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Vibrational modes of thin oblate clouds of charge
Thomas G. Jenkinsa) and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 15 February 2002; accepted 9 April 2002!

A numerical method is presented for finding the eigenfunctions~normal modes! and mode
frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial
thickness is much smaller than their radial size. The plasma may be approximated as a charged disk
in this limit; the normal modes and frequencies can be found if the surface charge density profile
s(r ) of the disk and the trap bounce frequency profilevz(r ) are known. The dependence of the
eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning
trap fields is discussed. The results of the calculation are compared with the experimental data of
Weimeret al. @Phys. Rev. A49, 3842~1994!# and it is shown that the plasma in this experiment was
probably hollow and had mode displacement functions that were concentrated near the center of the
plasma. ©2002 American Institute of Physics.@DOI: 10.1063/1.1482765#
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I. INTRODUCTION

A Penning trap~see Fig. 1! uses a combination of elec
tric and magnetic fields to confine particles of a single s
of charge, and this versatile device has been used in a va
of applications.1–12

These have included early laser cooling experiments,5 as
well as related experiments in single-ion spectroscopy6 and
metrology.7 These traps have also been used to study
collective behavior of single-species~non-neutral! plasmas,
including phenomena such as rotational equilibria8 and phase
transitions in strongly coupled ion plasmas.9–12

In the ideal version of this trap, described using cyl
drical coordinates, a strong magnetic fieldB in the
z-direction confines the particles radially and hyperbo
electrodes produce an electrostatic potential,

f~r ,z!5
vz

2mp

2q S z22
r 2

2 D1f0 , ~1!

which confines particles axially. Heremp andq are, respec-
tively, the mass and charge~including the sign! of the con-
fined particles,f0 is the potential at the center of the tra
~hereafter assumed to be zero!, andvz is the ‘‘bounce fre-
quency’’ of particles oscillating in thez-direction. In an ideal
trap the bounce frequency is uniform inr .

An analytic theory describing the dynamics of flu
modes in a non-neutral, zero-temperature plasma confine
a Penning trap has been developed by Dubin.13 This theory
exploits the simple spheroidal shape of these plasmas14,15 to
carry out a novel boundary-value problem in spheroidal
ordinates. The mode frequencies of such a plasma are
pressed as functions of the confining fields of the trap and
plasma aspect ratioa ~defined for a plasma with central axia

a!Present address: Plasma Physics Laboratory, Princeton, New Jersey 0
electronic mail: tjenkins@pppl.gov
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half-width zp and radiusr p as a5zp /r p!. Experimental
results8,16,17have shown good agreement with these theo
ical predictions.

This theory was employed by Weimeret al.,18 who used
the observed mode frequencies in a plasma which had b
thinned by radial transport to deduce the plasma aspect r
In Weimer’s experiment, a pure electron plasma consisting
approximately 43,000 particles was confined in a Penn
trap and held at a temperature of about 4 K. After a tim
sufficient for the plasma to come to global thermal equil
rium, modes were excited and observed in the plasma.
each identifiable mode, the measured mode frequency
used to calculate the plasma aspect ratio. Although the ag
ment was fairly good, calculated values ofa for different
modes using Dubin’s theory were found to disagree w
each other by as much as 20%.

It was shown through numerical simulations by Mas
et al.19 that thermal effects, as well as nonideal confini
fields in the Penning trap, might account for the discrepa
between Dubin’s theory and this experiment. Paulson
Spencer20 extended this work, and were able to calcula
without the use of a simulation, the effects of finite plasm
temperatures and nonideal confinement fields on the pla
equilibria. The basis for their calculation involved an a
proximation valid for small-aspect ratio plasmas. In th
limit, it becomes meaningful to think of the plasma as
charged disk with a surface charge density profiles(r ).

