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Modes in a non-neutral plasma of finite length, m=0,1

S. Neil Rasband® and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 11 November 2002; accepted 17 January)2003

For realistic, cold equilibria of finite length representing a pure electron plasma confined in a
cylindrical Malmberg—Penning trap, the mode spectrum for Trivelpiece—Gomel), and for
diocotron,m=1, modes is calculated numerically. A novel method involving finite elements is used
to successfully compute eigenfrequencies and eigenfunctions for plasma equilibria shaped like
pancakes, cigars, long cylinders, and all things in between. Mostly sharp-boundary density
configurations are considered but also included in this study are diffuse density profiles including
ones with peaks off axis leading to instabilities. In all cases the focus has been on elucidating the
role of finite length in determining mode frequencies and shapes. Re0 accurate
eigenfrequencies are tabulated and their dependence on mode number and aspect ratio is computed.
Form=1 it is found that the eigenfrequencies are 2% to 3% higher than given by the Fine—Driscoll
formula[Phys. Plasmas, 601(1998]. The “new modes” of Hilsabeck and O’N€jPhys. Plasmas

8, 407 (2001)] are identified as Dubin modes. For hollow profiles finite length in cold-fluid can
account for up to~70% of the theoretical instability growth rate. @03 American Institute of
Physics. [DOI: 10.1063/1.1559683

I. INTRODUCTION sharp-boundary profiles we compute thermal equilibria with

, . the temperature low enough that the Debye length satisfies

Perhaps no theme in the physics of pure electron plasé Ir <0.05. The plasma boundary edge for these cold
. . _ . ; D /! plasma~*Y-YY-

mas confined in a Malmberg—Penning trap has receNeequilibria is defined to be where the density is 0.549 of the

more attention fchan the modes of oscillation for equmbnumCentral densitywithin the Debye sheaihso that the number
plasmas. A review of the dynamics of non-neutral plasmas

and a summary of results is given by Godld standard of particles outside this point just equals the number missing

. . .from just inside it in the thermal equilibrium. This number
treatise on the whole subject of non-neutral plasmas is

Davidson’s book. So what does yet another paper on thiscfg](?;;trgme ?J?I?t())r ?l:r:go dzg's?tggfc:?rtr?jgtir;\agcla? 24mFE)hrec?r)r;-
topic bring to the table? In short, an accurate and detailefl q y U

. . . . .~ parison and as a check some equilibria have been computed
calculation of the mode frequencies and eigenfunctions in a : .
g . o 2 with the temperature and/or density edge decreased by a fac-
plasma offinite length using realistic equilibrium shapes,

which span the entire gamut of shapes from pancakes ttgc;rg;figy L\:veen]:linedsvcl)rfuisgyvgcr)isjse ci;ggetzeﬁ:gelgugfttlggs gia

elongated cylinders. The limitations are that the study is 9 quer . ' P

. ture equilibria take substantially longer to compute and so

based on a cold-fluid model of the plasma and that the com- . .

. . were not routinely used. For studies of the mode dependen-
putations are numerical.

) . I . cies on profile effects we computed equilibria where the mid-
In Sec. Il we discuss briefly the equilibrium calculation. . T o .

: . . . plane density profile is specified and for these we defined the
In Sec. Il we review the basic equations of the cold-fluid . .

N . lasma boundary to be where the density falls to 0.01 of its
model and the derivation of the mode equation. In Sec. | : . o )

. - : a : central value. Once again the results are insensitive to this

we considem=0 modes and in Sec. =1 modes. Section

. . . Xprecise value and remain unaffected if it is increased by even
VI contains our summary and conclusions. In the Appendi

we describe the numerical methods that lie at the foundatioﬁs much as a factor of 10.
of our study of modes.
I1l. COLD FLUID MODE EQUATION

