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PHYSICS OF PLASMAS VOLUME 9, NUMBER 7 JULY 2002

Vibrational modes of thin oblate clouds of charge

Thomas G. Jenkins® and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 15 February 2002; accepted 9 April 2002

A numerical method is presented for finding the eigenfunctiomsrmal modes and mode
frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial
thickness is much smaller than their radial size. The plasma may be approximated as a charged disk
in this limit; the normal modes and frequencies can be found if the surface charge density profile
o(r) of the disk and the trap bounce frequency proéilgr) are known. The dependence of the
eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning
trap fields is discussed. The results of the calculation are compared with the experimental data of
Weimeret al.[Phys. Rev. A9, 3842(1994] and it is shown that the plasma in this experiment was
probably hollow and had mode displacement functions that were concentrated near the center of the
plasma. ©2002 American Institute of Physic§DOI: 10.1063/1.1482765

I. INTRODUCTION half-width z, and radiusr, as a=z,/r;). Experimental

_ _ o result§%1"have shown good agreement with these theoret-
A Penning trap(see Fig. 1 uses a combination of elec- ical predictions.

tric and magnetic fields to confine particles of a single sign  This theory was employed by Weimet al, 8 who used

of charge, and this versatile device has been used in a varieffa opserved mode frequencies in a plasma which had been
ot -12
of applications: _ _ _—y thinned by radial transport to deduce the plasma aspect ratio.
These have included early laser cooling experimeats, |, \weimer's experiment, a pure electron plasma consisting of

well as re7lated experiments in single-ion spectroséapyd approximately 43,000 particles was confined in a Penning
metrology: These traps have also been used to study thgan and held at a temperature of about 4 K. After a time

collective behavior of single-speciéson-neutral plasmas,  gficient for the plasma to come to global thermal equilib-
including phenomena such as rotational equilfbeiad phase rium, modes were excited and observed in the plasma. For

e . . _ 2
transitions in strongly coupled ion plasmgaéf. _ . each identifiable mode, the measured mode frequency was
In the ideal version of this trap, described using cylin- g4 1o calculate the plasma aspect ratio. Although the agree-

drical coordinates, a strong magnetic fiell in the ont \yas fairly good, calculated values effor different
z-direction confines the particles radially and hyperbolic ,, qes using Dubin’s theory were found to disagree with
electrodes produce an electrostatic potential, each other by as much as 20%.

It was shown through numerical simulations by Mason
wimy( v et al!® that thermal effects, as well as nonideal confining
#(r,z)= 2q (Z - 5) + o, (D) fields in the Penning trap, might account for the discrepancy
between Dubin’s theory and this experiment. Paulson and
Spence?® extended this work, and were able to calculate,
without the use of a simulation, the effects of finite plasma
temperatures and nonideal confinement fields on the plasma
equilibria. The basis for their calculation involved an ap-
proximation valid for small-aspect ratio plasmas. In this
limit, it becomes meaningful to think of the plasma as a

An analytic theory describing the dynamics of fluid charged disk with a surface charge density praile).

modes in a non-neutral, zero-temperature plasma confined in In this paper, the same surface-charge—density approxi-
a Penning trap has been developed by DdBifibis theory mation is employed to derive an eigenvalue equation which

. ) . h it lutions, the eigenfr nci nd incompressibl
exploits the simple spheroidal shape of these pla¥hiam as, as its solutions, the eigenfrequencies and incompressible
eigenmodes of an azimuthally symmetric plasma of small

g?(;ga?g; a_l_%%vil]:ggr}?earﬁ;v:cl?ei p(;?zljg;] '2 SF;SeéZd::ecg})%_spect ratio(It should be noted that the effects of surface
' . d T P charge induced on the conducting walls of the trap are ig-
pressed as functions of the confining fields of the trap and th

lasma aspect ratio (defined for a plasma with central axial fiored in this paper, as they are in Dubin's theory and in the
P P P equilibrium calculations of Ref. 2DThe mathematical form

of this eigenvalue equation is a singular integral equation of

. . . 2 . .
dpresent address: Plasma Physics Laboratory, Princeton, New Jersey 085@8;ty_pe' first studied ar]alytlcally by Carlem%ﬁn% in this pa-
electronic mail: tjienkins@pppl.gov per it is solved numerically. In Sec. Il of this paper we derive

2

which confines particles axially. Hera, andq are, respec-
tively, the mass and chardercluding the sigh of the con-
fined particles,¢q is the potential at the center of the trap
(hereafter assumed to be zgrand w, is the “bounce fre-
guency” of particles oscillating in the-direction. In an ideal
trap the bounce frequency is uniformin

1070-664X/2002/9(7)/2896/13/$19.00 2896 © 2002 American Institute of Physics
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T FIG. 2. The surface shows the deformation of a thin plasma in an axisym-
metric vibrational mode. The origin is shifted upward along #haxis to
, and the axial displacement functioaz(r) and 6z(r").

FIG. 1. A Penning trap, which is used to confine charged particles. A voltagd €1t Showr, 1’
difference applied between the endcép# and righ} and the ringmiddle)

produces an electrostatic field approximating @g. This potential confines

the particles inz, while a uniform magnetic field provides radial confine-

ment. ment function be purely in thez-direction, i.e., 6z(r)

= 6z(r)z. Such a mode is indicated in Fig. 2, where it can be
een that the displacementarfrom equilibrium of different

(£ rts of the profile is denoted by the functién(r).