In this paper, the same surface-charge–density appr
mation is employed to derive an eigenvalue equation wh
has, as its solutions, the eigenfrequencies and incompres
eigenmodes of an azimuthally symmetric plasma of sm
aspect ratio.~It should be noted that the effects of surfa
charge induced on the conducting walls of the trap are
nored in this paper, as they are in Dubin’s theory and in
equilibrium calculations of Ref. 20.! The mathematical form
of this eigenvalue equation is a singular integral equation
a type first studied analytically by Carleman;21,22 in this pa-
per it is solved numerically. In Sec. II of this paper we deri
43;
6 © 2002 American Institute of Physics
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this equation. In Sec. III we present the numerical meth
used to solve the equation, and demonstrate that this me
reproduces the ideal trap results of Dubin.13 In Sec. IV we
briefly review and generalize the equilibrium calculation
Paulsonet al. for nonideal~nonquadrupole! confining fields,
and use this generalization to finds(r ) in global thermal
equilibrium for the trap used by Weimer.18 In Sec. V we
discuss the qualitative behavior of the normal modes of th
plasmas in ideal and nonideal confinement fields. The va
ity of these results at finite temperatures is discussed,
commentary relating to Weimer’s experiment is also giv
In Sec. VI we conclude the paper.

II. DERIVATION OF THE MODE EQUATION

Consider a plasma in cylindrical coordinates whose
dius is so much larger than its thickness inz that it can be
described by an equilibrium surface charge density pro
s(r ). This is the natural end state of a cloud of charge i
Penning trap because transport increases the radius, and
does so the axial electric field of the trap compresses
cloud inz. We seek a mathematical theory of the drumhe
like modes of such a plasma, restricting our attention in t
paper to modes with azimuthal symmetry. There are two
portant effects that determine the frequencies and eigenf
tions of these modes. The first is that when the cloud is
longer confined near the trap center, the higher-order m
pole moments of the trap produce a nonuniform axial bou
frequency profilevz(r ), so that particles at different rad
vibrate at different frequencies. The second is that the vib
tional motion of the cloud is also affected by mutual rep
sion between different parts of thes(r ) profile. Ignoring
modes with internal variation inz, we let the mode displace

FIG. 1. A Penning trap, which is used to confine charged particles. A vol
difference applied between the endcaps~left and right! and the ring~middle!
produces an electrostatic field approximating Eq.~1!. This potential confines
the particles inz, while a uniform magnetic field provides radial confin
ment.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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ment function be purely in thez-direction, i.e., dz(r )
5dz(r ) ẑ. Such a mode is indicated in Fig. 2, where it can
seen that the displacement inz from equilibrium of different
parts of the profile is denoted by the functiondz(r ).

To find the normal mode shapes and the mode frequ
cies of this plasma, we need to be able to calculate the a
electric fieldE1z„r ,dz(r )… which the plasma creates at ea
ring of charge composings(r ). This field can be obtained
from the cylindrical Green’s functionH(r ,r 8,z2z8) ~ignor-
ing the effects of induced charge in the trap walls! which
gives the electrostatic potential at (r ,z), due to a ring of
surface charges(r 8) with width dr8 located at (r 8,z8), as

df~r ,z!5
1

e0
H~r ,r 8,z2z8!s~r 8!r 8dr8. ~2!

Hence, we may find thez-component of the electric field a
radiusr and infinitesimal axial displacementz5dz(r ) due to
the rest of the displaced charge in the mode as

E1z„r ,dz~r !…5
21

e0
E

0

` ]H„r ,r 8,dz~r !2dz~r 8!…

]z

3s~r 8!r 8dr8. ~3!

In this equation,e0 is the permittivity of free space an
the functionH(r ,r 8,z2z8) is given by

H~r ,r 8,z,z8!5
1

2p
A m

rr 8
K~m!, ~4!

where

m5
4rr 8

~r 1r 8!21~z2z8!2 , ~5!

and whereK(m) is the complete elliptic integral of the firs
kind.20 Carrying out the differentiation in Eq.~3! yields

e

FIG. 2. The surface shows the deformation of a thin plasma in an axis
metric vibrational mode. The origin is shifted upward along thez-axis to
better showr , r 8, and the axial displacement functionsdz(r ) anddz(r 8).
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]H

]z
5

1

2p
A m

rr 8
E~m!

~z82z!

@~r 82r !21~z82z!2#
, ~6!

whereE(m) is the complete elliptic integral of the secon
kind.

Expanding Eq.~6! in small z2z8 to just first-order and
substituting the result in Eq.~3! yields, for thez-component
of the electric field atdz(r ) due to all of the other rings o
charge atdz(r 8),

E1z~r !'
21

e0
PE

0

` 1

p

1

~r 1r 8!

E~m!