Il EQUILIBRIUM We have focused our attention on a cold-fluid model for
several reasongl) Cold-fluid theory gives the basic collec-

tive behavior.(2) Most of the mode studies have been done
in, plasmas with temperatures on the order of 1 eV or less. At

A major motivation for this study is to use realistic equi-
librium shapes, avoiding restriction to infinite length or
simple shapes like rectangles or spheroids. We have used : -
standard equilibrium code as described in Ref. 3 that haSUCh temperatures unless the rafiQsmd/ r wan is very small,
proved useful in many studies of non-neutral plasmas ifP" Mo /Tplasma~ 1, temperature effects on mode frequencies
Malmberg—Penning traps. The only output from this code2™® @t most a few percert3) Even though finite tempera-

needed for the present study is the plasma shape. To fifyres can play an important role in determining the specifics
of dynamic behavior, e.g., for hollow profiles and instabili-

ties, it is important to understand in isolation the role of finite
dElectronic mail: neil_rasband@byu.edu length and plasma shape on these dynamics.
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For a cold-fluid model of a non-neutral plasma consist-where a(0) superscript denotes an equilibrium quantity and a
ing of particles of mas# and chargey we focus our atten- (1) superscript denotes a first-order perturbation field. We
tion on the density, velocity, and electrostatic potential fieldsalso make use of the drift approximation whevé)(r)

We write these in the form =Cc(EXB)/B2=(c/B)(aD/dr) p=r wop Where the mag-

netic field B=Bz is constantg is the velocity of light. We
assume da and ¢ dependence in the perturbed fields of the
form exp(-iwt+img). Then a linearization of the usual field

n(r,z,t)=nO(r,z) + n®(r, $,z,1),

v(r,z,t) =vO(r)+v(r,¢,z,1), equations(the continuity equation, the force or momentum
balance equation, and Poisson’s equatieads to the fol-

O(r,z,t)=dO(r,2) + dNV(r, ¢,z,1), lowing equations for the first-order fields inside the plasma:

. q g
(1) - _
vz (r.2) IM(cz)—mwo) 0z @)
n(]_)(r Z):_EE an(o) Q)(l) B q i n(o) 6)(1)(1) (2)
' MrQ dr (o—mMwg) M(wo—Mwg) dz\(w—Mwg) 6z )’

VZpM=—47gn®, ()

Equilibrium quantities®) andw, do not depend om, except that outside the plasm&) is 0. Combining the last two of these
equations gives the mode equation for the perturbed potential inside the plasma

1 a( &CD(l)) m? m oM

— _ 1)_ 2\
rar\" ar Tzq) rQ(wp)(

w,zJ o)

PR 0. (4)

1

—+ —
w—Mawg) (0—Mwg)?

We note that)=qB/Mc and w,23=477q2n(°)/M are the cyclotron and square of the plasma frequency, respectively. Primes
denote differentiation with respect to

Equation(4) and Poisson’s equation for the perturbed potential outside the plasma can both be included in the important
and useful form

V-(e VOM)=0, (5
where
[ L i (wpn) 0 ]
Q) (o-maog(r) '
=i (0pm)
=10 ) o-magr) " ! 0 ' ©
0 0 wi(r)

 (0—mag(r))?

Integrating Eq.(5) over a small volume that includes the calculation by Prasad and O’N&ibut did not include the
surface of the plasma, using the divergence theorem and thesffects of realistic equilibria. These researchers studied also
letting the sides of the volume in the normal direction go tom=1 and higher modes. In a seminal paper D{lginalyti-
zero in the usual way gives the jump condition on the percally solved the problem of finding the eigenmodes for cold
turbed potentiatb®) across the plasma surfate: spheroidal equilibria with the conducting walls infinitely far

~ A away. Jenninget al® treated the electrostatic modes for a

n-(e-VOW)[=n-voil,, @) cold, finite-length, non-neutral plasma and surmounted nu-
where the subscripts and o denote inside and outside the merical difficulties by taking ar—0 limit of a warm fluid
plasma surface, respectively. model. In some respects the=0 portion of the present pa-
per can be considered as an extension and refinement of the
calculation by Jenningst al.