To find the normal mode shapes and the mode frequen-
cies of this plasma, we need to be able to calculate the axial
electric fieldE,(r,5z(r)) which the plasma creates at each
ring of charge composing(r). This field can be obtained
from the cylindrical Green’s functioi (r,r’,z—z") (ignor-
ing the effects of induced charge in the trap whallghich

this equation. In Sec. lll we present the numerical metho
used to solve the equation, and demonstrate that this meth
reproduces the ideal trap results of Dubirin Sec. IV we
briefly review and generalize the equilibrium calculation of
Paulsoret al. for nonideal(nonquadrupoleconfining fields,
and use this generalization to fing(r) in global thermal
equilibrium for the trap used by Weim#&t.In Sec. V we
discuss the qualitative behavior of the normal modes of thes&ives the electrostatic potential at,#), due to a ring of
plasmas in ideal and nonideal confinement fields. The validz | . . charge:(r') with width dr’ located at (.7, as
ity of these results at finite temperatures is discussed, and

commentary relating to Weimer’s experiment is also given. 1

In Sec. VI we conclude the paper. dq&(r,z):E—OH(r,r’,z—z’)a(r’)r’dr’. (2

Hence, we may find the-component of the electric field at
Il. DERIVATION OF THE MODE EQUATION radiusr and infinitesimal axial displacement 6z(r) due to

Consider a plasma in cylindrical coordinates whose rathe rest of the displaced charge in the mode as
dius is s0 much Iarge_r. than its thicknesszitthat it can be _ —1 (= gH(rr,82(r) — 82(r"))
described by an equilibrium surface charge density profile g (r,6z(r))= —

o(r). This is the natural end state of a cloud of charge in a € Jo gz

Penning trap because transport increases the radius, and as it X o(r')r'dr’ @)
does so the axial electric field of the trap compresses the '

cloud inz. We seek a mathematical theory of the drumhead- In this equationgg is the permittivity of free space and
like modes of such a plasma, restricting our attention in thighe functionH(r,r’,z—z") is given by

paper to modes with azimuthal symmetry. There are two im-

portant effects that determine the frequencies and eigenfunc- H(r,r'z,2') = i ﬂK(m) @)
tions of these modes. The first is that when the cloud is no T 27 Nrr' '

longer confined near the trap center, the higher-order multi-

. . where

pole moments of the trap produce a nonuniform axial bounce
frequency profilew,(r), so that particles at different radii Arr’
vibrate at different frequencies. The second is that the vibra- M= RY: —on2
/ ) _ (r+r')y+(z—2")
tional motion of the cloud is also affected by mutual repul-

sion between different parts of the(r) profile. Ignoring and whereK(m) is the complete elliptic integral of the first
modes with internal variation in, we let the mode displace- kind.2° Carrying out the differentiation in E43) yields

©)
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JH 1 m (z'—2) ing a carefully chosen term from the integratid make it
—7 =2~ N7 E(M (=127 -27" (6) nonsingular at =r') and then adding this term back in as a
separate integral. Doing so, we obtain
where E(m) is the complete elliptic integral of the second
kind. 2 _ .2
0zZ(r)=wy(r)dz(r)+
Expanding Eq(6) in smallz—z’' to just first-order and w"2(r) = w3 (r) 82(r) €oMy 7T
substituting the result in Ed3) yields, for thez-component
of the electric field atdz(r) due to all of the other rings of

a J’rpff(f') E(m)

o (r+r’) (r'=r)?

X[6z(r")—6z(r)— 62" (r)(r'—r)]r'dr’

charge atz(r'), 52" (r oot VE(mr!
L9920 (o (B
- —1wa1 1 E(m) eompm Jo  (r'2=r?)
=P T ey (=2

noting thatéz’ (r) is the derivative ofsz(r) with respect to
Xo(r")[éz(r")—éz(r)]r'dr’, @ T . N :
o _ The second integrand in this expression also has a
where P denotes a principal value integrgNote that the principal-value singularity at=r’, so we again add and

apparent quadratic singularity in the integral is actually asyptract appropriately to make a nonsingular integral and a
first-order singularity because the factor in the numeratokjmple principal-value integral,

containingéz(r) vanishes whem’ =r.]

With a way of calculating the perturbed electric field rpodr’ ro—r
created by the plasma, we may now write down the Pfo (r'=r) =In ro )
z-component of Newton’s second law at each radial position
r in the surface charge distribution: which yields an integral equation that is equivalent to ©g.

but which is in proper form to be approximated numerically:

11)

mpéz(r):quxt(z)(riz)"*‘quz(rvz)- (8)
~Requiring a normal mode so théz(r) is proportional to 0252(1) = (1) dz(r) + q J’rp o(r ,) E,(m) ,
e '“t, using the known profilew,(r) of the axial bounce €ompm Jo (r+r’) (r'=r)

frequency, and using E@7) then leads to X[82(r")— 8z(r)— 82 (1) (r' —r)]r'dr’

w?62(r)=w(r)6z(r)

qoz'(r) (el o(r")E(m)r’
e ey Jo | (771
+ ’ ’ 20’([‘,)
€oMpm Jo (r+r") (r'=r) o) 1. qsz(ne(r) [rp—r
X[8z(r")—8z(r)]r'dr’. 9 _Z(r’—r)}err 2egmy In( r )
This is a singular integral equation of a kind first studied (12

by Carleman, who had a simple kernel to deal with and was We now discretize Eq(12) by letting the variables
able to proceed analytically. The presence in our problem o{

the complete elliptic integral of the second kind with a com- r.r) correspond to the discrete variablas, (ry) and by

. : .__converting the integrals to discrete sums using the midpoint
plicated argument almost certainly means that numenca? 9 9 9 P

. . method. For the discrete variableg andr,, we use a cell-
methods are required to solve it. Note, however, that the . . : . o ;

. . . centered grid containiniy grid points. On this grid, the grid
small-aspect-ratio analytic results of Dubin must be repro-

duced by this equation, so perhaps an analysis is possible spacing isar=rp/N, and the position of thith grid point
One simple result can be verified in E§), and it is that is given byr,=(k=1/2)Ar; k=1,2,..,N. (Note that this

. . choice of grid eliminates the=0 andr =r, singularities in
the center of mass mode in an ideal trap, for whizfr) and o
the logarithmic term).We also assume hereafter that all sums
w,(r) are both constant, has frequensy w,, as expected.

