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Them=1 diocotron mode in non-neutral plasmas has long been thought of as a shifted equilibrium,
and its frequency has been approximately calculated in this way by Fine and Dfidcydl. Plasmas

5, 601 (1998)]. This article shows that this idea can be coupled with a standard axisymmetric
equilibrium calculation on a grid to calculate the frequency of this mode to very high precision
including both finite-length and thermal effects, provided that the Debye length is small enough. As
the Debye length begins to approach the plasma size not only does the shifted equilibrium
calculation fail to predict correctly the frequency of the mode, but the idea that the mode is a simple
shift of the original equilibrium also becomes invalid. 8004 American Institute of Physics
[DOI: 10.1063/1.1803840

A conceptually straightforward way to calculate the dio- analytically by means of a Green’s function technigueé.
cotron mode frequency in non-neutral plasmas that has beemould be better if there was a method for findiftg,) due to
investigated approximately by Fine and Driscoif to treat  external sources that used the full field on a computational
the mode as a shifted equilibriugm=1 perturbation In this  grid, for then them=1 diocotron frequency could be com-
scheme the plasma is shifted sideways inxtdirection by  puted accurately as part of a standard non-neutral plasma
an amount D and then both the perturbed density equilibrium calculatiorf. A method for carrying out this cal-
ni(r,z) cosd and perturbed electrostatic  potential culation is the subject of this paper.
¢1(r,z)cosd are calculated. The plasma and external/  To find this method we simply write down the obvious
induced-charge potentials are then separated in the wéyll-field extension of Eq(2), then separate the external and
given below: plasma parts,

¢0(r,2) = d)Op(rlZ) + ¢Oe(r,Z), ¢1(r,2)
= ¢1p(r,2) + ¢ye(r,2), (1) (Fp=- QI (N V o+ ngV py)dV, (4)

where the subscrip indicates the “external” potentigtiue

both to equilibrium confining fields and induced-charge©r
fields) and the subscripp indicates the potential of the
plasma alone. The external components of the field are then ,

allowed to act on the plasma and the first-order contributions (Fyp=- qf (N V o + Mo V re)dV = qf (N1 V' bop
to the electric force are integrated over the volume of the
plasma to find the net force on the shifted plasma:

+no V ¢pp)dV. (5)

If the second integral were to vanish then we would have
(F1»=(Fy) and the diocotron frequency could be calculated
from the full field on the grid.
That the second integral is zero is obvious on physical
rounds. It is the net self-force on the plasma after it has
‘geen shifted and allowed to come into equilibrium, and the
plasma cannot exert a net force on itself, as pointed out by

(Fp=-q f (N V et No V ¢p10)dV. 2

In this integral only the component of the force in the
direction of the shift will survive(the x component in this
case so the diocotron mode frequency can be compute
from the netE X B drift of the shifted plasma from

(F1 Fine and Driscolf: Of course, having the integral vanish on
“p= " \BD’ ) physical grounds and having it vanish on a computational
a grid are not the same thing, but it will be seen later in this
whereN is the number of particles in the plasn@js the  paper that ignoring it leads to accurate results.
charge on each particle, alis the magnitude of the uni- The computation of the diocotron mode frequency from
form confining magnetic field(This equation is essentially an equilibrium calculation on a grid proceeds as folloyes:
the same as Eq5) in Fine and Driscolt) First compute an axisymmetric equilibriufigb) Mathemati-

This conceptually simple method is not so straightfor-cally shift the equilibrium density in thedirection and com-
ward in computational practice because it is difficult to sepapute the perturbed density(r,z)cosd and perturbed poten-
rate the plasma and external components of the field whetial ¢,(r,z)cosé for this shifted equilibrium using a
the field is computed on a gridFine and Driscoll did this perturbed equilibrium calculation on are grid. (c) Finally,
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compute the gradients @f, and ¢, and use them in Eq¢3)

Computing the m=1 diocotron frequency...