Figure 1 shows an example of a scan in frequency to

The m=0 case with a flat-top density profile in a cold- locate the values ob/w, corresponding to the eigenmodes
fluid model was first calculated by Trivelpiece and Gould. of the equilibrium, as described at the end of the Appendix.
The effects of finite length were approximately included in aThis scan is for an odd parity mode zZrat an aspect ratio of

IV. AXISYMMETRIC (m=0)
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(x107%) @/w,e vs 1/maxamp For odd modes irz Table | tabulates scaled mode fre-
V2 - ] guencies for an assortment of aspect ratie9 for the
lE 3 § B plasma filling 1/4 of the cylinder radius.
obE & s B R . Table Il gives the same for even modesanAs the
N N - ] aspect ratio goes down the scaled mode frequencies are
. 0.8 pushed ever closer to the bounding vatwkv,=1 and the
3 separation between the frequencies decreases. Therefore, the
é 0.6 numerical computation of the modes becomes more of a
> challenge asx decreases. For very oblate plasmas the scaled
= 04 mode frequencies/ w, with 0 radial nodes become bunched
near 1 and it becomes increasingly difficult to distinguish the
0.2 modes from the general hash. Dubin’s dispersion relation
gives a good estimate for these frequencies and therefore
0.0t ™ A - "\ reduces the interval over which one must search to locate
0.0 0.2 0.4 0.6 0.8 1.0 them. Also considerably more elements must be included to
W/ Wpe obtain smooth eigenfunctions.

) ) . From Figs. 3 and 4 one can see the manner in which the
FIG. 1. An example of a scan in frequency to discover the singular values o;re uencies for a real equilibrium within a conducting cvlin-
olwy(0) as described at the end of the Appendix. This scan is for q ) q . ’ gcy
I plasmel Twan = 0.25 @nda=9.0 for an even parity mode in der differ from those of an isolated spheroid.
We note that the code data in these figures and in Tables
I and Il can all be fit to within a few percent by the function

a=9 and corresponds to the third row in Table I. Several wlo,=1(1+ pa) ®)
additional modes beyond those labeled can clearly be iden- P g

tified in this scan. Once the frequencies of the modes havehereu and v depend on the mode and are given in Table
been roughly located in this way, then a scan with finer resoHl. The fractional deviation of the values given by this func-
lution determines the frequency to higher accuracy. Severdlon from the numerical values from the code are all less than
mesh triangulations are used to check that at least thre®% except for the values at the extreme-20 for modes
significant-figure accuracy is obtained in the tabulated re{1,0 and (1,1) where the fractional deviation is twice and
sults. The choice of mesh can also affect the degree dbur times this value, respectively. The relatively large devia-
smoothness for the numerical eigenfunction as well. Figure Zions for these modes at=20 are largely due to the small
shows sample eigenfunctions for th0) and (2,00 modes values ofw/w, at thisa.

with o/w,=0.140 and 0.262, respectively. Within a long Consider for a moment the extremes in shape. For very
plasma eigenfunction solutions to E@) for the (1,00 and  long, prolate plasmas the Trivelpiece—Gould dispersion rela-
(2,0 modes are proportional toJg(ar)sinkd and tion with an effective wavelength as described and discussed
Jo(ar)cosk?), respectively. For a solution the constaats in Ref. 8 gives good estimates for the eigenfrequencies. At
andk are related b)azl(ll(w/wp)z—l)Zkz. These eigen- the opposite extreme, for very oblate, pancake-like plasmas
functions are clearly consistent with solutions displayed inthe modes with a small number of nodes all have frequencies
Fig. 2. By fitting numerical data to polynomial approxima- near 1, as mentioned above. Nevertheless, with our code we
tions to the eigenfunctions for a fixedor a fixedz near can explore such modes. As an example, Fig. 5 shows the
(r,z)=(0,0) we find values fom andk consistent with the plasma boundary curve and the normalized perturbed poten-
previous relation. tial for the (1,2 mode in a plasma with parameters given by

