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Modes in a non-neutral plasma of finite length, mÄ0,1
S. Neil Rasbanda) and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 11 November 2002; accepted 17 January 2003!

For realistic, cold equilibria of finite length representing a pure electron plasma confined in a
cylindrical Malmberg–Penning trap, the mode spectrum for Trivelpiece–Gould,m50, and for
diocotron,m51, modes is calculated numerically. A novel method involving finite elements is used
to successfully compute eigenfrequencies and eigenfunctions for plasma equilibria shaped like
pancakes, cigars, long cylinders, and all things in between. Mostly sharp-boundary density
configurations are considered but also included in this study are diffuse density profiles including
ones with peaks off axis leading to instabilities. In all cases the focus has been on elucidating the
role of finite length in determining mode frequencies and shapes. Form50 accurate
eigenfrequencies are tabulated and their dependence on mode number and aspect ratio is computed.
For m51 it is found that the eigenfrequencies are 2% to 3% higher than given by the Fine–Driscoll
formula @Phys. Plasmas5, 601~1998!#. The ‘‘new modes’’ of Hilsabeck and O’Neil@Phys. Plasmas
8, 407 ~2001!# are identified as Dubin modes. For hollow profiles finite length in cold-fluid can
account for up to;70% of the theoretical instability growth rate. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1559683#
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I. INTRODUCTION

Perhaps no theme in the physics of pure electron p
mas confined in a Malmberg–Penning trap has recei
more attention than the modes of oscillation for equilibriu
plasmas. A review of the dynamics of non-neutral plasm
and a summary of results is given by Gould.1 A standard
treatise on the whole subject of non-neutral plasmas
Davidson’s book.2 So what does yet another paper on th
topic bring to the table? In short, an accurate and deta
calculation of the mode frequencies and eigenfunctions
plasma offinite length, using realistic equilibrium shapes
which span the entire gamut of shapes from pancake
elongated cylinders. The limitations are that the study
based on a cold-fluid model of the plasma and that the c
putations are numerical.

In Sec. II we discuss briefly the equilibrium calculatio
In Sec. III we review the basic equations of the cold-flu
model and the derivation of the mode equation. In Sec.
we considerm50 modes and in Sec. Vm51 modes. Section
VI contains our summary and conclusions. In the Appen
we describe the numerical methods that lie at the founda
of our study of modes.

II. EQUILIBRIUM

A major motivation for this study is to use realistic equ
librium shapes, avoiding restriction to infinite length
simple shapes like rectangles or spheroids. We have us
standard equilibrium code as described in Ref. 3 that
proved useful in many studies of non-neutral plasmas
Malmberg–Penning traps. The only output from this co
needed for the present study is the plasma shape. To

a!Electronic mail: neil_rasband@byu.edu
9481070-664X/2003/10(4)/948/8/$20.00
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sharp-boundary profiles we compute thermal equilibria w
the temperature low enough that the Debye length satis
lD /r plasma,0.05. The plasma boundary edge for these c
equilibria is defined to be where the density is 0.549 of
central density~within the Debye sheath!, so that the number
of particles outside this point just equals the number miss
from just inside it in the thermal equilibrium. This numbe
comes from choosingg050.599 rather than ln 2 in the ap
proximate equilibrium density formula in Ref. 4. For com
parison and as a check some equilibria have been comp
with the temperature and/or density edge decreased by a
tor of 10; we find virtually no effect on the eigenfunctions
eigenfrequencies of the various modes. The lower temp
ture equilibria take substantially longer to compute and
were not routinely used. For studies of the mode depend
cies on profile effects we computed equilibria where the m
plane density profile is specified and for these we defined
plasma boundary to be where the density falls to 0.01 of
central value. Once again the results are insensitive to
precise value and remain unaffected if it is increased by e
as much as a factor of 10.