~r 82r !2

3s~r 8!@dz~r 8!2dz~r !#r 8dr8, ~7!

where P denotes a principal value integral.@Note that the
apparent quadratic singularity in the integral is actually
first-order singularity because the factor in the numera
containingdz(r ) vanishes whenr 85r .#

With a way of calculating the perturbed electric fie
created by the plasma, we may now write down t
z-component of Newton’s second law at each radial posit
r in the surface charge distribution:

mpd z̈~r !5qEext(z)~r ,z!1qE1z~r ,z!. ~8!

Requiring a normal mode so thatdz(r ) is proportional to
e2 ivt, using the known profilevz(r ) of the axial bounce
frequency, and using Eq.~7! then leads to

v2dz~r !5vz
2~r !dz~r !

1
q

e0mpp
PE

0

` 1

~r 1r 8!

E~m!

~r 82r !2 s~r 8!

3@dz~r 8!2dz~r !#r 8dr8. ~9!

This is a singular integral equation of a kind first studi
by Carleman, who had a simple kernel to deal with and w
able to proceed analytically. The presence in our problem
the complete elliptic integral of the second kind with a co
plicated argument almost certainly means that numer
methods are required to solve it. Note, however, that
small-aspect-ratio analytic results of Dubin must be rep
duced by this equation, so perhaps an analysis is possib

One simple result can be verified in Eq.~9!, and it is that
the center of mass mode in an ideal trap, for whichdz(r ) and
vz(r ) are both constant, has frequencyv5vz , as expected
To obtain further results requires that we proceed num
cally.

III. NUMERICAL METHOD

Beginning with our mode equation, Eq.~9!, we assume
that for the plasma and confining fields under considerat
the surface charge density profiles(r ) and the bounce fre
quency profilevz(r ) are known. Beyond the plasma radiu
r p , the vanishing ofs(r ) makes the integrand in Eq.~9!
equal to zero, so we replace the upper limit of integrat
with r p . The integrand has a principal-value singularity
r 85r . However, the singularity can be removed by subtra
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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ing a carefully chosen term from the integrand~to make it
nonsingular atr 5r 8! and then adding this term back in as
separate integral. Doing so, we obtain

v2dz~r !5vz
2~r !dz~r !1

q

e0mpp E
0

r p s~r 8!

~r 1r 8!

E~m!

~r 82r !2

3@dz~r 8!2dz~r !2dz8~r !~r 82r !#r 8dr8

1
qdz8~r !

e0mpp
PE

0

r p s~r 8!E~m!r 8

~r 822r 2!
dr8, ~10!

noting thatdz8(r ) is the derivative ofdz(r ) with respect to
r .

The second integrand in this expression also ha
principal-value singularity atr 5r 8, so we again add and
subtract appropriately to make a nonsingular integral an
simple principal-value integral,

PE
0

r p dr8

~r 82r !
5 lnS r p2r

r D , ~11!

which yields an integral equation that is equivalent to Eq.~9!
but which is in proper form to be approximated numerical

v2dz~r !5vz
2~r !dz~r !1

q

e0mpp E
0

r p s~r 8!

~r 1r 8!

E~m!

~r 82r !2

3@dz~r 8!2dz~r !2dz8~r !~r 82r !#r 8dr8

1
qdz8~r !

e0mpp E
0

r pFs~r 8!E~m!r 8

~r 822r 2!

2
s~r !

2~r 82r !Gdr81
qdz8~r !s~r !

2e0mpp
lnS r p2r

r D .

~12!

We now discretize Eq.~12! by letting the variables
(r ,r 8) correspond to the discrete variables (r m ,r n) and by
converting the integrals to discrete sums using the midp
method. For the discrete variablesr m and r n we use a cell-
centered grid containingN grid points. On this grid, the grid
spacing isDr 5r p /N, and the position of thekth grid point
is given by r k5(k21/2)Dr ; k51,2,...,N. ~Note that this
choice of grid eliminates ther 50 andr 5r p singularities in
the logarithmic term.! We also assume hereafter that all sum
run from 1 toN, except as explicitly stated. We obtain

v2dz~r m!5vz
2~r m!dz~r m!

1
qDr

e0mpp (
n

s~r n!

~r m1r n!