TABLE |. The m=0 mode frequencies/w, for the odd symmetric modes incompared to the corresponding frequencies from Dubin’s exact calculation for
spheroids. The column labeled “N” is for our numerical results and “D” is the result from Dubin’s dispersion relation. These resultsraigfor
=0.25. The modes are labeled accordingltgl(), wherel, gives the number of nodes in the eigenfunction inzltBrection and, is correspondingly for
ther direction. The quantityr is the aspect ratio for the plasma equilibrium, i&,smd/ T piasma:

(1,0 (3,0 (5,0 (7,0 (1,9
a N D N D N D N D N D
20.0 0.0678 0.0822 0.195 0.177 0.302 0.252 0.388 0.315 0.0197 0.0237
11.0 0.118 0.132 0.314 0.276 0.450 0.380 0.547 0.462 0.0358 0.0424
9.0 0.140 0.154 0.360 0.317 0.502 0.431 0.600 0.517 0.0437 0.0514
7.0 0.173 0.186 0.421 0.374 0.568 0.498 0.664 0.588 0.0561 0.0652
5.0 0.225 0.236 0.503 0.459 0.650 0.593 0.741 0.683 0.0782 0.0894
3.0 0.321 0.330 0.628 0.599 0.766 0.733 0.840 0.810 0.129 0.142
2.0 0.409 0.417 0.722 0.709 0.840 0.827 0.897 0.886 0.190 0.201
1.0 0.576 0.577 0.861 0.861 0.931 0.932 0.960 0.960 0.341 0.340
0.6 0.687 0.690 0.930 0.931 0.970 0.971 0.984 0.984 0.463 0.467

0.2 0.867 0.866 0.989 0.989 0.996 0.996 0.998 0.998 0.735 0.732
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Potential ¢(r,z) for (1,0) Mode Potential ¢(r,z) for (2,0) Mode

FIG. 2. The perturbed potential for tfi#,0) and(2,0) modes withw/ w,(0)=0.140 and 0.262, respectively. Hate=9 andr jjasmd I wai= 0.25. Note that the
direction of viewing for the two plots is different.

I plasma= 0.30 €M, Ty =1.0 cm, anda=0.00405 Note that growth for hollow density profiles. The infinite-length result
the scale has been expanded by a factor of 50 irztieec-  for a cold, constant density plasma is given in David$en,
tion. On this scale the pancake-like plasma boundary has a304. Fine and Driscolf derive an approximate formula for
hour-glass shape to it. This surface is clearly discernible ithe mode frequency, including finite-length and temperature
the potential plot where the normal derivative makes a diseffects; they compare their formula with experimental re-
continuous jump, as required by E(p). These parameters sults. Recent experimental results for instability growth for
were chosen to agree with those for cdgeof Fig. 4 in anm=1 mode in hollow-equilibrium, radial density profiles
Jenkins and Spencewhere modes for thin oblate plasmas have been given by Kabantsev and DrisébGeveral recent
are considered in detail. The frequency for #1€0) mode  theory papers have addressed the problem of understanding
agrees to three significant figures with that given in Fig. 4 ofie origin of this mode and the factors contributing to the
Ref. 9. The frequencies/w, for the (1,0) and (1,2 modes growth rate. Mason and Spentegive a summary of theo-

are given by 0.9946 and 0.9769, respectively. The Dubieiicq) results for this unstable mode and compare with par-
dispersion relation gives 0.9969 and 0.9889 for these same. i simulations

