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A time-domain simulation model has been developed for investigating the player-clarinet 
system. The three components that constitute the simulation model consist of the player's air 
column, reed, and the clarinet. The player's air column is represented in terms of an analogous 
circuit model to obtain the mouth pressure. The reed is represented as a damped, driven, 
nonuniform bar. The clarinet is represented in terms of a scaled version of its input impedance 
impulse response. A convolution of the impulse response with the volume velocity determines 
the mouthpiece pressure. Use of the model is valid for both small- and large-amplitude reed 
oscillations. Many of the nonlinearities associated with the clarinet are incorporated in the 
model in a rather natural way. Several vocal tract configurations are investigated to determine 
the influence of the vocal tract on the player's air column impedance and the concomitant 
effect on the clarinet tone. 

PACS numbers: 43.75.Ef 

INTRODUCTION 

Time-domain simulation of complex acoustical sys- 
tems, such as the clarinet, can often be a powerful tool to 
supplement frequency-domain descriptions. This may be 
especially true when the system under study involves signifi- 
cant nonlinearities and when large amplitude and transient 
oscillations are studied. Ideally, a simulation model should 
match the actual physical system it represents as closely as 
possible in order to permit a study of subtle as well as gross 
functional behavior. We review briefly previous studies of 
the clarinet that generally have shown a progression from 
simpler to more complex models. 

Backus (1963) was the first to develop a successful 
mathematical theory which described small oscillations in a 
clarinet. He assumed a constant blowing pressure at the 
mouthpiece, treated the reed as a damped, simple harmonic 
oscillator, and dealt with the case where the reed was driven 
by small-amplitude, sinusoidal oscillations of the air col- 
umn. Backus was able to obtain a number of significant re- 
sults, such as expressions for threshold blowing pressure, 
and frequeney shift in the tone due to a phase shift in the reed 
vibrations relative to the mouthpiece pressure. Further- 
more, he was able to obtain very good agreement between his 
theoretical and experimental results. 

Benade and Gans (1968) were the first to investigate the 
nonlinear aspects of the clarinet. In their work, they devel- 
oped a qualitative, nonlinear theory for oscillations in wind 
instruments. Later, Worman ( 1971 ) developed the math- 
ematics to handle the nonlinear theory for the clarinet. He 
treated the reed as a damped, simple harmonic oscillator, as 
Backus had done, but he also considered nonlinear flow 
through the reed aperture. The nonlinear function describ- 
ing flow was expanded in a power series, which was then 
truncated in order to keep the algebra tractable. Worman 
then used the truncated expansion to study a tube with one 
resonance and one antiresonance. With this model, he was 
able to obtain good agreement between theory and experi- 
ment. Schumacher (1978) developed a method that applied 

an integral equation approach to Worman's equations. 
Schumacher's method, which did not suffer the limitations 
of truncation, was used to study a tube with three resonances 
and two antiresonances. 

Only steady-state oscillations were studied in the work 
mentioned previously. In another study of the clarinet, 
Stewart and Strong (1980) treated the clarinet reed as a 
nonuniform bar clamped at one end, which seems to be a 
more realistic representation. They represented the clarinet 
simply as a straight cylindrical tube with no tone holes to 
which a tapered mouthpiece was attached. Schumacher 
(1981) applied the method of Mcintyre and Woodhouse 
(Mcintyre et al., 1983) to study fairly realistic systems. 
Schumacher treated the reed as a simple harmonic oscillator 
and then developed an efficient method of calculating the 
convolution of the impulse response function with the vol- 
ume velocity to obtain the mouthpiece pressure. The method 
represented significant improvement in calculation effi- 
ciency, and greatly enhanced the possibility of numerically 
studying a fairly realistic clarinetlike system. Transient and 
steady-state phenomena were simulated in both the Stewart 
and Schumacher studies. 

In all the work mentioned previously, no consideration 
was given to the effect the player's air column might have. 
The player was simply represented by a constant pressure 
source. Mooney (1968) conducted an x-ray study in which 
he concluded that the shape of the vocal tract influenced the 
tonal spectrum of the clarinet. Clinch et al. (1982) published 
the results of a study in which the shape of the vocal tract was 
monitored with low-energy x-ray techniques. Using this ap- 
proach, they studied the spectra of various clarinet and saxo- 
phone tones and concluded that the vocal tract resonance 
frequencies must be properly adjusted to obtain good tone 
production. 

Benade and Hoekje (1982) and Benade (1983) studied 
the relationship of the input impedance of the player's air 
column to the reed impedance, the reed transconductance, 
and the clarinet impedance. They were able to demonstrate 
that the upstream impedance of the player's air column 
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should be important in tone production when it is compara- 
ble in magnitude to the downstream impedance of the instru- 
ment's air column. Benade (1983) reported player air col- 
umn (PAC) impedance peaks of 500-750 II (cgs) with the 
vocal tract configured for/o/,/e/, or/i/; clarinet imped- 
ance peaks of 350 II were reported. He also demonstrated an 
enhancement of the fourth harmonic of a clarinet tone when 
the PAC impedance was tuned to the frequency of the fourth 
harmonic of a clarinet tone. 