III. COLD FLUID MODE EQUATION

We have focused our attention on a cold-fluid model
several reasons:~1! Cold-fluid theory gives the basic collec
tive behavior.~2! Most of the mode studies have been do
in plasmas with temperatures on the order of 1 eV or less
such temperatures unless the ratior plasma/r wall is very small,
or lD /r plasma;1, temperature effects on mode frequenc
are at most a few percent.~3! Even though finite tempera
tures can play an important role in determining the speci
of dynamic behavior, e.g., for hollow profiles and instabi
ties, it is important to understand in isolation the role of fin
length and plasma shape on these dynamics.
© 2003 American Institute of Physics
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For a cold-fluid model of a non-neutral plasma cons
ing of particles of massM and chargeq we focus our atten-
tion on the density, velocity, and electrostatic potential fiel
We write these in the form

n~r ,z,t !5n(0)~r ,z!1n(1)~r ,f,z,t !,

v~r ,z,t !5v(0)~r !1v(1)~r ,f,z,t !,

F~r ,z,t !5F (0)~r ,z!1F (1)~r ,f,z,t !,
e
th
to
e

e

-
d.

a
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where a~0! superscript denotes an equilibrium quantity and
~1! superscript denotes a first-order perturbation field.
also make use of the drift approximation wherev(0)(r )

5c(E3B)/B25(c/B)(]F/]r )f̂5rv0f̂ where the mag-

netic field B5Bẑ is constant;c is the velocity of light. We
assume at andf dependence in the perturbed fields of t
form exp(2ivt1imf). Then a linearization of the usual fiel
equations~the continuity equation, the force or momentu
balance equation, and Poisson’s equation! leads to the fol-
lowing equations for the first-order fields inside the plasm
e

rimes

portant
vz
(1)~r ,z!52 i

q

M ~v2mv0!

]F (1)

]z
, ~1!

n(1)~r ,z!52
q

M

m

rV

]n(0)

]r

F (1)

~v2mv0!
2

q

M ~v2mv0!

]

]z S n(0)

~v2mv0!

]F (1)

]z D , ~2!

¹2F (1)524pqn(1). ~3!

Equilibrium quantitiesn(0) andv0 do not depend onz, except that outside the plasman(0) is 0. Combining the last two of thes
equations gives the mode equation for the perturbed potential inside the plasma

1

r

]

]r S r
]F (1)

]r D2
m2

r 2 F (1)2
m

rV
~vp

2!8
F (1)

~v2mv0!
1 F12

vp
2

~v2mv0!2G]2F (1)

]z2
50. ~4!

We note thatV5qB/Mc andvp
254pq2n(0)/M are the cyclotron and square of the plasma frequency, respectively. P

denote differentiation with respect tor.
Equation~4! and Poisson’s equation for the perturbed potential outside the plasma can both be included in the im

and useful form

¹•~e•¹F (1)!50, ~5!

where

e53
1

i

VE ~vp
2~r !!8

~v2mv0~r !!
dr 0

2 i

V E ~vp
2~r !!8

~v2mv0~r !!
dr 1 0

0 0 12
vp

2~r !

~v2mv0~r !!2

4 . ~6!
also

ld
r
a
nu-

-
f the

to
s
ix.

f

Integrating Eq.~5! over a small volume that includes th
surface of the plasma, using the divergence theorem and
letting the sides of the volume in the normal direction go
zero in the usual way gives the jump condition on the p
turbed potentialF (1) across the plasma surface:7

n̂•~e•¹F (1)!u i5n̂•¹F (1)uo , ~7!

where the subscriptsi and o denote inside and outside th
plasma surface, respectively.

IV. AXISYMMETRIC „mÄ0…

The m50 case with a flat-top density profile in a cold
fluid model was first calculated by Trivelpiece and Goul5

The effects of finite length were approximately included in
en

r-

calculation by Prasad and O’Neil6 but did not include the
effects of realistic equilibria. These researchers studied
m51 and higher modes. In a seminal paper Dubin7 analyti-
cally solved the problem of finding the eigenmodes for co
spheroidal equilibria with the conducting walls infinitely fa
away. Jenningset al.8 treated the electrostatic modes for
cold, finite-length, non-neutral plasma and surmounted
merical difficulties by taking aT→0 limit of a warm fluid
model. In some respects them50 portion of the present pa
per can be considered as an extension and refinement o
calculation by Jenningset al.