To obtain further results requires that we proceed numeri[un from 1 toN, except as explicitly stated. We obtain

cally. ©282(F ) = W (1 1) 52T )
qAr O'(rn) Emn
2
Il. NUMERICAL METHOD €oMpm T (It 1) (My=rm)

Beginning with our mode equation, E(@), we assume X[82(r ) = 02(F ) = 62" (Fm) (T =T m) IT'n
that for the plasma and confining fields under consideration, a8z’ (1) Ar (1) Emnl o (r)
the surface charge density profir) and the bounce fre- + P E (r2—r2) T 2(r—r )}
quency profilew,(r) are known. Beyond the plasma radius o A noom nom
rp, the vanishing ofo(r) makes the integrand in Eq9) N q5z’(rm)g(rm)|n(rp—rm)

equal to zero, so we replace the upper limit of integration (13
with r,. The integrand has a principal-value singularity at

r’=r. However, the singularity can be removed by subtractwhere

2€ompm M'm
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. . Ar o o ) ond kind. These summations are indeterminateg, atr ,,, so
mn=— )

rFr)? (14 we separate out these terms explicitly using the Kronecker
neem delta 8,,,. Using L'Hospital's rule ancE ,,Smn=E(1)mn
and whereE(m) is the complete elliptic integral of the sec- =&, [sinceE(1)=1] we obtain

gAréz(ry,) a(rp)ry Emn
€Mpm  iZm (Fm+rp) (Th="rm)?

qAr o(ra)rn
€0MpT nEm (rmtrn) (ry

0?02(1 1) = Yow () 82(r ) + 71 529 =7
m

gAr 6z’ (ry) Emn gAr g6z’ (ry)Ar

—yy— > o(ry)r + o(ry) oz (rp) +
Y3 oMy n;m (rn) ”(rﬁ—rzm) 74460mpﬂ_ (rm)oz"(rm)+ s oMy

x>

n#m

O'I(rm) o(rm)
2 - 4rm}

a(rn)Emnrn_ o(rm) qéz' (ry)Ar
(ra—rzy  2(ry—rp) €oMy

qoz' (1) o(ry) In<rp_rm>,

2eompm (15

Y7

M'm

in which we have introduced the factogs=1,(i=0,...,7) to compute too close to the square-root singularityr at

simply as a means of keeping track of terms in what follows.=r,, by requiring thatéz(ry) be equal to the quadratic
The left-hand side of Eq15) may be interpreted as a extrapolation of the three previous points, i.e.,

matrix operator if we writedz(r,,) = 6pmn02(r,). Similarly

converting the right-hand side of E@L5) to a matrix, as

discussed in the Appendix, this equation may be written as ~ 92(T'N) =382(rn-1) = 382(ry-) + 62(ry-3). (19)
Omnoz(r,) = w25mn52(rn)r (16)
(We experimented with several conditions like this and this
where one is adequate.
7 _ These conditions are implemented in the matrix equation
Omn=>, G (17) by replacing the top and bottom rows of the identity matrix
1=0 Smn 0N the right side of Eq(16) with zeros, calling this new
(see the Appendix for the definitions of the matri€$.). matrix R, ,. Additionally, we replace the top row of th@,,,
The procedure outlined in the Appendix does not work,matrix with the row[ —2s,3s,—s,0,0,0,...,0] and replace
however, on the top and bottom rows ©f,, because the its bottom row with[ 0, .. .,0;-s,3s,— 3s,s]. The quantitys

derivatives in Eq.(15) are difficult to represent at the first is the largest element of the matr®,,, and serves as a
and last grid points. To handle these two troublesome rowactor to scale the matrix elements in the top and bottom
we choose to apply boundary conditions. The symmetry ofows of O, to be approximately the same order of magni-
the modes requiredz’ (r) =0 atr =0, and this condition can tude as the elements in the other rows. This rescaling keeps
be represented on our grid by the relation the condition number 0D, sufficiently low that numerical
solutions of Eq(16) are possible, and is of no consequence

—202(ry)+302(rp) — 62(r5) = 0. (18) otherwise(since the right-hand side of the equation corre-

There is no corresponding natural boundary condition asponding to these rows is zero, that is, the first Kiid rows
r=ry, but we can at least be neutral there, and avoid havingf R, are full of zerog. We obtain

—2s 3s -S 0 0 0
O21 O22 023 e OZ,N*Z OZ,Nfl OZ,N
o31 032 033 T O3,N—2 O3,N—1 O3,N
Omn= : : : . D (20
ONfl,l ONfl,2 ONfl,S ON*l,N*Z ONfl,Nfl ONfl,N
L 0 0 -S 3s -3s s |

s=maxmax O,,)). (21
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This leads to the generalized eigenvalue equation,
Omndz(ry) = wZRmn5Z(rn)v (22

which we solve using Matlab 6.

T. G. Jenkins and R. L. Spencer

TABLE |. The difference between the numerically obtained eigenvalues
[see Eqs.(27)—(28)] for a thin spheroid and those predicted by Dubin’'s
theory(taken to first order iw). The number of grid points in the numerical
calculation isN, the numerical eigenvalue dsand the first-order eigenvalue
from Dubin’s theory is\*. The subscripts on the eigenvalues are Dubin’s

A good way to test the accuracy of our numerical notation for the axisymmetric modes. The computation was carried out us-

method is to check that it agrees with Dubin’s thebty,

which gives the eigenmodes and eigenfrequencies for a cofd

spheroid in a Penning trap with constanj(r)=w,q. As-
suming that the plasma is a spheroid of constant density,
required by Dubin’s theory, we obtain

O'(I’)quncomzp \V 1_(%)

p

r
:2qncoldarp 1- (r_) ) (23
p
where
2
w Eom
ncold:pq—zpv (24

and w,, is the plasma frequency.
Bollinger et al 1 showed that for cold spheroids of small
aspect ratiop,o andw, are relatedto second order i) by

w2 (25

T
inZ(l— Ea-i— 2a?

This means that Eq$23)—(25) can be combined to give

2

2w§060mparp 26

r
1-[F
q Mo
to first order ina. Putting this form fora(r), together with
its derivative, into Eq(15), we obtain a numerical method
for a cold spheroid of small aspect ratio.
The constancy ofv,(r) allows us to move the/,-term

in Eq. (15) to the other side of the equation. Dividing by,
then turns Eq(22) into an eigenvalue equation of the form

o(r)=

Omndz(r n) = = N aRpmd2(r ), 27)
where

w2

)\a=(l——2), (28)
W30

— (@]

Omn:<$_lmn)a (29

W30

and|l ., is the identity matrix[Note thatO,,, is proportional

ing the eigenvalue routine in Matlab 6.