Backus (1985) measured values of PAC impedance of 
less than 50 II which were an order of magnitude smaller 
than those of the clarinet (• 800 II). He was able to find 
only minimal effects of the vocal tract shape on the harmonic 
structure of clarinet tones. He observed larger changes when 
a more sharply tuned resonator was substituted for the PAC. 

Hoekje (1986) measured PAC impedance values of 
about 50 II when the vocal tract was configured for/o/and 
values of about 300 II when the tract was/i/configured. He 
measured a first mode impedance peak of about 650 II for a 
clarinet fingered for written C4. 

A precursor to the present study (Strong and Sommer- 
feldt, 1986; Sommerfeldt, 1986, Appendix A) was motivated 
by the results of a study of vowel production by Allen and 
Strong (1985) who studied the interaction of the subglottal 
system with the glottis and supraglottal system in vowel pro- 
duction. The glottis was represented using a parametrized 
glottal area function developed by Titze (1984). The suprag- 
lottal system was represented by its impulse response and the 
supraglottal pressure was calculated as the convolution of 
the impulse response with the glottal airflow. Allen and 
Strong found that there was significant interaction between 
the subglottal system, the glottis, and the supraglottal sys- 
tem. 

In the present study, we have developed a time-domain 
simulation model and applied digital simulation techniques 
as a means of studying the effects of the PAC impedances on 
pressures and flow in a clarinetlike system. An effort has 
been made to incorporate several of the approaches dis- 
cussed previously, thereby hoping to incorporate as many of 
the important features as possible, while still being able to 
deal with the model computationally. The model is valid for 
both small- and large-amplitude reed oscillations, and is ca- 

pable of giving insight to questions concerning the vibration 
of the reed and damping due to the player's lip. The simula- 
tion incorporates a model of the PAC as well, so that ques- 
tions regarding the influence of the PAC can be investigated. 
Waveforms and spectra have been obtained for the reed 
opening, the airflow through the reed opening, the mouth 
(PAC) pressure, and the tube (mouthpiece) pressure. Ad- 
ditionally, experimental results have been obtained for the 
reed opening and compared with the numerical results. 

I. SIMULATION MODEL 

In developing the model for the simulation, there were 
three different components comprising the system which we 
considered: the PAC (including the lungs, subglottal 
network, and vocal tract), the clarinet reed system, and the 
clarinet. In an attempt to model as realistically as possible, 
while still being able to efficiently obtain numerical results, 
we adapted several methods which had been previously de- 
veloped by others. 

The model for the PAC consisted of a series of 16 con- 
catenated tubes, each 2.5 cm long. The vocal tract was repre- 
sented with seven of these sections, whose cross-sectional 
area could be altered to give different tract configurations. 
The trachea and bronchi were represented as uniform tubes, 
the trachea being 12.5 cm in length, and the bronchi 5 cm in 
length. The equivalent cross-sectional areas of the two sec- 
tions closest to the lungs were obtained from Ishizaka et al. 
(1976). The resistance of the lung network was represented 
as a lumped element resistance. Based on information from 
Ishizaka et al., a value of 4 II (cgs) was chosen as a reasona- 
ble estimate of the lung resistance. 

To obtain numerical results, the PAC was treated as an 
analogous electric circuit (Flanagan, 1972). The equivalent 
circuit is given in Fig. 1, where 

P/-- lung pressure, 

Un (t) = volume velocity of nth section, 

UGn (t) = volume velocity of nth loop containing com- 
pliance (Cn) and conductance (Gn), 

UAn (t) = volume velocity of nth loop containing con- 
ductance (Gn) and wall admittance 
(BnMnKn), 

L2 R2 R N LN LN RN 

B2 U•• LR 
UA 2 UG N •A2 M2 R E 

; 

,/G• / "I•/G._I_ • 

... 

FIG. 1. Electrical circuit analog of 
the player's air column. 
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RR (t) = reed aperture resistance, 

L R (t) = reed aperture inductance, and 

PT(t) -- pressure in mouthpiece, to be described later. 

The yielding walls of the PAC were modeled as a 
lumped element viscous-mass-compliance (BMK) circuit. 
Average values for B, M, and K were obtained from Ishizaka 
et al. (1975). Further details, including the governing equa- 
tions, can be found in Appendix A. (We have used capital 
letter symbols to represent many of our time functions, in 
part because U is often used to represent volume velocity. 
There should be little reason for confusion with frequency 
functions that do not appear in explicit equation form.) 

To solve the corresponding circuit equations on a com- 
puter, the integrals were represented as sums, and the deriva- 
tives as backward differences. The sampling frequency was 
set to 48 000 Hz, giving a sampling period of 21/zs. This 
value was chosen to ensure valid results in the frequency 
range of interest and to correspond to one of fhe standard 
audio sampling frequencies. 