Figure 1 shows an example of a scan in frequency
locate the values ofv/vp corresponding to the eigenmode
of the equilibrium, as described at the end of the Append
This scan is for an odd parity mode inz at an aspect ratio o
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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a59 and corresponds to the third row in Table I. Seve
additional modes beyond those labeled can clearly be id
tified in this scan. Once the frequencies of the modes h
been roughly located in this way, then a scan with finer re
lution determines the frequency to higher accuracy. Sev
mesh triangulations are used to check that at least th
significant-figure accuracy is obtained in the tabulated
sults. The choice of mesh can also affect the degree
smoothness for the numerical eigenfunction as well. Figu
shows sample eigenfunctions for the~1,0! and ~2,0! modes
with v/vp50.140 and 0.262, respectively. Within a lon
plasma eigenfunction solutions to Eq.~4! for the ~1,0! and
~2,0! modes are proportional toJ0(ar)sin(kz) and
J0(ar)cos(kz), respectively. For a solution the constantsa
and k are related bya2/(1/(v/vp)221)5k2. These eigen-
functions are clearly consistent with solutions displayed
Fig. 2. By fitting numerical data to polynomial approxim
tions to the eigenfunctions for a fixedr or a fixed z near
(r ,z)5(0,0) we find values fora and k consistent with the
previous relation.

FIG. 1. An example of a scan in frequency to discover the singular value
v/vp(0) as described at the end of the Appendix. This scan is
r plasma/r wall50.25 anda59.0 for an even parity mode inz.
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For odd modes inz Table I tabulates scaled mode fre
quencies for an assortment of aspect ratios (a) for the
plasma filling 1/4 of the cylinder radius.

Table II gives the same for even modes inz. As the
aspect ratio goes down the scaled mode frequencies
pushed ever closer to the bounding valuev/vp51 and the
separation between the frequencies decreases. Therefor
numerical computation of the modes becomes more o
challenge asa decreases. For very oblate plasmas the sca
mode frequenciesv/vp with 0 radial nodes become bunche
near 1 and it becomes increasingly difficult to distinguish
modes from the general hash. Dubin’s dispersion relat
gives a good estimate for these frequencies and there
reduces the interval over which one must search to loc
them. Also considerably more elements must be included
obtain smooth eigenfunctions.

From Figs. 3 and 4 one can see the manner in which
frequencies for a real equilibrium within a conducting cyli
der differ from those of an isolated spheroid.

We note that the code data in these figures and in Ta
I and II can all be fit to within a few percent by the functio

v/vp51/~11ma!n, ~8!

wherem andn depend on the mode and are given in Tab
III. The fractional deviation of the values given by this fun
tion from the numerical values from the code are all less th
3% except for the values at the extremea520 for modes
~1,0! and ~1,1! where the fractional deviation is twice an
four times this value, respectively. The relatively large dev
tions for these modes ata520 are largely due to the sma
values ofv/vp at thisa.

Consider for a moment the extremes in shape. For v
long, prolate plasmas the Trivelpiece–Gould dispersion re
tion with an effective wavelength as described and discus
in Ref. 8 gives good estimates for the eigenfrequencies
the opposite extreme, for very oblate, pancake-like plasm
the modes with a small number of nodes all have frequen
near 1, as mentioned above. Nevertheless, with our code
can explore such modes. As an example, Fig. 5 shows
plasma boundary curve and the normalized perturbed po
tial for the ~1,2! mode in a plasma with parameters given

of
r

n for

7
4
4
2
4

TABLE I. The m50 mode frequenciesv/vp for the odd symmetric modes inz compared to the corresponding frequencies from Dubin’s exact calculatio
spheroids. The column labeled ‘‘N’’ is for our numerical results and ‘‘D’’ is the result from Dubin’s dispersion relation. These results are forr plasma/r wall

50.25. The modes are labeled according to (l z ,l r), wherel z gives the number of nodes in the eigenfunction in thez direction andl r is correspondingly for
the r direction. The quantitya is the aspect ratio for the plasma equilibrium, i.e.,zplasma/r plasma.