modes.
A. Flat-top profiles

V. DIOCOTRON (m=1) Perhaps the place for us to begin our discussiomefl

The m=1 diocotron mode has been studied extensivelWOdeS is by a comparison with the Dubin modes since these
by many researchers, particularly in the case of long plasm@re for spheroids with no conducting walls nearby and there-
columns'®*3According to Fine and Driscoll, this mode has fore no image charge effects. Figure 6 compares the mode
proven to be fundamental to manipulation and control infrequenciesw/w, at an assortment of aspect ratios. The
charged particle traps and is also easily measured and thaigarked points are the values obtained from the code. The
useful as a nondestructive diagnostic of the electron plasmgresence of a conducting wall with image charges is evident
Two fairly recent themes in the study ofi=1 modes has since the computed values are always higher than those from
been the frequency shift due to finite length and instabilityDubin’s dispersion relation. For a given aspect ratidhe

TABLE Il. The m=0 mode frequencies/ w,, for the even symmetric modes awith no radial nodes compared
to the corresponding frequencies from Dubin’s exact calculation for spheroids. The labels have the same
meaning as in Table I.

(2,0 (4,0 (6,0 (8,0
a N D N D N D N D
20.0 0.133 0.133 0.251 0.241 0.348 0.285 0.424 0.344
11.0 0.224 0.211 0.389 0.331 0.502 0.423 0.584 0.497
9.0 0.262 0.245 0.439 0.378 0.555 0.477 0.637 0.553
7.0 0.314 0.292 0.503 0.441 0.620 0.547 0.699 0.625
5.0 0.390 0.364 0.586 0.533 0.700 0.642 0.773 0.718
3.0 0.511 0.492 0.708 0.676 0.806 0.776 0.864 0.837
2.0 0.609 0.601 0.793 0.779 0.872 0.861 0.913 0.905
1.0 0.775 0.775 0.905 0.906 0.948 0.949 0.967 0.968
0.6 0.873 0.872 0.956 0.957 0.979 0.979 0.987 0.987

0.2 0.974 0.974 0.994 0.994 0.997 0.997 0.998 0.998
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Mode frequencies vs Aspect Ratio TABLE Ill. The fitting parametersu and v for the function of Eq.(10)
T which summarizes the numeric@l) data in Tables | and II.

Mode " v

(1,0 0.828 0.918
(2,0 0.263 1.114
(3,0 0.149 1.205
(4,0 0.0964 1.314
(5,0 0.0660 1.459
(6,0 0.0480 1.608
(7,0 0.0327 1.929
(8,0 0.0237 2.269
(1,1 1.520 1.180

plasma. Figure 7 makes such a comparison. On this figure
we also include a plot from the formula of Fine and Driscoll
, _ _ at zero temperature. The code gives frequencies that are 2%—

FIG. 3. Mode frequencies versus aspect ratio for the odd modgesihere 3% higher than the formula. For all cases represented in Fig

I plasmd 'wan= 0-25. The actual computed points are indicated with markers. - . ) . _ '

The Dubin dispersion curve for a given mode is displayed without the mark-/ @n equilibrium is Computec_i W'thwall__‘?"8_1 cm and half-

ers. In this figure’ pasma/ ¥ wai=0.5. length z,,,;=30.0 cm. A detailed examination of the eigen-
functions inside the plasma shows that their dependence on
is like r+ar3+--- and inz like 1+bZ*+--- with a andb

scaled mode frequencies accumulate with increasing radiamall and positive for long plasmas. This is consistent with

node number at the bounding valu® /w,=0.00956 €  solutions inside the plasma proportional to the modified