The reed was modeled as a damped, driven, nonuniform 
bar, based on the approach developed by Stewart and Strong 
(1980). Most often, the reed has been modeled as a simple 
harmonic oscillator, but a nonuniform bar model seemed 
more realistic and more capable of incorporating reed inter- 
actions with other parts of the system. In particular, the 
changes in effective reed mass and stiffness as the reed moves 
against the mouthpiece, the changing reed-lip interaction 
with reed position and the interaction of the reed with the 
air-stream are more naturally represented. 

For transverse vibrations of a bar clamped at one end, 
the differential equation is given by Kinsler et al. (1982) as 

pA j2y = _ YAK 2 j4y (1) c•t 2 •x4 ' 

wherep is the mass density of the bar, A is its cross-sectional 
area, ¾ is its Young's modulus, K is its radius of gyration,- 
and y is the transverse displacement. For a bar with rectan- 
gular cross section, K -- b/(12) 1/2, where b is the bar thick- 
ness. If damping and a driving force are added, and account 
taken of the nonuniformity of the bar, the equation becomes 

pA 02y +R oy 02( 02Y) + F, (2) • -- YAK 2 
c•t 2 • - •x 2 •x 2 

where R is the damping per unit length, and Fis the external 
applied force per unit length. The values of the constants 
used correspond to typical values for cane. For p, we used a 
value of 0.5 g/cm 3 and, for Y, we used a value of 6 X 10 •ø 
dyn/cm 2. It is not claimed that these are optimum values, 
but a reed with these values would play. The reed resonance 
frequency with these values ranged from 2600 to 3000 Hz. 
The force Fresults from the PAC and tube pressures, as well 
as the Bernoulli force acting on the reed. A value of 50 g/ 
cm s was chosen for R as estimated from impulse excitations 
of an actual reed. An additional damping was added over a 
5-mm interval on either side of the location of the teeth, to 
account for the damping of the lip. It should also be noted 
that A and K are both functions of position for a nonuniform 
bar, and this must be taken into account when developing 
the difference equation from the differential equation. The 

force per unit length, F, is given by F = (PT- PS)w -- Fa, 
where PT is the pressure in the tube mouthpiece, PS is the 
mouth (PAC) pressure, w is the reed width over which the 
pressure is applied, and Fa is the Bernoulli force per unit 
length given as 

F• = (pw/2 ) ( U• /A • ) 2. (3) 
Here, p is the air density, w is the width of the reed opening, 
U• is the flow through the reed aperture, and A• is the aper- 
ture area. 

To solve the reed equation, an implicit numerical meth- 
od described by Ames (1977) was used. The reed was divid- 
ed into 1-mm sections, and the equation was solved for each 
section. In the method, the derivatives with respect to posi- 
tion at time t were written as the average of the derivatives at 
t + At and t- At. Thus 

= 1 
8x 4 8x 4 +a, 8x 4 ,-a, 

The boundary conditions which apply are y -- 8y/Sx -- 0 at 
the clamped end, andc• 2y/Sx2 = • 3y/Sx3 = 0 at the free end. 
Using the boundary conditions, the resulting equations can 
be written in a five-diagonal band matrix form, which was 
then solved using an IMSL routine (IMSL, 1982). More 
information, including the governing equations, concerning 
the reed model can be found in Appendix B. 

In running the model, the force due to the teeth was 
applied at a distance of 8 mm from the tip of the reed. As the 
model ran, if a section of the reed collided with the mouth- 
piece, that section was held closed for as long as the reed 
tended to move into the mouthpiece. If the reed tip closed, 
the airflow through the mouthpiece was also set to zero. The 
resistance of the reed aperture was obtained by approximat- 
ing the two wedge-shaped regions on the sides of the mouth- 
piece with rectangular sections, each section being 1 mm in 
length. The average opening of each section was used for the 
height of the rectangle, and the resistance of each rectangu- 
lar section was added in parallel to the resistance of the other 
sections. The opening at the tip was also treated as a rectan- 
gular section, whose width was 1.3 cm, and whose height 
was equal to the reed opening at the tip. Van den Berg et al. 
(1957) gives the equation for the acoustic resistance of a 
rectangular slit: 

R = 121•d/lw 3 q- 0.875pU/2(lw) 2, (5) 
where/, w, and d are the length, height, and depth of the slit, 
and U is the volume velocity through the slit. The first term 
is due to viscosity, and the second term is due to kinetic 
effects. Thus the resistance of each section was calculated 

using Eq. (5), and the results were added in parallel. 
The inductance of the reed aperture was determined us- 

ing the equationL = 2.85 X 10-3y• - •/2, whereyo is the open- 
ing at the tip of the reed. This equation was determined em- 
pirically by Stewart and Strong (1980) from the data given 
by Backus (1963), and fits his experimental data rather well. 

The clarinet was represented in terms of its impulse re- 
sponse h (t), obtained as the inverse Fourier transform of its 
input impedance. Frequency-dependent losses are incorpo- 
rated in the clarinet input impedance and are mapped into 
the impulse response in the transform process. In the model, 
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the pressure in the tube (mouthpiece) is calculated as the 
convolution of the reed volume velocity with the impulse 
response. Typically, the impulse response is of rather long 
duration, and calculating the convolution sum can be some- 
what costly. However, we opted to use the impulse response 
rather than the reflection function ofSchumacher ( 1981 ) in 
spite of increased computational costs. 