~1,0! ~3,0! ~5,0! ~7,0! ~1,1!

a N D N D N D N D N D

20.0 0.0678 0.0822 0.195 0.177 0.302 0.252 0.388 0.315 0.0197 0.023
11.0 0.118 0.132 0.314 0.276 0.450 0.380 0.547 0.462 0.0358 0.042
9.0 0.140 0.154 0.360 0.317 0.502 0.431 0.600 0.517 0.0437 0.051
7.0 0.173 0.186 0.421 0.374 0.568 0.498 0.664 0.588 0.0561 0.065
5.0 0.225 0.236 0.503 0.459 0.650 0.593 0.741 0.683 0.0782 0.089
3.0 0.321 0.330 0.628 0.599 0.766 0.733 0.840 0.810 0.129 0.142
2.0 0.409 0.417 0.722 0.709 0.840 0.827 0.897 0.886 0.190 0.201
1.0 0.576 0.577 0.861 0.861 0.931 0.932 0.960 0.960 0.341 0.340
0.6 0.687 0.690 0.930 0.931 0.970 0.971 0.984 0.984 0.463 0.467
0.2 0.867 0.866 0.989 0.989 0.996 0.996 0.998 0.998 0.735 0.732
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 2. The perturbed potential for the~1,0! and~2,0! modes withv/vp(0)50.140 and 0.262, respectively. Herea59 andr plasma/r wall50.25. Note that the
direction of viewing for the two plots is different.
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r plasma50.30 cm,r wall51.0 cm, anda50.00405 Note that
the scale has been expanded by a factor of 50 in thez direc-
tion. On this scale the pancake-like plasma boundary ha
hour-glass shape to it. This surface is clearly discernible
the potential plot where the normal derivative makes a d
continuous jump, as required by Eq.~5!. These parameter
were chosen to agree with those for case~a! of Fig. 4 in
Jenkins and Spencer9 where modes for thin oblate plasma
are considered in detail. The frequency for the~1,0! mode
agrees to three significant figures with that given in Fig. 4
Ref. 9. The frequenciesv/vp for the ~1,0! and ~1,2! modes
are given by 0.9946 and 0.9769, respectively. The Du
dispersion relation gives 0.9969 and 0.9889 for these s
modes.

V. DIOCOTRON „mÄ1…

The m51 diocotron mode has been studied extensiv
by many researchers, particularly in the case of long plas
columns.10–13According to Fine and Driscoll, this mode ha
proven to be fundamental to manipulation and control
charged particle traps and is also easily measured and
useful as a nondestructive diagnostic of the electron plas
Two fairly recent themes in the study ofm51 modes has
been the frequency shift due to finite length and instabi
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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growth for hollow density profiles. The infinite-length resu
for a cold, constant density plasma is given in Davidson,2 p.
304. Fine and Driscoll13 derive an approximate formula fo
the mode frequency, including finite-length and temperat
effects; they compare their formula with experimental
sults. Recent experimental results for instability growth
an m51 mode in hollow-equilibrium, radial density profile
have been given by Kabantsev and Driscoll.14 Several recent
theory papers have addressed the problem of understan
the origin of this mode and the factors contributing to t
growth rate. Mason and Spencer15 give a summary of theo-
retical results for this unstable mode and compare with p
ticle simulations.

A. Flat-top profiles

Perhaps the place for us to begin our discussion ofm51
modes is by a comparison with the Dubin modes since th
are for spheroids with no conducting walls nearby and the
fore no image charge effects. Figure 6 compares the m
frequenciesv/vp at an assortment of aspect ratios. T
marked points are the values obtained from the code.
presence of a conducting wall with image charges is evid
since the computed values are always higher than those
Dubin’s dispersion relation. For a given aspect ratioa the
same

TABLE II. The m50 mode frequenciesv/vp for the even symmetric modes inz with no radial nodes compared
to the corresponding frequencies from Dubin’s exact calculation for spheroids. The labels have the
meaning as in Table I.