N1o—Nio N3o— N30 Nso—N5o N70— N7

as10 -10° % 2.3x10°° 9.2x10°2  4.4x10*
20 —4x10° % 2.0x10°4 1.4x1072  9.3x10°?
40 4x10°1° —2.9x10°* 1.4x10°3 1.5x10°2
80 —-15x107*  —-24x10°* —-24x10°*%  15x10°°
160 —1.3x10°18 —-1.3x10°* -3.1x10°* 2.8x1074

presence of a singula(r) profile atr =r, seem to limit this
calculation to a relative accuracy of about £0 Fortunately
this is sufficiently accurate for this calculation to be of physi-
cal significance.

IV. COLD PLASMA EQUILIBRIA IN NONIDEAL
CONFINING FIELDS

The methods of the preceding section may be used to
numerically find the normal modes and mode frequencies of
a cold plasma in a nonideéhot strictly quadrupoleconfin-
ing field, provided that the plasma aspect ratio is small
enough that a description in terms @fr) is valid. But to
proceed we need a way of calculating the surface charge
density profile. Such a calculation is presented in the Appen-
dix of Paulson and Spencgtlt should be noted that in gen-
eral it is not possible to calculate(r) because an experi-
menter can load almost any desired charge distribution. But
under the conditions of Weimer’s experiment, where the
plasma was slowly expanding due to collisions, we expect
the system to be close to a state of global thermal equilib-
rium. So it makes sense to follow the thermal equilibrium
calculation of Paulson and Spencer, which will be briefly
reviewed here.

A. Equilibrium conditions

It is traditional in the Penning trap literature to describe
the electrostatic field of the trap in terms of vacuum harmon-
ics. This has the advantage that a single set of coefficients
can describe both the midplane potentigl(r,0) and the
particle bounce frequency,(r). But the disadvantage of
this description is that the harmonic expansion does not con-

to o and thus tow, so the small aspect ratio cancels out of verge for spherical radii larger than the distance to the near-

Eq. (27).] Dubin’s calculation(to first order ina) gives the
first 4 eigenvalues of this equation as

. el 969
507128™ 0T 512™

(30

N0=0; Ago=gm;

8

est singularity in the induced surface charge density on the
electrodes(see, for example, JacksOp and in Weimer’s

experiment this distance is 3.5 mm, the distance from the
center of the trap to the conical end cap. Since the ring elec-
trode had a radius of 5 mm, plasmas that approach this elec-
trode can extend into the nonconvergent region, invalidating

Table | shows the comparison between the eigenvaluethe standard expansion. To circumvent this difficulty, we nu-
computed with Matlab 6 and these first-order analytic onesmerically computepe(r,z) using a grid and Weimer’s geom-
Since the calculation presented here is accurate to first ordetry, then make separate least-squares polynomial fits to the
in a we might hope to reproduce these results exactly. Thenidplane potentialg¢(r,0) and to the axial bounce fre-
limitations of our simple midpoint integration rule and the quencyw,(r) in the form
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” 3N 64C,r 3¢
41, 2=0)= 3 2™ 31 0(1)= 52| 1~ —gne (25 r2rd) | V1=,
n= p
(40)
and

As discussed in Paulson and Spencer, there are limits on the

) * ) valuesC, may have if the surface charge distribution is to all
wz(f)zgl bonr2™ 1), (32 of one sign, as it must be in a Penning trap. These limits are
5
In passing we note that if the usual description of the  _— 1—5s C4rpeos E (41)
potential in terms of vacuum harmonics with spherical radius 64 Ng 128
R and polar angle, where at the upper limit-(0)=0; for C, beyond this limit
o the center of the plasma would be oppositely charged. At the
de(R,0)= >, C,,R?"P,,(COSH) (33) Ipwer Iimi'F the outsi(_je edge of the plasme_l makes the trqngi-
n=1 tion to being oppositely charged. Exceeding the upper limit

probably means that the plasma becomes hollow, with a

does converge; then we have space near the center that has no charge. Dropping below the

4q lower limit is rather problematic in the case of a cold plasma,

am=ConBn; bop=— channz, (34 but with finite temperature Paulson and Spencer show that
P the state of global thermal equilibrium in this case would be

where for the plasma to condense on the ring electrode, so perhaps
(—1)"(2n)! this negative limit gives the radius beyond which a plasma

» _ (35) with C, andq of opposite sign can no longer be confined in
[n!]=4" thermal equilibrium.
In Appendix B of Paulson and Spencer the surface We also note[see Ref.(20)] that for plasmas cold

. . . ._enough that the Debye length is small compared to the axial
;?:rf%i:insny functions that produce polynomial pOtentlalsﬁ)Iasma thickness, the surface charge densify) is the

same as the plasma thickness.

Br=P,,(0)=

2n
é(r)=V,— is produced by

p
oy B. Equilibria in Weimer’s experiment
o(r)= 6(; nsn(r/rp), (36) We now apply this equilibrium theory to the plasmas in
P Weimer's experiment. But E¢38) is the surface charge den-
where the functiors,(x) is given by sity of a zero-temperature plasma in thermal equilibrium, so
- the question now arises as to whether it makes sense to use it
(=)™ n me1/2 to describe experiments on thin plasmas with finite tempera-
S”(X):mE:O [ByBpmis| \ M+ 1)(1_)( ) ; ) ture. Paulson and Spencer show that the cold formula for

o(r) is a good approximation to warm distributions provided
where (,,!';) is the binomial coefficient. These relations and that
the condition of global thermal equilibrium then lead to the

following two equations that determing(r), given the ex- D|= T2 a0 42
ternal field coefficients,,, and the number of particlés in 8 7\2.30 '
the cloud:
where
salky S 2 kT
o(r)= 71_—rp{VSl(r/rp)—nz2 aanp“sn(rlrp)} (38 )\ZDOZHZ (43)
p~z
and where , andz, are the plasma radius and half thickness
8rpco| 4— < n-1 . of a cold spheroid with density given by Eq84) and (25).
= —§V+ ;::2 m§=:0 Azl Since the total number of particles in such a spheroid is
given by
ol :
o m+1 39 N:§W@4mm, (44)