To obtain h (t), one must know the input impedance of 
the instrument. For our study, we used a simplified clarinet 
consisting of a 415-mm length of cylindrical tube with an 
inner radius of 7.25 mm and with a clarinet mouthpiece at- 
tached. Seven tone holes, corresponding to the thumb hole 
and the six finger holes on an actual B-fiat clarinet were 
placed along the tube. The positions of several of the holes 
were shifted slightly to simplify the numerical model, but the 
diameters of the tone holes correspond to those of an actual 
clarinet measured by Stubbins (1965). (The positions of the 
tone holes from the open end were 69, 93, 119, 174, 198, 229, 
and 248 mm.) Using this model of the clarinet, the input 
impedance was calculated using the method described by 
Plitnik and Strong (1979). The reed impedance was then 
added in parallel to the tube impedance. The impulse re- 
sponse was obtained via an inverse Fourier transform of the 
tube plus reed impedance. The impulse response was low- 
pass filtered with an 11-point Hanning window to eliminate 
computational, unphysical rapid fluctuations. 

With the model in place on the computer, the simulation 
of the player-clarinet system was accomplished by sampling 
the system at 48 kHz. At each time interval, calculations 
were done, beginning at the lungs, to find the pressure in the 
player's mouth (PAC pressure), the pressure in the tube 
(mouthpiece), the airflow through the reed opening, and the 
area of the reed opening. Both waveforms and spectra could 
be obtained for the various quantities of interest. 

Phototransistor Optical Fiber 

FIG. 2. Apparatus for measuring the reed motion. 

II. EXPERIMENTAL RESULTS 

An effort was made to obtain experimental values for 
the motion of the clarinet reed, since this could serve as a 
check on the reed model used in the numerical approach. 
Backus ( 1961 ) was able to obtain some results for the mo- 
tion of the clarinet reed when it was excited in an artificial 

blowing chamber. We were able to extend his work and ob- 
tain pictures of the reed motion while it was being excited by 
an actual player. To measure the reed motion, a phototran- 
sistor was mounted on one side of the mouthpiece at the tip 
of the reed. An optical fiber was mounted on the opposite ß 
side of the mouthpiece, as shown in Fig. 2. The other end of 
the optical fiber was connected to a laser to provide a suffi- 
ciently intense light source for the phototransistor. As the 
reed vibrated, the amount of light reaching the phototransis- 
tor varied accordingly. Thus the output voltage of the photo- 
transistor could be input to an oscilloscope, and the resulting 
trace mirrored the motion of the reed. Examples of the reed 
motion obtained for the written note C4 at two levels are 
given in Fig. 3. (References to notes are to written notes; 
sounding notes would be two semitones lower.) These re- 
sults and those for other notes are in good qualitative agree- 
ment with the results that Backus obtained by using an artifi- 
cial blowing chamber. 

/Yl///J/l/II 

FIG. 3. Measured waveforms of the reed motion for the written note C4: 
(upper) soft blowing; (lower) loud blowing. 
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III. NUMERICAL RESULTS MAX 

The calculated input impedance of the clarinet with 
three tone holes open for written C4 is shown in Fig. 4. The 
cutoff frequency appears to lie beyond 1600 Hz. The effect of 
the reed (with natural frequency set to about 3000 Hz) in 
parallel with the tube is apparent in the small magnitude of 
the impedance near 3000 Hz. This figure is consistent with 
Figs. 1 and 2 from Thompson (1979) in which consideration 
was given to the role of the reed in clarinet tone production. 
One would expect large impedance peaks above 1600 Hz 
because of the "inadequacy" of the short tone hole lattice. 
Although not shown, these become apparent when the input 
impedance is examined above the reed frequency. They 
would be expected to "color" the corresponding impulse re- 
sponse. 

The first 10 ms of the impulse response (obtained from 
the input impedance of Fig. 4) shown in Fig. 5 is more com- 
plex than similar impulse responses for some idealized clari- 
nets in which the tapered mouthpiece is replaced with an 
equivalent volume of cylindrical tubing (see, for example, 
Fig. 6 in Schumacher, 1981 ). Part of the additional complex- 
ity is due to a negative wake trailing the initial impulse which 
is characteristic of tapered structures (Ayers et al., 1985 ). A 
negative pulse returning from the first open tone hole about 
2.3 ms after the initial pulse and a second negative pulse 
returning from the open end of the tube after about 3.0 ms 
are apparent in the figure. A positive pulse returns in about 
4.6 ms after two round trips to the first open tone hole. 

With the model, we first computed steady flow volume 
velocities as a function of reed rest opening. The "clarinet" 
was replaced by a resistive load equal to its characteristic 
impedance, and the subreed system was replaced by a con- 
stant pressure source. As a result, no oscillatory flow oc- 
curred. A number of different rest openings of the reed were 
specified and the flow computed as the pressure difference 
across the reed was changed. The results shown in Fig. 6 
served as an aid in checking the reed and mouthpiece for 
proper behavior, as well as an aid in determining approxi- 
mate threshold blowing pressures. The results exhibit the 

i 

-MAXo 5 I0 
TIME (ms) 

FIG. 5. Impulse response for clarinet with three tone holes open. 

characteristics outlined by Benade (1976), and agree well 
with Stewart and Strong (1980). The flow increases initially 
as the pressure difference across the reed increases, but even- 

, 

tually a point is reached where the increased pressure differ- 
ence begins closing off the reed and the flow decreases 
towards zero. The curves are asymmetrical, and the maxima 
occur at larger pressure differences for larger rest openings. 