~2,0! ~4,0! ~6,0! ~8,0!

a N D N D N D N D

20.0 0.133 0.133 0.251 0.241 0.348 0.285 0.424 0.344
11.0 0.224 0.211 0.389 0.331 0.502 0.423 0.584 0.497
9.0 0.262 0.245 0.439 0.378 0.555 0.477 0.637 0.553
7.0 0.314 0.292 0.503 0.441 0.620 0.547 0.699 0.625
5.0 0.390 0.364 0.586 0.533 0.700 0.642 0.773 0.718
3.0 0.511 0.492 0.708 0.676 0.806 0.776 0.864 0.837
2.0 0.609 0.601 0.793 0.779 0.872 0.861 0.913 0.905
1.0 0.775 0.775 0.905 0.906 0.948 0.949 0.967 0.968
0.6 0.873 0.872 0.956 0.957 0.979 0.979 0.987 0.987
0.2 0.974 0.974 0.994 0.994 0.997 0.997 0.998 0.998
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scaled mode frequencies accumulate with increasing ra
node number at the bounding valuev0 /vp50.00956 (E
3B rotation frequency, depends on the chosen density
magnetic field!. As the higher mode frequencies approa
this bound, the differences between the numerical and
bin’s values diminish. For the plasma surface forming
sphere (a51) v/vp50.00318 orv/v050.333. Both Du-
bin’s dispersion relation and the numerical code give t
result. In Fig. 6 the equilibrium surface fora51 is not a
sphere, but is rather much more rectangular as determine
the equilibrium code, which in turn depends on the posit
of the conducting wall. As a consequence the frequenc
higher by more than 30%. For all the cases represente
Fig. 6 r plasma/r wall'0.5.

It is also of interest to compare the mode frequenc
with finite length included to the result for an infinitely lon

FIG. 3. Mode frequencies versus aspect ratio for the odd modes inz, where
r plasma/r wall50.25. The actual computed points are indicated with mark
The Dubin dispersion curve for a given mode is displayed without the m
ers. In this figurer plasma/r wall50.5.

FIG. 4. Mode frequencies versus aspect ratio for the even modes inz, where
r plasma/r wall50.25. The actual computed points are indicated with mark
The Dubin dispersion curve for a given mode is displayed without the m
ers.
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plasma. Figure 7 makes such a comparison. On this fig
we also include a plot from the formula of Fine and Drisc
at zero temperature. The code gives frequencies that are
3% higher than the formula. For all cases represented in
7 an equilibrium is computed withr wall53.81 cm and half-
length zwall530.0 cm. A detailed examination of the eige
functions inside the plasma shows that their dependencer
is like r 1ar31••• and in z like 11bz21••• with a and b
small and positive for long plasmas. This is consistent w
solutions inside the plasma proportional to the modifi
Bessel functionI 1 in r and cosh(kz) in z, with k very small
such that 1/k is much longer than the length of the confinin
cylinder.6

B. Nonflat profiles

We also looked atm51 modes for density profiles tha
are peaked atr 50 and then fall off to zero at some finit
value of r ,r wall . There were no surprises here. The profi
in density gives a profile in the rotation frequencyv0(r ).
This introduces a continuum of resonance frequencies
v/vp with an upper bound given byv0(0)/vp and a lower
bound given byv0(r plasma)/vp . Because the higherl modes
are all bunched up near the upper bound, as depicted in
6 for example, it does not take much departure from
flat-top density profile, which introduces shear into the ro
tion profile, for these modes to all disappear into the co
tinuum.

Hilsabeck and O’Neil12 in Sec. VI B ~new modes!, also
consider such modes. We would be less inclined to la
them as ‘‘new’’ since they are merely the higher order Dub
modes with frequencies shifted by the presence of the c
ducting walls. Thez dependence in these Dubin modes
made vanishingly small because of the large magnitude
vp

2/(v2v0)2 leading to effectivelyz independent perturbed
potential and density as is assumed in Ref. 12. For a Du
mode thez-integrated perturbed density is simply propo
tional to Pl

m(A(12r 2/r plasma
2 ))/A(12r 2/r plasma

2 ), where Pl
m

is an associated Legendre function. Form51, l 51,3,5 this
function is plotted in Fig. 8 with arbitrary normalization cho
sen to match that in Fig. 9 of Ref. 12. We have checked
results given in Fig. 8 of Ref. 12 for the mode frequenc
and the agreement is good to within the uncertainties ass
ated with the plasma equilibrium shape. The so-called ‘‘fa
modes resulting from an indented end in the plasma shap
course, have no analog in the Dubin spectrum. We have

.
-

.
-

TABLE III. The fitting parametersm and n for the function of Eq.~10!
which summarizes the numerical~N! data in Tables I and II.