X B rotation frequency, depends on the chosen density anBessel functiori; in r and cosh{z) in z, with k very small

magnetic fieldh As the higher mode frequencies approachsuch that I is much longer than the length of the confining

this bound, the differences between the numerical and Dueylinder®

bin's values diminish. For the plasma surface forming a

sphere ¢=1) w/w,=0.00318 orw/wy=0.333. Both Du-  B. Nonflat profiles

bin’s dispersion relation and the numerical code give this We also looked am—1 modes for density profiles that

result. In Fig. 6 the equilibrium surface far=1 is not a _ L
; . are peaked at=0 and then fall off to zero at some finite
sphere, but is rather much more rectangular as determined b . .
I S o lue ofr<r, . There were no surprises here. The profile
the equilibrium code, which in turn depends on the position . : o :
In density gives a profile in the rotation frequeney(r).

of the conducting wall. As a consequence the frequency 'Fhis introduces a continuum of resonance frequencies for

. 0 ;
h|'gher by more than 30%. For all the cases represented |£1)/wp with an upper bound given byo(0)/w, and a lower
Fig. 61 pjasmd F wa=0.5.

It is also of interest to compare the mode frequenciesbound given bywo(r piasmd/ @y - Because the highémodes

with finite length included to the result for an infinitely long 2r$o?||e?(gr:§2|id ::p dr;zzr :12? ltja?lfeerrr?sgg] dd’ei)zzﬁfécg‘?g%n tﬁgl

flat-top density profile, which introduces shear into the rota-
Mode frequencies vs Aspect Ratio tion profile, for these modes to all disappear into the con-

———————— tinuum.
------ ggg ] Hilsabeck and O'Neif in Sec. VI B (new mode} also
T 6:0) 1 consider such modes. We would be less inclined to label
e (8.0) ] them as “new” since they are merely the higher order Dubin

modes with frequencies shifted by the presence of the con-
ducting walls. Thez dependence in these Dubin modes is
made vanishingly small because of the large magnitude of
wg/(w—wo)z leading to effectivelyz independent perturbed
potential and density as is assumed in Ref. 12. For a Dubin
mode thez-integrated perturbed density is simply propor-
tional to PP'(\(1=r?/r fiagmd) /(1= 1?1 fiagnd, Where P
is an associated Legendre function. ko1, 1=1,3,5 this
[ ] function is plotted in Fig. 8 with arbitrary normalization cho-
00 l——— L L sen to match that in Fig. 9 of Ref. 12. We have checked the
—a— results given in Fig. 8 of Ref. 12 for the mode frequencies
_ _ and the agreement is good to within the uncertainties associ-
FIG. 4. MO(_je frequencies versus aspect rat_lo for th(_e even modgwhlere ated with the plasma equilibrium shape. The so-called “fast”
I plasmd T'wan=0-25. The actual computed points are indicated with markers. . . .
The Dubin dispersion curve for a given mode is displayed without the mark/N0des resulting from an _'ndentEd e_nd in the plasma shape, of
ers. course, have no analog in the Dubin spectrum. We have also




Phys. Plasmas, Vol. 10, No. 4, April 2003 Modes in a non-neutral plasma of finite length, m=0,1 953

Plosma boundary curve Potential &(r,z)
1-0 T T T T I T T T T I T T T L] I T T T T

o
o

—r(cm)-

o
»

.0
-1.0 -0.5 0.0 0.5 1 .C)_2
-z(cm)- (x107°)

FIG. 5. Plasma boundary curve and the normalized perturbed potential for a very oblate, pancake-like plasma equilibrium. Note that the sdaleciiotihe

is expanded by a factor of 50 with respect to thairection. The potential plot is for just the lower right-hand quadrant of the plot for the plasma boundary
curve. The plasma boundary surface is clearly visible where the normal derivative of the perturbed potential makes a discontinuous jump asEequired b
(6). For this modex=0.00405 ando/w,=0.9769.