The model was also run to determine threshold blowing 
pressures. Again, a number of different rest openings were 
specified, and the blowing pressure was adjusted until the 
point was found where the model would just sustain oscilla- 
tions. It should be pointed out that in obtaining the threshold 
pressures, a constant blowing pressure was used in place of 
the PAC system, in order to correspond as closely as possible 
to previous measurements made by others. The threshold 
blowing pressures so determined lie along the line shown in 
Fig. 7. For comparison, the results obtained by Backus 
(1963) are also shown by the triangles joined by a dotted 
line. Backus obtained his results as a function of average reed 
opening, rather than reed rest opening, as we have done. 
Thus, in preparing the figure, we have assumed that the aver- 
age reed opening calculated by Backus is equal to half the 

IOOO 

800 

600 

400 

200 

0 o 2 

FREQUENCY (KHZ) 

FIG. 4. Calculated input impedance of the clarinet with three tone holes 
open for the written note C4. [Impedance is in units of acoustical ohms 
(cgs).] 

500 

• 400 

>- •00 

0 

Ld 200 

-• 100 
0 

0 o 20000 40000 60000 80000 

PRESSURE {dyne/cm2) 

FIG. 6. Volume velocity in the clarinet model as a function of pressure dif- 
ference across the reed for four different rest openings. 
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FIG. 7. Threshold blowing pressure for the clarinet model as a function of 
rest opening. The triangles joined by a dashed line show Backus' data. 

12- 

L 

I I I 

I0 20 30 

DISTANCE FROM LUNGS (cm) 
40 

FIG. 8. Cross-sectional area of the player's air column with an/a/-shaped 
tract. 

reed rest opening. It will be seen that the two curves agree 
reasonably well, particularly for larger rest openings. The 
discrepancies for smaller reed openings could result from a 
different reed stiffness or a different mouthpiece curvature 
lay between our model and the setup used by Backus. 

In early simulation runs of the model, reed-opening 
waveforms having too many high-frequency components 
were obtained. We inadvertently discovered that the prob- 
lem was made worse if the tube impulse response was scaled 
by a factor greater than 1. This led us to try scaling the im- 
pulse response by factors ranging from 0.4 to 0.8. We arbi- 
trarily chose a scaling factor of 0.5 for the simulations be- 
cause it gave reed-opening waveforms visually most similar 
to the experimental waveforms. There is some justification 
for this seemingly ad hoc procedure. Backus ( 1981 ) report- 
ed an anomalous behavior of a clarinetlike system which 
lowered the quality factor of the system by about a factor 
of 2 at amplitudes typical of•playing conditions. Keefe 
(1983) discussed nonlinear losses that lower impedance 
peak heights relative to their small signal values that would 
be obtained in typical impedance measurements. 

The model was run for several different notes using sev- 
eral vocal tract configurations to investigate any effect the 
PAC might have on the spectra of the clarinet. The vocal 
tract representations included: (1) constant blowing pres- 
sure, (2) /o/-shaped tract, (3) /i/-shaped tract with a 
strong resonance at about 900 Hz, and (4)/i/-shaped tract 
with a stronger resonance at about 900 Hz. Cross-sectional 
areas of the PAC with an/o/-shaped tract are shown in Fig. 
8; those with the first/i/-shaped tract are shown in Fig. 9. 
The input impedance calculated for the PAC with an/o/- 
shaped tract is shown in Fig. 10; that for the/i/-tract is 
shown in Fig. 11. The/o/-tract PAC impedance has peaks 
of less than 50 fl; the/i/-tract PAC impedance has a peak of 
about.170 fl. The second/i/-tract PAC impedance had a 
peak of about 300 fl. These values are consistent with 
Hoejke's (1986) measurements. Also, we investigated PAC 
impedance for 30 or so different vocal tract configurations. 
Only those PACs with/i/-like (or/i/-like) vocal tract con- 
figurations produced impedance peaks of more than 100 fl. 
The frequencies and amplitudes of the peaks could be shifted 

by altering the cross-sectional areas of the vocal tract sec- 
tions. 

Waveforms and spectra can be seen in Figs. 12-19 for 
different PAC and tube combinations. Except as otherwise 
noted, figures are for the written note C4 on the clarinet, 
with a lung pressure of 34 000 dyn/cm 2 and a reed rest open- 
ing of 0.4 mm. Waveforms are shown for the reed opening, 
airflow through the reed aperture, mouth pressure, and tube 
(mouthpiece) pressure. The reed-opening and airflow spec- 
tra are shown relative to their respective dc values. Both 
pressure spectra are shown relative to the dc value of mouth 
pressure. 