Equilibrium Diocotron vs. Simulation

5357

and (4) to find the diocotron frequency. Each of these steps 1.5 >
will now be discussed in detail. o
(a) Solve the nonlinear Poisson equation that describes ¢ 1.4}
non-neutral plasma equilibriufn. o Equilibrium
(b) As a first approximation to the solution of the per- Simulation
turbed equilibrium problem it is possible simply to shift the 1.3 + Fine/Driscoll +
plasma in thex direction, resulting in a perturbed density a °
given by the formula i *o
g 1.2 3
~ &no o L ]
n1=—Dx-Vno=—D;cose. (6) 11 e )
gt o
_ , , _ _ A=22/(R L) °
Given this density, then=1 Poisson equation D pp o"
1¢ Q—&; B—
1o( 04\, Fb_n__dm T a
r == (7
ra\'ar )T 2 T €
0.9 : :
can then be solvedNote that the factor cog has been sup- 1()'3 1()‘2 10_1
pressed for botm; and ¢, in Eq. (7).] A

Numerical experiments show that this method actually
1. The ratios of computed diocotron frequencies to results from a 3D
comes reasonably close to the correct answer, but because‘t r\fe -dependent simulation are displayed. The open circles are for the nu-
does not allow the perturbed plasma to relax to axial thermaherically computed perturbed equilibria described in this paper. The crosses
equilibrium, it is not yet correct. To obtain a more accurateare from the approximate analytic calculation of Fine and Dris@df. 1).
resultsrzecall that the general form for the density in equilib-
rnum i

n(r,z) = Nig(r) exg - q(é(r,z) — ¢(r,0) /KT], (8)

wheren,,4(r) is the radial density profile in the plasma mid-
plane. In the shifted equilibrium the perturbed density, result-
ing from small changes in,,;; and ¢ is given by

Ny(r,2,6) = Nymig(r)exp— d(eo(r,2) = ¢o(r,0) /KT]
_ Al a(r,2) — ¢4(r,0)]

step of the electrostatic relaxation and substitute it back into
Eq. (7) for the next step. It is found that underrelaxing on
this iteration is usually necessary:

n1m|d 6nlm|d+(1 e)nrlnmid' (11)

wherem denotes iteration level ang=0.1.

(c) With the perturbed density and potential in hand the
diocotron frequency can be computed from E@.and(4)
as follows. First calculate thederivatives of the equilibrium

H il 9 .
kT No(r2) © and perturbed potentials
which may then be used in Poisson’s equati@n The un- Jebo _ cose% (12)
known profile n;,i((r) can be determined by noting that X or
when the plasma is shifted and then relaxed axially, the re-
laxation takes place along the magnetic field lines, whicHf"
preserves’ndz Son;,(r) can be determined by requiring ey by ., P
that it produce a thermally relaxed perturbed density with the 5y cos O Sir? - (13)
same profile offn;dz as that of a rigid shift
Then substitute these results into E4) to obtain
o
ndz=-D | —d 10 ) J
[ nte=-0 [ % R {n()(r,z)(nl(r,z)ﬂ’ 0
17 ar

at each radius. ¢1

With this specification ofy;, Egs.(7), (9), and(10) form ) rdrdz, (14

a nonlinear system of equations fgr, (through the con-
straint onny ;9 Which can be solved by an iteration processwhere the integration i has already been performed in the
similar to that used for unshifted equilibrium proble?ns. volume integral.

Note, however, that the difficulties which arise in the general ~ Numerical experiments using a three-dimensiof&ib)
equilibrium problem becauspp/kT appears as the argument drift-kinetic simulatioff show that this method works very
of the exponential function are avoided here because we argell (better than 1% accuraggs long as the Debye length is
linearizing in small®,. This makes Eq(7) almost linear, small, as shown in Fig. 1. In the simulations an axisymmetric
except for the relatively minor adjustment required onequilibrium was loaded into the simulation program after
Nimig(r). The iteration technique used for determiningwhich gradually, over the first few hundred time steps, the
Nimig(r) is simply to solve Eqs9) and(10) for n*lmid ateach plasma was shifted off axis by a total of about 3% of the
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TABLE I. The plasma parameters used in the simulations displayed in Fig. 1 are listed in order of inckeasing
The central density ig,, the temperature i$, the midplane plasma radigsalf-density pointis R, the plasma