lifted the plasma shape from Fig. () of Ref. 12 and obtain The parameteg is 3.0 for the comparison case. We choose
good agreement with frequencies given in pdot of this  parameters so as to give an equilibrium similar to the ones
figure, including the “fast” mode. used by Finnet al. and Mason and Spencer withy,,,/Ng
Experimentally, density profiles with an off-axis peak, =1.28 with approximately the same plasma radius and
so-called “hollow profiles,” lead to an instability with expo- length. We taken,=5.0x 10°cm 3, By=375 G, andr
nential growth. We do not propose with the cold-fluid model=3.81 cm. The rotation profile has a peak value
considered in this paper to “match” the experimental result,w ./ w,(0)=0.01161 Thex and ®©)(0)/V as defined by
but only to elucidate the contribution that finite lengthTat Finn et al. have values 0.25 and 0.4, respectively.
=0 makes to the growth rate of this instability. With a complexw in Eq. (4) we must allow for complex
We considered a hollow profile and equilibrium from coefficientsC, in Eq. (A2). Scaling in terms ofw,(0) as
Finn et al!® that has become somewhat of a standard comusual, our numerical solution of Ed4) for w=w,+iw;
parison casé>!’ For this comparison case the plasma infinds w,=0.01160 andw;=(2.0+0.1)x10 °. The uncer-
equilibrium has a midplane radial profile given by the for- tainties reported here represent the variation in the results
mula with different choices in the triangulations. These results
No(F) =No(0)[1— (11 5)212[ 1+ (i +2)(r/1 )] 9 give w; / 0,=0.0017, roughly one quarter the value reported
0 0 P - pr by Mason and Spencer in their simulation and about 20% of
the value reported by Finet al.
Additionally, we have modified Eq(4) by replacing

(x1072) Diocotron (m=1) Frequency vs Aspect Ratio
1.0 —r———————7—+——1—

4 i e R TR

] Diocotron Frequency Shift vs Plasma Radius
i 1'3 " " " " ) " " " " 1 " " " " 1

| Fine & Driscoll formula
| #-——% Finite length code

W/ Wpe

0.0 0.2 0.4

R R TN BN
0.6 0.8 1.0 1.2

plosmo/ rplclsmc

x=Z

FIG. 6. A comparison of the mode frequencies for an increasing number of 1.0L— —
radial nodes. Fom=1 there is necessarily a noderat 0 and sa0,1) labels 1 2 3 4
the usual diocotron mode. The numerical results are on the curves with the rwull/rplosmo

markers at the computed points. The curves without the markers are results

from Dubin’s dispersion relation. FIG. 7. Diocotron frequency shift as a function of plasma radius.
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Z INTEGRATED PERTURBED DENSITY Quarter cylinder mesh
3 \ ' ™ \

i1 3 L

i 3 3 _

0.4 I

02F e T T T | L
% \—"\4" ~'~,~ € 2
Z  opme— A
o | TTeeeallLL IL

| S

—0.4fF 1

-0.6

-08

O N N " N
P \ \ \ . \ . \ . 0 10 20 30
0 02 0.4 06 0.8 1 1.2 14 1.6 —z(cm)—

r(cm)
FIG. 9. An example of a triangular mesh of finite-elements. Note that the

FIG. 8. A plot of thez integrated density perturbations for radial nodes of 1 scale in ther andz directions is different.

(), 2(=-), and 3(_.) corresponding to Dubin’s labék 1,3,5.

(wp(r))’ in the third term by[1/Lo(r)] [d(Lo(r)@p(r))/  APPENDIX: NUMERICAL METHOD

dr] to include part of the physics discussed by Finn and o )
Castillo to incorporate bounce-averaging over a plasma with ~ Bécause finite-element methods seem less common in
varying lengthLo(r). The inclusion of this term has virtually Plasma-physics applications and because certain features

no effect on the real part of the computed eigenfrequencyVere import_ant for success in computing accurate eigenfunc-
but increases the growth ratemaginary par to ;= (5.7 t!ons and eigenvalues, we sketch here our method of solu-
+1.0)x 10°5. This gives the ratian; /w,=0.0049, 70% of ton. _
the value 0.007 reported by Mason and Spencer. Etral. Since we have symmetry in tize=0 plane and about the
report a result of 0.008 and Coppeet al. give 0.0087 r=0 axis of the cylinder, we compute in a region defined by
0<z=z,, and Osr=r,,,. We decompose this region into
triangular elements. The decomposition is chosen so that
VI. SUMMARY AND CONCLUSIONS edges of triangles in the decomposition lie along the plasma
boundary. This plasma boundary can be approximated with

