difference techniques. 
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Based on the results obtained, it is felt that the effectiveness 
of the method of controlling structural intensity is limited by 
the accuracy of the intensity estimate. As better methods of 
determining the structural intensity are developed, it is an- 
ticipated that the effectiveness of the method will increase 
correspondingly. 

H. E Olson, "Electronic control of noise, vibration, and reverberation," J. 
Acoust. Soc. Am. 28, 966-972 (1956). 

2j. A. Bonesho and J. G. Bollinger, "How to design a self-optimizing 
vibration damper," Machine Design 40, 123-127 (1968). 
C. E. Kaplow and J. R. Velman, "Active local vibration isolation applied 
to a flexible space telescope," J. Guidance Control 3, 227-233 (1980). 

4T. Bailey and J. E. Hubbard Jr., "Distributed piezoelectric-polymer active 
vibration control of a cantilever beam," J. Guidance Control 8, 605-611 
(1985). 
C. R. Johnson, Jr., "Adaptive modal control of large flexible spacecraft," 
J. Guidance Control 3, 369-375 (1980). 

6H. •z and L. Meirovitch, "Optimal modal-space control of flexible gyro- 
scopic systems," J. Guidance Control 3, 218-226 (1980). 
B. Widrow and S. D. Steams, Adaptive Signal Processing (Prentice-Hall, 
Englewood Cliffs, NJ, 1985). 

8S. J. Elliott, I. M. Stothers, and P. A. Nelson, "A multiple error LMS 
algorithm and its application to the active control of sound and vibration," 
IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1423-1434 
(1987). 

9S. D. Sommerfeldt and J. Tichy, "Adaptive control of a two-stage vibra- 
tion isolation mount," J. Acoust. Soc. Am. 88, 938-944 (1990). 

•øS. D. Sommerfeldt, "Multi-channel adaptive control of structural vibra- 
tion," Noise Control Eng. J. 37, 77-89 (1991). 
S. D. Sommerfeldt and P. J. Nashif, "Energy based control of the sound 
field in enclosures," in Proceedings of the Second International Congress 
on Recent Developments in Air- & Structure-Borne Sound and Vibration 
(Mechanical Engineering Dept., Auburn University, Auburn, AL 1992), 
Vol. 1, pp. 361-368. 

22D. U. Noiseux, "Measurement of power flow in uniform beams and 
plates," J. Acoust. Soc. Am. 47, 238-247 (1970). 
G. Pavic, "Measurement of structure borne wave intensity, Part I: Formu- 
lation of the methods," J. Sound Vib. 49, 221-230 (1976). 

24S. I. Hayek, M. J. Pechersky, and B. T. Suen, "Analysis and measurement 
of near- and far-field structural intensity by laser vibrometry," in Proceed- 
ings of the Third International Conference on Structural Intensity (Centre 
Technique des Industries Mecaniques, Senlis, France, 1990), pp. 281-288. 

25W. Redman-White, P. A. Nelson, and A. R. D. Curtis, "Experiments on 
the active control of flexural wave power flow," J. Sound Vib. 112, 187- 
191 (1987). 
j. Pan and C. H. Hansen, "Active control of total vibratory power flow in 
a beam. I: Physical system analysis," J. Acoust. Soc. Am. 89, 200-209 
(1991). 
X. Pan and C. H. Hansen, "The effect of error sensor location and type on 
the active control of beam vibration," J. Sound Vib. 165, 497-510 (1993). 
S. J. Elliott and L. Billet, "Adaptive-control of flexural waves propagating 
in a beam," J. Sound Vib. 163, 295-310 (1993). 

29S. H. Tousi, "Complex impedances of structural terminations" B. S. the- 
sis, The Pennsylvania State University, University Park, PA (1991). 

2835 J. Acoust. Soc. Am., Vol. 96, No. 5, Pt. 1, November 1994 Schwenk et al.: Adaptive control of bending in a beam 2835 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.187.97.22 On: Mon, 17 Mar 2014 23:38:58