Emn

~r n2r m!2

3@dz~r n!2dz~r m!2dz8~r m!~r n2r m!#r n

1
qdz8~r m!Dr

e0mpp (
n

Fs~r n!Emnr n

~r n
22r m

2 !
2

s~r m!

2~r n2r m!G
1

qdz8~r m!s~r m!

2e0mpp
lnS r p2r m

r m
D , ~13!

where

ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

17 Mar 2014 22:32:11



-

ker

2899Phys. Plasmas, Vol. 9, No. 7, July 2002 Vibrational modes of thin oblate clouds of charge

 This a
Emn5ES 4r mr n

~r n1r m!2D , ~14!

and whereE(m) is the complete elliptic integral of the sec
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ond kind. These summations are indeterminate atr n5r m , so
we separate out these terms explicitly using the Kronec
delta dmn . Using L’Hospital’s rule andEmndmn5E(1)dmn

5dmn @sinceE(1)51# we obtain
v2dz~r m!5g0vz
2~r m!dz~r m!1g1

qDr

e0mpp (
nÞm

s~r n!r n

~r m1r n!

Emn

~r n2r m!2 dz~r n!2g2

qDrdz~r m!

e0mpp (
nÞm

s~r n!r n

~r m1r n!

Emn

~r n2r m!2

2g3

qDrdz8~r m!

e0mpp (
nÞm

s~r n!r n

Emn

~r n
22r m

2 !
1g4

qDr

4e0mpp
s~r m!dz9~r m!1g5

qdz8~r m!Dr

e0mpp

3 (
nÞm

Fs~r n!Emnr n

~r n
22r m

2 !
2

s~r m!

2~r n2r m!G1g6

qdz8~r m!Dr

e0mpp Fs8~r m!

2
1

s~r m!

4r m
G

1g7

qdz8~r m!s~r m!

2e0mpp
lnS r p2r m

r m
D , ~15!
t
c

his

ion
rix

om
ni-
eps

ce
re-
in which we have introduced the factorsg i51,(i 50,...,7)
simply as a means of keeping track of terms in what follow

The left-hand side of Eq.~15! may be interpreted as
matrix operator if we writedz(r m)5dmndz(r n). Similarly
converting the right-hand side of Eq.~15! to a matrix, as
discussed in the Appendix, this equation may be written

Omndz~r n!5v2dmndz~r n!, ~16!

where

Omn5(
i 50

7

Gmn
( i ) ~17!

~see the Appendix for the definitions of the matricesGmn
( i ) !.

The procedure outlined in the Appendix does not wo
however, on the top and bottom rows ofOmn because the
derivatives in Eq.~15! are difficult to represent at the firs
and last grid points. To handle these two troublesome ro
we choose to apply boundary conditions. The symmetry
the modes requiresdz8(r )50 atr 50, and this condition can
be represented on our grid by the relation

22dz~r 1!13dz~r 2!2dz~r 3!50. ~18!

There is no corresponding natural boundary condition
r 5r p , but we can at least be neutral there, and avoid hav
.

,

s
f

t
g

to compute too close to the square-root singularity ar
5r p , by requiring thatdz(r N) be equal to the quadrati
extrapolation of the three previous points, i.e.,

dz~r N!53dz~r N21!23dz~r N22!1dz~r N23!. ~19!

~We experimented with several conditions like this and t
one is adequate.!

These conditions are implemented in the matrix equat
by replacing the top and bottom rows of the identity mat
dmn on the right side of Eq.~16! with zeros, calling this new
matrix Rmn . Additionally, we replace the top row of theOmn

matrix with the row@22s,3s,2s,0,0,0,. . . ,0# and replace
its bottom row with@0, . . . ,0,2s,3s,23s,s#. The quantitys
is the largest element of the matrixOmn , and serves as a
factor to scale the matrix elements in the top and bott
rows of Omn to be approximately the same order of mag
tude as the elements in the other rows. This rescaling ke
the condition number ofOmn sufficiently low that numerical
solutions of Eq.~16! are possible, and is of no consequen
otherwise~since the right-hand side of the equation cor
sponding to these rows is zero, that is, the first andNth rows
of Rmn are full of zeros!. We obtain
Omn53
22s 3s 2s ¯ 0 0 0