Waveforms for a constant mouth pressure of 33 000 
dyn/cm 2 are shown in Fig. 12. There is quite good qualita- 
tive agreement between the reed waveforms obtained nu- 
merically (Fig. 12) and experimentally (Fig. 3). The reed is 
closed for about half of each cycle, as found experimentally 
for the beating reed case such as this. The reed opening wave- 
form tends to mirror the tube pressure waveform as well, 
which is to be expected, since the reed is operating well below 
its resonance frequency, in its stiffness-controlled region. 
The reed opening spectrum shown in Fig. 13 exhibits a pre- 

12- 

9 

,3- 

0 o I0 20 30 

DISTANCE FROM LUNGS (cm) 
40 

FIG. 9. Cross-sectional area of the player's air column with an/i/-shaped 
tract. 
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FIG. 10. Input impedance of the player's air column with an/o/-shaped 
tract. 

dominance of odd harmonics as would be expected for its 
approximately square-wave motion under the present simu- 
lation conditions. The airflow spectrum shown in Fig. 14 
exhibits a nearly monotonic decrease of level with frequency. 
As expected, the spectrum of the constant mouth pressure 
(not shown) has no harmonic development. The tube pres- 
sure spectrum shown in Fig. 15 is consistent with combining 
the clarinet-impedance spectrum (Fig. 4) with the airflow 
spectrum (Fig. 14). 

Waveforms for a PAC with an/a/-shaped tract are 
shown in Fig. 16. The mouth pressure waveform is different 
from that of the constant mouth pressure case of Fig. 12, 
thus illustrating the effects of a pressure source with finite 
impedance. The other three waveforms are quite similar in 
the two cases. The mouth pressure spectrum shown in Fig. 
17 exhibits some harmonic development but at levels more 
than 30 dB lower than the de pressure. The other three spec- 
tra (not shown) are very similar to those of the constant 
pressure case. 

Waveforms for a PAC with an /i/-shaped tract are 
shown in Fig. 18. With the exception of the mouth pressure 
waveform, these waveforms and their corresponding spectra 
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FIG. 12. Calculated waveforms for the written note C 4 with a constant 
mouth pressure of 33 000 dyn/cm 2. 

(not shown) are very similar to those for the/a/tract and 
constant mouth pressure cases. The mouth pressure spec- 
trum for an/i/tract shown in Fig. 19 exhibits a fourth har- 
monic at least 25 dB larger than that of the/o/tract in Fig. 
17. (As noted previously, the pressure spectra are relative to 
the de value of mouth pressure.) 

This is due to the significant peak in the PAC impedance 
of Fig. 11 lying near the frequency of the fourth harmonic. 
These numerical results are consistent with experimental re- 
sults ofBenade ( 1983 ) and Hoekje (1986) in which a 40-dB 
mouth pressure level difference was found between the case 
of a "tuned" PAC and that of a "normal" PAC. They report- 
ed a 12-dB difference in tube pressure level for the two cases, 
whereas we observe essentially no change. 

A striking case is shown in Fig. 20 in which a modified 
/i/-tract PAC with a larger amplitude resonance at about 
900 Hz was used in conjunction with six tone holes open on 
the clarinet. In that case, the third partial predominates and 
takes over as the fundamental. This is the note one would 

obtain if the speaker key were opened. Presumably, the reso- 
nance of the PAC interacts to such an extent with the third 

harmonic (second mode of tube) in order to cause it to be- 
come the fundamental. After the simulation was run, this 
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FIG. 11. Input impedance of the player's air column with an/i/-shaped 
tract. 
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FIG. 13. Reed opening spectrum for constant mouth pressure. 
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FIG. 14. Airflow spectrum for constant mouth pressure. 
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FIG. 17. Mouth-pressure spectrum for a lung pressure of 34 000 dyn/cm 2 
and an/a/-shaped tract. 
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FIG. 15. Tube-pressure spectrum for constant mouth pressure. 
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FIG. 18. Calculated waveforms for the written note C4 with a lung pressure 
of 34 000 dyn/cm 2 and an/i/-shaped tract. 
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FIG. 16. Calculated waveforms for the written note C4 with a lung pressure 
of 34 000 dyn/cm 2 and an/a/-shaped tract. 
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FIG. 19. Mouth-pressure spectrum for a lung Pressure of 34 000 dyn/cm 2 
and an/i/-shaped tract. 
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FIG. 20. Calculated waveforms for the written note C 4 with a lung pressure 
of 34 000 dyn/cm 2 and a modified/i/-shaped tract giving rise to a larger 
amplitude PAC peak than that of Fig. 11. 

note was played on the actual simplified clarinet, and the 
third partial could be obtained as the fundamental when an 
/i/tract was used. In the simulation, the/i/-tract PAC 
whose resonance was smaller in amplitude (Fig. 11 ) did not 
produce this effect. 

Finally, in Fig. 21, we present an example of transient 
waveforms under conditions of constant mouth pressure. 
These show some features that are qualitatively similar to 
those shown in Fig. 35 of Hoekje (1986). However, the dif- 
ferences between parameter values in his experiment and our 
simulation are probably much greater for the transient case 
than for the steady-state cases. 