A finite element code using parabolic functions on a tri- bit by trianal q truct .
angular mesh has been successful in computing mode fri—r lrary accuracy Ly trangies and we construct a nonuni-

guencies and eigenfunctions to high accuracy for realisti orm mesh with large numbers of triangles along the plasma

equilibria in a finite length Malmberg—Penning trap. For axi- °“.”dary where the curvature is large for flat-top dens'ty
ally symmetric modegém=0) we confirmed and extended the profiles. We use fewer elements elsewhere. The separation of
the computation region into two parts—one with finite ele-

numerical results of Jenningst al. and considered the dif- o o

ferences for multiple modes between cold spheroidal plas':nents allinside the plasma and the other with finite elements
mas and realistic, cold, finite-length plasmas confined withint"’;:I outS|detthe_ plgsrr;al—lsd!fr?port?pt pgcatt:]se t?e char]:a\cter of
a cylinder. We also illustrated the code as a tool for calculat- € operator In q(4) is di erent inside the plasma trom
ing modes for thin pancake-like plasmas as well as elonput5|de. Inside the operator is hyperbolic and outside it is

gated, cigar-like plasmas. For diocotron modes=1) we elliptic. Figure 9 shows an example of such a mesh. This

compared the finite-length results to those for a spheroid anaepf'iratlon 'T“" two regions is also important from the po”?t
also to an heuristic, analytic modél.The code is also a of view that it allows the use of fewer elements. The mesh is

useful tool for studying the mode behavior in plasmas withnOt required to have lots of elements near the edge of the

radial profiles and we confirmed the results of Hilsabeck an(PIasma in order to attempt tq resolve what is in gffect |nf_|n|te
O'Neil2 and identified their “new modes” with Dubin curvature where the derivative of the potential in the direc-

modes. For plasmas with density peaks off center the codgo" nprmal o the plasmg-vacuum boundary is discontinu-
Qus, i.e., Eq.(7). In practice we have found that we can

shows these to be unstable in agreement with previous work " . . o
by others. Detailed comparison with a standard case detef’i-_ch'eve_ accuracy n the m_ode frequencies to 4 significant
mined the finite-length effect in a cold plasma to contributedIgItS with surprisingly few finite elements 10°— 10f. The

roughly 70% of the instability. eigenfunctions are also relatively smooth, except, of course,
at the plasma-vacuum boundary, and are well represented

with quadratic polynomials.
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The g; in this function are determined by requiring the Ref. 8, however, no attempt is made to make one mode stand
function to have value 1 at theh node and O at all other out over another by choosing the right-hand side of the ma-
nodes in the triangle. Then the perturbed poteri&} is  trix equation forC, to be anything other than 1. The scan in

approximated as a sum over nodes o simply shows those values far where 1/maxC,) goes to
zero. Using finite elements does not escape the plague of
d)(l)(x,y):E C\¥(x,y). (A2) false modes introduced by the discretization of a partial dif-
|

ferential equation and the fact that an infinite number of

Boundary nodes have tfm determined from boundary con- mode frequenCieﬁ)/wp lie between 0 and 1, as discussed in
ditions on®M(x,y). This approximation o> in terms of ~ Ref. 8. However, the problem is much more benign here in

parabolic functions make® () continuous across element that usually the mode frequencies of interest are easily dis-
boundaries, but not necessarily its derivatives. This allow$erned from where the envelope of the scan goes to zero.
for discontinuous derivatives across the plasma boundary akhis is evident in Fig. 1.
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