half length (half-density poink is Z,, the magnetic field is, the central rotation frequency is,, and the
simulation diocotron frequency isp. In all cases the plasma was contained by a grounded cylinder of radius
4 cm with end rings of length 3 cm set at a confining voltage of =100 V. The density profile was nearly
flattopped with thermal edges mandz a few Debye lengths wide.

No(x10%/m?  T(eV) Ry(cm) L, (cm) B (T) r wo(X10°/s)  wp(X10°/s)
3.00 0.10 2.00 16.7 0.01 0.000 555 2.71 0.768
1.00 0.10 2.00 23.3 0.01 0.001 19 0.905 0.251
1.00 0.10 2.00 20.6 0.01 0.001 34 0.905 0.254
3.00 0.10 2.00 6.55 0.01 0.001 41 2.71 0.931
3.00 0.10 2.00 4.50 0.01 0.002 05 2.71 1.030
0.10 0.01 2.00 12.9 0.0025 0.002 14 0.362 0.109
1.00 0.10 2.00 11.7 0.01 0.002 36 0.905 0.276
1.00 0.10 2.00 10.8 0.01 0.002 55 0.905 0.280
1.00 0.20 2.00 10.8 0.01 0.005 10 0.905 0.285
1.00 1.00 2.00 235 0.01 0.0118 0.905 0.305
1.00 0.40 1.62 10.8 0.01 0.0126 0.905 0.245
1.00 1.00 1.91 11.4 0.01 0.0254 0.905 0.298
1.00 1.00 1.77 12.1 0.01 0.0259 0.905 0.279
1.00 2.37 1.77 24.2 0.01 0.0306 0.905 0.270
1.00 4.33 1.77 25.3 0.01 0.0534 0.905 0.295
1.00 2.37 1.77 13.1 0.01 0.0567 0.905 0.316
1.00 6.87 1.77 26.4 0.01 0.0813 0.905 0.318
1.00 4.00 1.91 13.3 0.01 0.0874 0.905 0.377
1.00 4.33 1.77 14.2 0.01 0.0954 0.905 0.352
1.00 4.00 1.62 13.2 0.01 0.103 0.905 0.353
1.00 10.0 1.77 27.4 0.01 0.114 0.905 0.340
1.00 10.0 1.77 16.2 0.01 0.193 0.905 0.416