With the exception of small differences, three of the 
waveforms in Figs. 12, 16, and 18 appear to be very similar. 
Note, however, that the oscillations in the PAC have a much 
larger amplitude with the/i/tract than with the/a/tract. 
The fact that the mouth pressures are so dissimilar and the 
tube pressures so similar in Figs. 12, 16, and 18 is an indica- 
tion that the reed decouples the clarinet from the PAC to a 
large extent. 
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FIG. 21. Calculated initial transient waveforms for the written note C 4 with 
a constant mouth pressure of 33 000 dyn/cm 2. 

IV. DISCUSSION 

The main contribution of the research is the develop- 
ment of a "complete" player-clarinet model incorporating 
those aspects believed to be important in musical oscillations 
of a clarinet. The data presented may be regarded as repre- 
sentative of the mathematical problems involved; they may 
also be regarded as examples of clarinetlike systems of musi- 
cal interest. The limitations of the musical value of the data 

are due, in part, to a clarinetlike structure that is not entirely 
faithful to an actual clarinet. Given the system studied, there 
were further limitations such as: (1) inadequate specifica- 
tion of the player's air column under study, including dimen- 
sions and tissue properties; (2) inadequate specification of 
tooth position and lip damping on the reed; (3) ad hoc am- 
plitude normalization of the clarinet impulse response; (4) 
inadequate specification of lung pressure; and (5) too few 
experimental data with which to compare numerical data. 

In spite of the foregoing limitations, we feel that the 
model developed shows considerable potential for the study 
of many of the issues dealing with the clarinet. It seems to 
behave rather well with respect to the threshold blowing 
pressure. The reed area waveform was similar to the experi- 
mental waveform. The waveforms and spectra seem quite 
realistic. Several experimentally observed phenomena, such 
as enhancement of the fourth harmonic in the mouth-pres- 
sure spectrum and the decoupling of spectra between mouth 
and tube, were generated in the simulation. 

In the simulation, the vocal tract was demonstrated to 
be capable of influencing some spectra of the clarinet. Many 
of the data obtained show only subtle differences between 
different tract configurations, but some cases with more ob- 
vious differences were also found. An/i/-tract PAC appears 
capable of affecting particularly the partials in the region of 
800-1100 Hz. This may well be part of the reason why many 
clarinet teachers teach their students to use an/i/configura- 
tion in the higher register, and an/a/configuration in the 
lower register. 

In the future, an effort should be made to obtain more 
appropriate parameters for the model and to employ them in 
various combinations. More experimental data from the ac- 
tual system being modeled should be obtained with which to 
compare numerical results. It may be beneficial to add a 
speaker hole to the instrument to study the clarion register as 
there may be additional effects in that register which are not 
apparent in the chalumeau register studied. 
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APPENDIX A: PLAYER'S AIR COLUMN MODEL 

The player's air column was treated as an analogous 
electric circuit, as shown in Fig. 1. The differential equations 
which describe the system are: 
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P• -- U•(t)(R• + R•) --L• • 
dU•(t) 

dt 

1 f [(U•(t)-- UG,(t)]dt=O, C• 

1 f [ UG•(t) -- U•(t) ]dt C• 

+ (1/G•) [ UG•(t) -- UA•(t) ] = O, 

(1/G,) [ UA•(t) -- UG,(t) ] + B,[ UA,(t) -- U2(t)] 

1; +•-• [UA,(t) -- U2(t)]dt 

+ M,(dUA'(t) dU2(t)) = O, 'Z 

P•(t) -- U2(t)(R• + R2) -- (L• + L 2) dU2(t) 
dt 

1 ftr(t)- uG2(t)]dt-O, C• 

UGn (t) = volume velocity of nth loop containing com- 
pliance ( Cn ) and conductance ( Gn ), 

UAn (t) = volume velocity of nth loop containing con- 
ductance ( G n ) and wall admittance 
(BnMnKn), 

Rn (t) = reed aperture resistance, 

L n (t) = reed aperture inductance, 

PT(t) = pressure in mouthpiece, as described in the 
text. 

The yielding walls of the player's air column were mod- 
eled as a lumped element mass-compliance-viscous (MKB) 
circuit. Average values for B, M, and K were obtained from 
Ishizaka et al. (1975). The values chosen for this study were: 
B = 900 g/s, M = 1.8 g, and K = 150 000 dyn/cm. In solv- 
ing the equations, the integrals were represented as sums, 
and the derivatives as first-order, backward difference equa- 
tions. 