BBy 1] (2m+3) |
. we may convert the condition in E42) into a condition on
Note that Eq(39) determines the voltagé which is needed the plasma radius:
to makeo(r) in Eq. (38) determinate. "
In a trap where onl\C, andC, are important, the equi- 3Ng

My . 45
librium plasma surface charge distribution is given by P 128kgTeg 49
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TABLE Il. Fitting coefficients for the midplane potential and the axial 9 Surface Charge Density
bounce frequency in Weimer’s experiment with the guard ring voltage set to r
29 V.

n a2n b2n

1 2.04x10° 1.43x 10"
2 4.09< 107 3.81x107°
3 1.38x 10’ —3.50x 107
4 —7.45x 10%? —1.06x10*
5 2.61x 10Y 6.91x10*

In the experimenN=43000 andl =4 K, giving the condi-
tion

r,=5.3 mm. (46)
. . . . 0 .
The ring electrode in the experiment had a radius of 5 mm, 0 1 2 3 4
So we expect this calculation ofto work for the plasmas in r(mm)
the experiment. FIG. 3. A sequence of surface charge density profiles for increasing plasma

But applying this equilibrium theory to Weimer’s experi- radius is shown by the solid curves. They are calculated from the coeffi-
ment requires more than just the extta coefficient. The cientsay, as described in the paper using the geometry of Weieteal.
plasma radii in this experiment were so Iarge that a full eX_'(Ref. 18. The open cwclc_es give surface charge density profiles correspond-

. . . . K ing to two of the cases in the paper of Maseal. (Ref. 19. They were
pansion Is necessary, and, indeed, the expansion In vacu puted by running the grid equilibrium code of Speneeal. (Ref. 24
harmonics does not even converge for plasma radii beyon@vhich was also used by Maspn
about 3.5 mm. But least-squares fitting a polynomial to the

midplane potentiakp(r,0) and tOwg(l’) to obtaina,, and
b, does work, and was accomplished by representing thgpencer? the method of Sec. Il gives poor results. But the

electrodes in the experiment on a grid and doing an electrgs,athod seems to work well as long @ér) goes to zero at a

static solve to calculatej(r,z). nghe non-neutral plasma finite radius and should work equally well for analytic pro-
equilibrium code of Spenceat al™" was used for this calcu-  fijas and fits to experimental profiles.

lation. It has the ability to specify potentials on arbitrary line We now discuss briefly the mode labeling convention
segments in the,z plane and hence can handle complexseq by Dubin and employed by Weimer in discussing the
electrode structures like those used in Weimer's experiment,oq its of his experimenf:® We then discuss the behavior
The midplane potentiape(r,0) andw,(r) were then passed .t the normal modes in simple nonideal confining fiel@s

into Matlab 6, which was used to make the least-squares f"éand C, only), and finally discuss the normal modes for We-

With the guard ring voltage set to 2.9 V, as was done in thémer's experiment using the equilibrium sequence shown in
published experiments, the coefficieris, andb,, in Egs. Fig. 3 and the values in Table II.

(31) and (32) were found to be the values given in Table II.

Using these,,, coefficients in Eq(38) allows us to calculate A. Mode labeling convention

the surface charge density profile in Weimer’s experiment as |, pupin’s theory, the normal modes of a cold, uniform-
a function of plasma radius. The results of this calculationgensity plasma spheroid are labeled by the two integers
are shown in Fig. 3 together with two profiles @fr) com- (| m), satisfying|=|m| [because the associated Legendre
puted with a global thermal equilibrium code that uses FunctionsP["(x) are involved. The integem belongs to the
grid**?* The agreement between the two is quite good eXfamiliar angular variation functiore'™?, while | describes
cept at the outer edge of the plasma, where the lack of g radial variation of the eigenfunction along the surface of
thermal tail in the cold equilibria causes disagreemgRe-  he plasma. The modes discussed here all nav® and our

call that this good agreement was predicted by E48-  assumption of rigid displacement in requires thatl be

(45).] odd*® The number of radial nodes ifiz(r) is given by (
—1)/2. For the special cade=1, there are no radial nodes,

V. GENERAL BEHAVIOR OF THE MODES so the (1,0) modéfor constantw,(r)] is simply the axial

With a method for calculating plasma equilibria, we mayfheen;?gi?:}g{;gﬁs mode of the plasma, i.e., a rigid shift along

now use the methods described in Sec. Ill to calculate the
normal modes of these equilibria. To do so we need to know
the functionso(r) andw,(r), whose calculation is discussed
in Sec. IV. The calculations presented here will involve equi-
libria described by Eq(38), but the method will work on We first study the behavior of thH&,0) mode(fundamen-
other equilibria as well. We report, however, that when thetal mode of a zero-temperature small aspect ratio plasma in
outer radius of the plasma is ill-defined, as it is for the pro-a nonideal confining field. For simplicity, we assume
files of o with thermal tails calculated by Paulson and throughout this subsection that only t8g coefficient is im-

B. Behavior of the modes in nonideal fields
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8 Fundamental Mode First Four Modes
4x 10
- b) S
N S S
3.8 (a
3.7 > . A . . .
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
1 2
0.75F @ (b)
E 0.5F 1 ‘f‘»
[Ze]
0.25f
Hollow
0 . . .
D . . .
0 0-25 P/'ri 0.75 1 0 0.25 0.5 0.75 1

FIG. 4. The properties of the fundamenta)0) mode are displayed for two
different nonideal cases with onlg, and C, nonzero. Both cases have
43,000 electrons: 75 grid points in the mode calculation, gpe3 mm;
their surface charge density profilegr) are readily calculable from Eq.
(40). The upper frame shows the profiles ®f(r) as solid curves and the
fundamental mode frequencies as dashed lines for two different choices q
C,. Case(a) hasC,=—4.2511x10° and C,=—5.63x 10° (in SI unit9
which is halfway fromC,=0 to the uppefcompletely hollow limit in Eq.
(41). Case(b) has C,=—4.2511x10° and C,=3.74x1C® (in SI unit9 ) )
which is halfway fromC,=0 to the lower limit in Eq.(41). The lower ~Modes as well. In both figures the upper frame displays Du-
frame shows the mode displacement functi#e{r) for both (a) and (b). bin’s eigenfunctions, which are given by the formulas
Note that it decays in the region whede> w,(r).