Mode m n

~1,0! 0.828 0.918
~2,0! 0.263 1.114
~3,0! 0.149 1.205
~4,0! 0.0964 1.314
~5,0! 0.0660 1.459
~6,0! 0.0480 1.608
~7,0! 0.0327 1.929
~8,0! 0.0237 2.269
~1,1! 1.520 1.180
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FIG. 5. Plasma boundary curve and the normalized perturbed potential for a very oblate, pancake-like plasma equilibrium. Note that the scale in thez direction
is expanded by a factor of 50 with respect to ther direction. The potential plot is for just the lower right-hand quadrant of the plot for the plasma boun
curve. The plasma boundary surface is clearly visible where the normal derivative of the perturbed potential makes a discontinuous jump as requy Eq.
~6!. For this modea50.00405 andv/vp50.9769.
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lifted the plasma shape from Fig. 10~a! of Ref. 12 and obtain
good agreement with frequencies given in part~b! of this
figure, including the ‘‘fast’’ mode.

Experimentally, density profiles with an off-axis pea
so-called ‘‘hollow profiles,’’ lead to an instability with expo
nential growth. We do not propose with the cold-fluid mod
considered in this paper to ‘‘match’’ the experimental resu
but only to elucidate the contribution that finite length atT
50 makes to the growth rate of this instability.

We considered a hollow profile and equilibrium fro
Finn et al.16 that has become somewhat of a standard co
parison case.15,17 For this comparison case the plasma
equilibrium has a midplane radial profile given by the fo
mula

n0~r !5n0~0!@12~r /r p!2#2@11~m12!~r /r p!2#. ~9!

FIG. 6. A comparison of the mode frequencies for an increasing numbe
radial nodes. Form51 there is necessarily a node atr 50 and so~0,1! labels
the usual diocotron mode. The numerical results are on the curves with
markers at the computed points. The curves without the markers are re
from Dubin’s dispersion relation.
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-

The parameterm is 3.0 for the comparison case. We choo
parameters so as to give an equilibrium similar to the o
used by Finnet al. and Mason and Spencer withnmax/n0

51.28 with approximately the same plasma radius a
length. We taken055.03106cm23, B05375 G, andr wall

53.81 cm. The rotation profile has a peak val
vmax/vp(0)50.01161 Thek and F (0)(0)/V as defined by
Finn et al. have values 0.25 and 0.4, respectively.

With a complexv in Eq. ~4! we must allow for complex
coefficientsCI in Eq. ~A2!. Scaling in terms ofvp(0) as
usual, our numerical solution of Eq.~4! for v5v r1 iv i

finds v r50.01160 andv i5(2.060.1)31025. The uncer-
tainties reported here represent the variation in the res
with different choices in the triangulations. These resu
give v i /v r50.0017, roughly one quarter the value report
by Mason and Spencer in their simulation and about 20%
the value reported by Finnet al.

Additionally, we have modified Eq.~4! by replacing
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lts

FIG. 7. Diocotron frequency shift as a function of plasma radius.
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 This a
(vp(r ))8 in the third term by@1/L0(r )# @d(L0(r )vp(r ))/
dr# to include part of the physics discussed by Finn a
Castillo to incorporate bounce-averaging over a plasma w
varying lengthL0(r ). The inclusion of this term has virtually
no effect on the real part of the computed eigenfrequen
but increases the growth rate~imaginary part! to v i5(5.7
61.0)31025. This gives the ratiov i /v r50.0049, 70% of
the value 0.007 reported by Mason and Spencer. Finnet al.
report a result of 0.00916 and Coppaet al. give 0.008.17

VI. SUMMARY AND CONCLUSIONS

A finite element code using parabolic functions on a
angular mesh has been successful in computing mode
quencies and eigenfunctions to high accuracy for reali
equilibria in a finite length Malmberg–Penning trap. For a
ally symmetric modes~m50! we confirmed and extended th
numerical results of Jenningset al. and considered the dif
ferences for multiple modes between cold spheroidal p
mas and realistic, cold, finite-length plasmas confined wit
a cylinder. We also illustrated the code as a tool for calcu
ing modes for thin pancake-like plasmas as well as el
gated, cigar-like plasmas. For diocotron modes~m51! we
compared the finite-length results to those for a spheroid
also to an heuristic, analytic model.13 The code is also a
useful tool for studying the mode behavior in plasmas w
radial profiles and we confirmed the results of Hilsabeck a
O’Neil12 and identified their ‘‘new modes’’ with Dubin
modes. For plasmas with density peaks off center the c
shows these to be unstable in agreement with previous w
by others. Detailed comparison with a standard case de
mined the finite-length effect in a cold plasma to contribu
roughly 70% of the instability.
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APPENDIX: NUMERICAL METHOD