P•v(t) -- U• (t)(R•v + R• (t)) 

-- [L•v +Ln (t)] 
dUn(t) 

dt 
• - PT(t) = O, 

where 

R n = Sn In (•;p•f) 1/2/2/t 2 
Ln = pln/2An, 

- C n = Anln/pC 2, 

Gn = [Sn (• - 1)ln/pC2]•A•f /cvp, 
P• = lung pressure, 

In = length of nth section, 

Sn = circumference of nth section, 

•n = area of nth section, 

c = 35 • cm/s, 

• = 0.•0186 dyn s/cm 2 • viscosity of air, 

p = 0.• 114 g/cm 3 • density of air, 
f= frequency, 

A = 0.055 X 10 -3 cal/cm s deg•coefficient of heat 
conduction, 

cv = 0.24 cal/g deg • specific heat of air, 
• = 1.4•adiabatic constant, 

Un (t) = volume velocity of nth section, 

APPENDIX B: MODEL OF THE REED 

We repeat Eq. (2) which is used to determine the reed 
motion' 

pAC)2y+Rc)Y •2( a92y) + F. •t 2 •'-• = •X 2 YAK 2 •X 2 
If we let the area A be written as wb (x), where w is the width 
of the reed and b (x) is the thickness of the reed at position x, 
and K 2 be written as b 2 (x) / 12, then the equation can be 
written as 

pwb(x) a9y2 a9y 1 02( a92y) •-• -3- R • = Yw b 3 a9t 12 • (x) + F. 3x 2 

For first derivatives, we use the central difference formula: 
a9y/3x • (Yi + • - Y•- • )/2Ax. For second derivatives, we 
use the central difference formula: a9 2y/a9X2 
• (Yi- • -- 2Yi -Jr' Yi + 1 ) / ( • ) 2. Thus the term on the right- 
hand side of the equation becomes 

692( 692y) (Yi 2d -- 2Yi lj q- Yid ) b3 • 53 - -- i--1 3X 2 '• ( a x ) 4 

2 (Yi •3 -- 2Yi,J --• Yi q- 1,j )b 3 - i 

(•)4 

(Yi3 -- 2Yi + •3 -I- Yi + 23 )b 3 i+1 
+ , 

(•)4 

where the second index on y refers to time. For the x deriva- 
tives at time t -- t•, the average of the values at t -- t•_ • and 
t = t•+ • is used. If we define constant A as A --- Yw(At)2/ 
24(Ax) 4, then the difference equation can be written as 

Ab 3 2A ( b 3 3 [pwb i -•RAt A b 3 3 3 i- lYi- 2d + l - i-1 '+' b i )Yi-13 + l '+' '+' -Jr' ( i--1 + 4b i '+' b i + l ) ]Yi3 + l 

2A( b 3 3 -- 2pwbiYi3 Ab 3 3 3 i + b i+ • )Yi + •3 + • + Ab 3 • i + •Yi + 23 + 1 • • i-- lYi-- 23-- 1 '3t- 2• (b i- 1 '3!- b i )Yi- •d- 1 

+ [«RAt pwb• g (b 3 3 3 __ __ int_ 1 q-4bi q-bi_•)]yi3_• 

+ 2A(b 3 3 Ab 3 i '31- b iq- 1 )Yi+ •d- 1 -- i+ •Yi+ 2•j-- 1 -I- F(At) 2. 
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The boundary conditions'that the reed must satisfy are 
y = 3y/3x = 0 at x = 0, and o• 2y/3x2 = • 3y/3x3 = 0 at the 
tip of the reed. If there are N sections for the reed, with the 
N th section being the tip of the reed, the difference equations 
that satisfy the boundary conditions are 

Yo, i=0 (y=0 at x=0), 

(•Y =0 at x=0) Y-•'i =Y•'• 3x ' 
ys+ •.• = 2ys,• -ys_ •.•, 

YN + 2,• = YN.• - 4y•_ •,• + y•_ 2. i 

o•2y _ o•3y -0 at x= - - ß 
The above equations can be written as a system of simulta- 
neous equations that can be solved implicitly. The resulting 
coefficient matrix is a five-diagona. 1 band matrix, which was 
solved using the IMSL routine LEQT2B (IMSL, 1982). 

The values chosen to run the model were as follows: 
Y = 6 X 10 •ø dyn/cm •, p = 0.5 g/cm 3, w = 1.3 cm, R = 50 
g/cm s, At = 1/48 000 s, and Ax = 1 mm. The values for 
b(x) can be obtained by measur•ing a clarinet reed. For the 
region of interest, the function b(x) = 0.081 -0.047x was 
found to match the measurements of an actual reed rather 

well, so this function was used to determine the reed thick- 
ness. The value of R can be obtained by running the reed 
model separately. If the reed is excited by an impulse, the 
reed will oscillate with an exponentially decaying amplitude. 
The value of R determines how quickly the amplitude de- 
cays, and R can be varied until the decay matches the decay 
that can be observed experimentally by exciting the reed 
with an impulse force. 

When the model was functioning, the location where the 
teeth apply a force on the reed, and the magnitude of the 
applied force were specified. This determined the initial rest 
opening between the reed and the mouthpiece. The rest 
opening between the reed and the mouthpiece with no force 
applied was given by 0.04667x •, where x is the distance along 
the lay, or curved part of the mouthpiece. The lay was taken 
to be 15 mm in length. This corresponds to a mouthpiece 
with a medium-short lay and a medium-open tip opening. 
Also, additional damping was added to the reed for 5 mm on 
either side of the location of the teeth to account for the 

damping of the lip in contact with the reed. 
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