6z(r) (1,01, (47)

5 r2
~ -,
2rp

FIG. 5. The attenuation of the first four modes for the hollow plafcaae

(@] in Fig. 4 is shown. The upper frame shows Dubin’s eigenfunctions
(distinguished from each other by their number of zgnakile the lower

frame shows the numerically computed eigenfuncti@iso distinguished
the number of zergsNote that they are substantially attenuated toward

e outside edge of the plasma compared to the ideal eigenfunctions.

0z(r) (30> 1— (48)

portant. Equatior{40) gives the equilibrium surface charge
density of the plasma under these conditions, while (E). r2 63r4
gives the allowable range of values ©f;.

As previously noted, the fundamental mode of a low-

aspect ratio plasma in the ideal quadrupole fields of a Pen- 27r2 297r* 429r°
P P q P z(Nao*l—5 2+ —=2— == - (50)
p

5Z(r)(5’0)ml—7r§+§a, (49)

ning trap is a rigid shift; that isgz(r) is a constant. The 8 r 16 r®
entire plasma oscillates axially as a rigid body in the trap,
with frequencyw,. If the coefficientC, is present, then if
C,C4>0, w,(r) decreases with radius, while €,C,<0,
then w,(r) increases with radiugSee Fig. 4 and Eq$32)
and (34).] Exploring these two cases by numerical experi-
mentation using the method described in Sec. Ill, we find
that the fundamental mode frequency moves similarly up or
down, having a value intermediate between the extremes of
w,(r) across the plasmésee the dashed lines in the upper _
panel of Fig. 4. In doing these calculations it became appar- 0 0.95 05 0.75 ]
ent that the eigenfunctions were behaving like evanescent
wave functions. For instance, notice in the lower panel of 1
Fig. 4 that the displacement functioAg(r) tend to decrease
as they extend into the radial interval where the mode fre- =
guency is greater tham,(r). (More dramatic examples of N
this effect appear later in the pap€eFhis behavior is back-
wards from the usual evanescent behavior of waves in a for-  _, ] ] ]
bidden region where frequencies below some threshold are 0 0.25 0.5 0.75 1
cut off, but the same physics is actually involvéas dis-
cussed below in Sec. V)DThe reason that it works back- _ _ ]
FIG. 6. The attenuation of the first four modes for the plasma @it,

wards is that the coupling between different parts of the me_<O [case(b)] in Fig. 4 is shown. The upper frame shows Dubin’s eigen-

dium _in this problem is repulsive inStefid Qf attractive. _ functions while the lower frame shows the numerically computed eigenfunc-
Figures 5 and 6 show that attenuation is found for highetions. Note the substantial attenuation towarel0.

2r

z(r)
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Extreme Cases Extreme Cases (Charge Displacement)

05 0.75 1 0 025 05 0.75 1

E 0.5 = 0.5
0.25} 0.25
0 0 . . .
0 0.25 0.5 0 0.25 0.5 0.75 1

r/r r/r
p p

FIG. 7. The profiles of surface charge densityfdashegland axial displace- FIG. 8. For the same extreme cases shown in Fig. 7, the displaced charge
ment(solid) of the fundamental mode are shown for the two extreme caseer unit radiusgy’ (r) = dz(r)o(r)r is displayed as a solid curve while the

in Eq. (41). The upper frame is for the upper limit and the lower frame is for profile of o is displayed as a dashed curve. Note that the concentration
the lower limit. effects atr =0 andr=r, are greatly reduced.

In the plots these functions have been normalized for conve-

nient comparison with the corresponding nonideal eigen- 2 2 q

functions. w62(r) = wy(r)6z(r) — m—pEu(f.O)- (51)
Figure 7 shows that this attenuation behavior persists ) ) )

right up to the extreme limits of E¢41). In these limits, it is In this equation, the last term on the right represents the

interesting to note that the plasma surface-charge densifigPulsive coupling between all of the charged rings compos-
o(r) becomes very small in certain regions of the plagata ing the plasma. The actual behavior of the coupling, as we
the plasma center or at the plasma edge, depending on th@ve seen from Eq9), is quite complicated, and the origin
sign of C,C,), and that the modes are rapidly attenuated®f the mode attenuation is not easily seen. However, if we
outside the region of space whes¢r) is small. This con- consider a similar system where only nearest-neighbor rings
centration of displacement toward the thinned-out center o€ coupled by a force of forfi=kAz (to give the correct
edges of the plasma probably affects the ability of theséign for repulsive couplingand separated by an infinitesimal
modes to be detected by measurements of induced charge gigtanceAr, Eq. (51) becomes
the Penning trap electrodéas in Weimer’s experimetf, K
and judging by these extreme-case plot$safr) one might wzéz(r)=w§(r)5z(r)+ —[8z(r +Ar)—8z(r)]
think that this would be an important effect. But the elec- Mp
tronic signals depend not on the displacement itself, but on k
the amount of displaced charge. A measure of this quantity is - m—[&z(r) —oz(r—Ar)]. (52
the displaced charge per unit radgf{r) = 6z(r)o(r)r, and P
this quantity is displayed for both of the cases of Fig. 7 in(Note: a system like this, consisting of hacksaw blades dy-
Fig. 8. Notice that the concentration effect is greatly reducedpamically coupled by ring magnets, has recently been built
though still present. and studie® and will be discussed in Sec. VDrhe second