Because finite-element methods seem less commo
plasma-physics applications and because certain feat
were important for success in computing accurate eigenfu
tions and eigenvalues, we sketch here our method of s
tion.

Since we have symmetry in thez50 plane and about the
r 50 axis of the cylinder, we compute in a region defined
0<z<zwall and 0<r<r wall . We decompose this region int
triangular elements. The decomposition is chosen so
edges of triangles in the decomposition lie along the plas
boundary. This plasma boundary can be approximated w
arbitrary accuracy by triangles and we construct a nonu
form mesh with large numbers of triangles along the plas
boundary where the curvature is large for flat-top dens
profiles. We use fewer elements elsewhere. The separatio
the computation region into two parts—one with finite e
ments all inside the plasma and the other with finite eleme
all outside the plasma—is important because the characte
the operator in Eq.~4! is different inside the plasma from
outside. Inside the operator is hyperbolic and outside i
elliptic. Figure 9 shows an example of such a mesh. T
separation into two regions is also important from the po
of view that it allows the use of fewer elements. The mesh
not required to have lots of elements near the edge of
plasma in order to attempt to resolve what is in effect infin
curvature where the derivative of the potential in the dire
tion normal to the plasma-vacuum boundary is disconti
ous, i.e., Eq.~7!. In practice we have found that we ca
achieve accuracy in the mode frequencies to 4 signific
digits with surprisingly few finite elements;1032104. The
eigenfunctions are also relatively smooth, except, of cou
at the plasma-vacuum boundary, and are well represe
with quadratic polynomials.

Each triangle has 6 nodes~3 mid-points for the sides and
3 vertices! and on each nodeI a parabolic function

C I~x,y!5b11b2x1b3y1b4x21b5xy1b6y2. ~A1!

FIG. 9. An example of a triangular mesh of finite-elements. Note that
scale in ther andz directions is different.
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 This a
The b i in this function are determined by requiring th
function to have value 1 at theI th node and 0 at all othe
nodes in the triangle. Then the perturbed potentialF (1) is
approximated as a sum over nodes

F (1)~x,y!5(
I

CIC I~x,y!. ~A2!

Boundary nodes have theCI determined from boundary con
ditions onF (1)(x,y). This approximation ofF (1) in terms of
parabolic functions makesF (1) continuous across elemen
boundaries, but not necessarily its derivatives. This allo
for discontinuous derivatives across the plasma boundar
implied by the jump condition in Eq.~7!, i.e., as one passe
from the hyperbolic region of the computation to the ellip
region.

The Galerkin approximation proceeds by multiplyin
Eq. ~5! by an approximating functionCJ , where J is an
interior node, and then integrating over the computation
main. We integrate by parts and then proceed numerically
doing one triangular element at a time. If the element
outside the plasma, thene51, otherwise it is as given in Eq
~6!. This gives a matrix equation for theCI :

(
I

AJICI50 ~A3!

with nonzero values ofCI only for certain values~eigenval-
ues! of v. In practice we set

(
I

AJICI51, for each J ~A4!

and look forv such that max(CI)→` or so that 1/max(CI)
→0. This is the ‘‘singularity search’’ method as described
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Ref. 8, however, no attempt is made to make one mode s
out over another by choosing the right-hand side of the m
trix equation forCI to be anything other than 1. The scan
v simply shows those values forv where 1/max(CI) goes to
zero. Using finite elements does not escape the plagu
false modes introduced by the discretization of a partial d
ferential equation and the fact that an infinite number
mode frequenciesv/vp lie between 0 and 1, as discussed
Ref. 8. However, the problem is much more benign here
that usually the mode frequencies of interest are easily
cerned from where the envelope of the scan goes to z
This is evident in Fig. 1.
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