conducting wall radius(The time stepr in the simulation is  to about 3%(about the level of accuracy quoted in their
restricted by a Courant condition on the plasma frequency, spaper when they checked their calculation against experi-
typically 7= w,/2.) After the shift was finished the plasma mentally measured frequencje8ut for larger values of\
was allowed to evolve freely and the position of the centerneither calculation works well.
of-mass was monitored. When the run was finished the The reason for the inaccuracy of the shifted-equilibrium
center-of-mass data were analyzed to find the instantaneousethod whenA is not small is, as pointed out by Peurrung
angular frequency, which is the diocotron frequency. Ex-and Fajans, that particles of different axial kinetic energy
amples of the time evolution of this frequency are displayechave different rotation frequencies due to the way they turn
in Fig. 2 and the simulation parameters used to produce Figaround axially in the end of the thermal plasma. They saw
1 are displayed in Table I. In all cases the equilibrium pro-significant smearing effects in end-on pictures of the plasma
files were roughly flattops with thermal edgegdths on the  shape as\ approached unity, but this same mechanism ap-
order of the Debye lengjhin bothr andz parently affects the shifted-equilibrium calculation at much
The relevant parameter involving the Debye length thakmaller values of\. Figure 2 shows simulation traces of the
determines whether the diocotron frequency can be accunstantaneous angular frequency of the plasma center-of-
rately calculated by the shifted-equilibrium method seems tonass for two plasmas in the data set of Fig. 1, one with
be theA parameter of Peurrung and Fajahs: =0.0024 and the other with =0.081. Notice in the case of
)\ZD the largerA that a rigid shift seems not to be the correct
~_—, (15) perturbation to produce a mode initially, but that things settle
Rolp down later on. For small\, however, an excellent mode is
where)p, is the Debye lengthR, is the plasma radius, and obtained. Figure 3 shows the result of dividing the particles
L, is the full plasma length. Figure 1 shows a comparisorin the simulation into four different axial energy groups and
between the perturbed equilibrium calculation, the approxiimonitoring the instantaneousosition of the center-of-mass
mate calculation of Fine and Driscoll, and results from theof each group. Notice that for small each group behaves in
3D simulation for 22 different equilibria with various radii, the same way, indicating that a simple shift produces a mode.
lengths, and profiles. As long &s is below about 0.01 the But for the case of largek the four groups are disorganized
perturbed equilibrium calculation is accurate to about 1%at first. Only later on do they synchronize, indicating that a
and the approximate method of Fine and Driscoll is accurateliocotron mode has been established.
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Center-of Mass X: 4 Energy Groups
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FIG. 2. Simulation results for the angular velocity of the plasma center-of-FIG. 3. Thex position of the center-of-mass for four different equally-

mass are displayed. In the upper panel the Debye length is smallAwith popule_ated energy groups for‘two different s_imulations are displ@ymbst;
=0.0024, while in the lower panel it is larger, with=0.081. Both simula-  Solid line, low; dashed, medium: dotted, high; dashxddthen A is small

tions were seeded with a rigid sideways displacement, and it is clear that ifhe four groups are synchronized for a rigid shift perturbation, and the per-
the lower panel this procedure does not give a clean mode. turbed equilibrium calculation accurately predicts the diocotron frequency.

When A is larger they are not synchronized at first, but gradually become
synchronized after the perturbed density evolves. In this case the diocotron

N frequency after synchronization is not well-predicted by the rigid-shift/
Note One of the workers SqueSted that the I’Igldlty pa_perturbed equilibrium calculatiothe equilibrium prediction is high by

rameter(axial particle bounce frequency divided by the cen-209.

tral rotation frequencymight also be relevant to this study.

Unfortunately, nearly all of the simulations had the same

values for the magnetic field and the density, so rigidity andion does not work well, but is of little significance when it

A increased and decreased together as the temperature wies.

varied. To explore this issue at least somewhat, several more In conclusion, it is found that a relatively simple per-
simulations were run at both small and largein which  turbed equilibrium calculation can be added to the standard
everything was kept the same except the magnetic fieldaxisymmetric equilibrium calculation used by many re-
which varies the rigidity while keepingh constant. It was searchers in non-neutral plasma physics to computenthe
found that forA below about 0.01 decreasing the rigidity by =1 diocotron mode frequency, provided that the Debye
a factor of 10(down to values near 1, or belgwaused only length parameteA:)\%/(Rpr) introduced by Peurrung and
small changes in the ratio of the simulated diocotron fre-Fajans is on the order of, or smaller, than 0.01. Such equi-
qguency to that obtained from the equilibrium calculationlibrium calculations are already used to help diagnose ex-
(about 1%, which is the level of accuracy for the cases studperimentally produced plasmas, and this extension provides
ied herg. But with A near 0.1, decreasing the rigidity down an additional tool for better understanding of these plasmas.
to values near 1 causes a larger shift in this rgtiothe case
with A=0.0813 when B was changed from
0.01 to 0.00033 T the simulation frequency changed from (1993,

3.18X 10 to 1.02x10'/s, a ratio shift of 6%9.So the rigid-  3a"j peurrung and J. Fajans, Phys. FIuidSB4295(1993.
ity seems to matter somewhat when the equilibrium predic-*G. w. Mason, Phys. Plasmak0, 1231(2003.
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