As seen in Fig. 3, the profiles in Weimer’s experimentterm on the right is the repulsive force of the ringratAr
should have been hollow, $p(r) should have been concen- acting on the ring at, while the third term is the repulsive

trated near the center of the plasma. Weimer reported thdérce of the ring ar — Ar acting on the ring at. This equa-
when their trap was detuned so ti@t had the opposite sign, tion can be simplified to obtain
they did not observe modes. In this case the charge displace-

ment should have been more peaked near the outside edge sz— 2(r)]62(r) = kAr?

the plasma, but whether this effect has anything to do with @~ @2(f10Z(r)= m,

their inability to detect modes with this detuning requires

further study. ><[5z(r+Ar)—252(2r)+ oz(r—Ar)]
Ar '

C. Radial attenuation of the modes (53

The physical process which causes the radial attenuation In this form, the last term in Eq(53) is a numerical
of the modes can be better understood by careful examinapproximation to the second derivative & with respect to
tion of Eq. (8), repeated here: r, and the equation can be put into the form
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2 o
My w?— w3(r)] Computed Spheroid & 's

” 5z(r)=Ar?582"(r). (54) 0.03
This equation is analogougxcept for a minus signto the 0.02f
time-independent Schdinger equation in one dimension for 50 o1

a particle in a potentiaU(r)ocwi(r). The mode displace-
ment functionéz(r) corresponds to the particle’s wave func-
tion, andw? corresponds to the particle’s enerfy In the 2
guantum mechanical system, the wave function of a particle
exhibits oscillatory behavior in regions of space whé&re
>U(r). Likewise, in the classically forbidden region where 3t
E<U(r), the particle’s wave function in the quantum sys-
tem dies exponentially in most simple cases. In the plasma,
however, because of the extra minus sign, the mode displace- T
ment functionsz(r) exhibits oscillatory behavior whew?
<w2(r), and attenuates exponentially wheR> w2(r), as 3
seen in Figs. 4—6. The oscillatory behavior of the higher-
order normal modes of the plasma is exactly analogous to theiG. 9. Computed values af;,, @so, anda;q as a function of plasma
excited states of the quantum particle’s wave function. radius are shown for a fjnely—spaced sequence of equilibria following the
Although the coupling in this example is somewhat con-Mre coarse pattem of Fig. 3. The upper curve in each framgds ), the

. . . . middle curve isas(r), and the lower curve is; ((r). This is the same
trived, the effect is analogous to the effect which arises fronygering as in the experiment, but the relative spread between the lower
the complicated coupling term in E¢Q)—perturbations in  curve and the upper curve is about a factor of 2 too small. The lower frame
the trap fields cause the mode displacement function to atS an expanded view of the curves in the inset box in the upper frame.
tenuate into regions whewe?> w,(r)?.

32F

6 3.7 3.8 3.9
r(mm)

D. Comparison with the results of Weimer et al. the range 1 mm-3.94 mrpAt this largest radius the plasma

became completely hollow, i.eq(0)=0. Notice that ac-

cording to the first two values in Table IG,=a,X (—1/2)

and C,=a,X(3/8) should have opposite signs, which does
ot make a hollow plasma according to the discussion of Eq.

(41). This simple rule involving the sign o€,C,, which

wio: wg, (55  works if only C, andC, are important, does not work here

because the other terms are more important at large plasma

In Dubin’s theory'® taken to first-order accuracy in as-
pect ratioa, the frequencies of the first four odd, azimuthally
symmetric normal modes of cold plasma spheroids satis
the following:

wg = w; 1— §7m , (56) radius} These profiles were then used to calculate the fre-
’ | 8 guenciesw; g, w3, W59, andwy, and these values were
161 used in Egs.(55—(58) to calculate az((rp), asdrp),
wgoz wf 1- —7al, (57) a7 (rp). This theoretical simulation of the experiment is
' ! 128 shown in Fig. 9. The first thing to notice is that the computed
969 a values are in the correct order of ER9) and that the
wf =il 1- =7 (58  computed relative range af is about 13%, about the value
: obtained in Mason’s simulatiort$,and about a factor of 2

In Weimer’s experiment® these results were used to esti- low compared to the experiment.
mate the plasma aspect ratio after the frequencies corre- In the experiment the range of values of computesl
sponding to the various modes had been identified. With  when all four modes could be measured was only about
as an estimate fow,, as in Eq.(55), Egs.(56)—(58) can  [0.001-0.004 This range is shown in the inset in the upper
each be solved for using the measured values far g, frame of Fig. 9 and is displayed in expanded form in the
ws, and w7 o. Weimer et al. found that the experimental lower frame. Notice that this calculation thus predicts that
values ofe obtained through this process always satisfied thehe experimental plasma radius only varied between about
inequality 3.6 mm and 3.9 mm during the 25 minutes when aFI)]IQfour
modes were measured in Fig. 5 of the experimental paper.
¥30~ @507 470 ©9 Looking at this range obr profiles in Fig. 4 of this paper
(as in Fig. 5 in their papgr with the difference between shows that this calculation also predicts that the experimental

these estimates on the order of 20%: plasma was quite hollow during the measurable period of
@so-aro Aa time. This hollow behavior, when taken together with the
——=—=0.2. (60)  result of Paulson and Spengkthat the plasma thickness
30 3,0 cannot be smaller than a distance on the ordex f [see

To compare our calculation with their experimental re-Eq.(43)], means that the quantity?” measured in Weimer’s
sults we used the values @f, in Table Il to generate a experiment was not simply the ratio of the plasma half-
sequence ofr(r) profiles for many different plasma radii in thickness at =0 to the outer plasma radius.
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Spheroid o 's With Error Fields global thermal equilibrium in which the plasma is very thin.
0.03 T A mode equation for the azimuthally symmetric, incompress-
ible fluid modes of such a plasma has been derived and
0.02} : ; I
g solved numerically in the limit that the plasma can be de-
ool scribed as a thin layer of surface charge density). When
' the plasma temperature is zero and the trap fields are ideal,
0 near-perfect agreement with Dubin’'s zero-temperature

2 3 4 theory® is obtained to first order im. Our mode equation,

x107° r(mm) however, can be solved for arbitrary confining fields and
temperatures provided the functiomér) andw,(r) (surface
3r charge density and axial bounce frequency profilese
5o} known. Additionally, the computation time required by this
method is significantly less than that required for a particle
) simulation.
86 3-7 3-8 3-9 We have also examined t_he dependence of the plasma
' : r(mm) ' shape and the normal mode eigenfunctions on nonideal com-

ponents of the trap fields. We find that the amplitudes of the

FIG. 10. These curves are just like those of Fig. 10 exceptdhét) has normal modes tend to be large in regions of the plasma

been random!y perturbed at the_0.25% level in an attempt to assess the ‘?ﬁ‘Where O'(I') is small [equivalent to regions whereo
of electrostatic field errors. This effect makes the curves look more like d th h litude i . .
those of the experiment and also increases the relative spread, in this caseTo®z(r)] and that the amplitude is evanescent in regions

a level about the same as the experiment. where o> w,(r) [corresponding to larger values of(r)].

The equilibrium and mode calculations have also been ap-
o plied to the experiments of Weimet al® and we find that

~ Recent work by Spencer and Rober%_’andmates_, that  heir plasmas were probably hollow. We also reproduce the
in systems comprised of weakly coupled oscillators it is hardordering of thea-values they calculated, but we cannot re-

to find modes. if the. individual oscillators aII'have the Samepraduce the amount of spread in these values unless we add
frequency(as in an ideal trap but that detuning makes the 5nqom perturbations to the equilibrium fields in an ad hoc
modes more well defined. They also show evidence that iy, - er.

the presence of perturbations to the systéike error fields

due to_stray pa_ltches of charge on electrodes or maCh'n'n/giCKNOWLEDGMENT

errors in Penning trapsdetuning helps the modes retain

their integrity in spite of the perturbations. To test whether ~ The authors wish to thank John Bollinger, National In-
this idea has relevance for the modes in the experiment, wetitute of Standards and Technology, Boulder, for his help
added random perturbations of various strengths tetlie) and encouragement on this project.

profile in our mode calculations. We find that when errors are

added at a relative level of about 0.25%, the curves in Fig. APPENDIX: THE MATRICES

are changed substantially, as shown in Fig. 10. We were sur- h . f E€LS ¢ .
prised to find that this effect not only makes the curves of e representation of E€L5) as a sum of matrix opera-

computeda’s be more like the jagged curves of the experi- tors is discussed in this appendix. Each of the 8 terms corre-

ment (which was expectad but also thatAa went up. In sponding .tOY‘ f_or i=0,1,..,7 in this equation can be written
fact, by choosing the perturbation level properly it is easy S @ matrix, with the tgp and pottom rows fu.II of zeros be-
get curves that look about like those of the experiment an ause boundary conditions will be appllgd n 'ghese Fows,
that have about the right value fdra/as o of about 20%. In  corresponding ta =0 g)ndr =Tp. The matrices will be de-
the simulations of Masoet al,, the factor of two discrepancy noted by the ;ymbol@mn an_d each .W'" be dlscussgd n turn.
in the spread could be accounted for by increasing the tem- The matrix corresponding tgy is, of course, simply
perature by a factor of 4, but this error field estimate provides ~ G(® =5, w(r ) (A1)

an alternative explanation for the increased spread. It is dif- .
ficult to pursue this idea further without some knowledge of(except for the top and b ottom rows, Wh'.Ch are full of _zéros
the level of error fields in the experiment, but it does suggest _Th_e 71 t?lr)m has a _S|mple interpretation as a matrix mul-
that error fields may have played a role in what was observeHpllcatlon Gmnd2(ry) with

in the experiment(Note: we do not study image charge ef-
fects here, but their magnitude was estimated in Mason
etal, and it was found that their inclusion probably de-
creases the spread. This would require perturbation levels G,(ﬁ%:O; m=n,
even higher than 0.25% to account for the spread.

qAr a(ry) Emn o
€My (Tm*Tn) (rn_rm)2 "

1)
M= m#n,

(A2)

i.e., a full matrix (excepting the rows reserved for boundary
conditions with zeros down the main diagonal.
Using the substitutio®z(r ,,) = 6,,,62(r ), the y, term
When a finite-temperature plasma is confined in a Penean be interpreted as a diagonal mat@fﬁ,)1 multiplying
ning trap, transport and radial expansion lead to a state ofz(r,), where

VI. CONCLUSION
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2) _ 1
@=3 o,

0 0 O

0 g o0

(2

GO 0 0 g3
™M 1o 0 0
0 0 0

(A3)

Similarly, the y5 term is written asGEﬁr)]éz(rn), where

the substitution,

0Z(r my1) — 0Z(rm—1)

0Z' (I )~

leads to

2Ar

ﬁ?)=2k (Ne—Tm G

_ 5Z(rm+1)_252(rm)+5Z(rm—1)

and
)
-g&¥
_ o3
G(s)zi 9
mn-2Ar 0
| O 0
In the y, term we use
52’/(rm) ArZ
to obtain
(4):CIAI’U'(rm)
m 460mp7T !
) 0
o) —2g8"
(4)
cw_ L0 9%
mn ArZ 0 0
| O 0

0
gt
—2g§"
g4

0

0
0

9"
—2g{"

0

(A4)

(A5)

(AB)

(A7)

Following similar procedures with thes, ye, and vy

terms yields
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(5)_ QAI' Emkrk U(rm)
m = o(ry) —2——2v— — )
€oMpT KZm (rg—=rm)  2(re=rm)|
[0 0 0 0 ]
—g® 0 ¢® o
GI(T?I)1:_ ° (5) ° , (A8)
2Ar| 0 0 —gY 0
. 0 0 0 0 |
e AT [o'(rm)  o(rm)
megmym| 2 drn |
- - (A9)
0 0 0 o -
g 0 g o
o L | 0 e’ 0 g
m2Ar| 0 o -¢g® o ’
0 0 0 0 -]
7 — qo(ry) In o= Im
M 2egmpm rm |’
- - (Al10
0 0 0 . (A10)
~gf) o) o
—a (7)
n_ Lt 9s
mnT2Ar | 0 o -g” o
. 0 0 0 0 |
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