O21 O22 O23 ¯ O2,N22 O2,N21 O2,N

O31 O32 O33 ¯ O3,N22 O3,N21 O3,N

] ] ] � ¯ ¯ ¯

ON21,1 ON21,2 ON21,3 ¯ ON21,N22 ON21,N21 ON21,N

0 ¯ 0 2s 3s 23s s

4 , ~20!

s[max„max~Omn!…. ~21!
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This leads to the generalized eigenvalue equation,

Omndz~r n!5v2Rmndz~r n!, ~22!

which we solve using Matlab 6.
A good way to test the accuracy of our numeric

method is to check that it agrees with Dubin’s theory13

which gives the eigenmodes and eigenfrequencies for a
spheroid in a Penning trap with constantvz(r )5vz0 . As-
suming that the plasma is a spheroid of constant density
required by Dubin’s theory, we obtain

s~r !52qncoldzpA12S r

r p
D 2

52qncoldar pA12S r

r p
D 2

, ~23!

where

ncold5
vp

2e0mp

q2 , ~24!

andvp is the plasma frequency.
Bollinger et al.16 showed that for cold spheroids of sma

aspect ratio,vz0 andvp are related~to second order ina! by

vz0
2 5S 12

p

2
a12a2Dvp

2. ~25!

This means that Eqs.~23!–~25! can be combined to give

s~r !5
2vz0

2 e0mpar p

q
A12S r

r p
D 2

, ~26!

to first order ina. Putting this form fors(r ), together with
its derivative, into Eq.~15!, we obtain a numerical metho
for a cold spheroid of small aspect ratio.

The constancy ofvz(r ) allows us to move theg0-term
in Eq. ~15! to the other side of the equation. Dividing byvz0

2

then turns Eq.~22! into an eigenvalue equation of the form

Ōmndz~r n!52laRmndz~r n!, ~27!

where

la5S 12
v2

vz0
2 D , ~28!

Ōmn5S Omn

vz0
2 2I mnD , ~29!

andI mn is the identity matrix.@Note thatŌmn is proportional
to s and thus toa, so the small aspect ratio cancels out
Eq. ~27!.# Dubin’s calculation~to first order ina! gives the
first 4 eigenvalues of this equation as

l1,050; l3,05
5

8
p; l5,05

161

128
p; l7,05

969

512
p.

~30!

Table I shows the comparison between the eigenva
computed with Matlab 6 and these first-order analytic on
Since the calculation presented here is accurate to first o
in a we might hope to reproduce these results exactly. T
limitations of our simple midpoint integration rule and th
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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presence of a singulars(r ) profile atr 5r p seem to limit this
calculation to a relative accuracy of about 1024. Fortunately
this is sufficiently accurate for this calculation to be of phy
cal significance.

IV. COLD PLASMA EQUILIBRIA IN NONIDEAL
CONFINING FIELDS

The methods of the preceding section may be used
numerically find the normal modes and mode frequencies
a cold plasma in a nonideal~not strictly quadrupole! confin-
ing field, provided that the plasma aspect ratio is sm
enough that a description in terms ofs(r ) is valid. But to
proceed we need a way of calculating the surface cha
density profile. Such a calculation is presented in the App
dix of Paulson and Spencer.20 It should be noted that in gen
eral it is not possible to calculates(r ) because an experi
menter can load almost any desired charge distribution.
under the conditions of Weimer’s experiment, where t
plasma was slowly expanding due to collisions, we exp
the system to be close to a state of global thermal equ
rium. So it makes sense to follow the thermal equilibriu
calculation of Paulson and Spencer, which will be brie
reviewed here.

A. Equilibrium conditions

It is traditional in the Penning trap literature to descri
the electrostatic field of the trap in terms of vacuum harm
ics. This has the advantage that a single set of coefficie
can describe both the midplane potentialfe(r ,0) and the
particle bounce frequencyvz(r ). But the disadvantage o
this description is that the harmonic expansion does not c
verge for spherical radii larger than the distance to the ne
est singularity in the induced surface charge density on
electrodes~see, for example, Jackson23!, and in Weimer’s
experiment this distance is 3.5 mm, the distance from
center of the trap to the conical end cap. Since the ring e
trode had a radius of 5 mm, plasmas that approach this e
trode can extend into the nonconvergent region, invalidat
the standard expansion. To circumvent this difficulty, we n
merically computefe(r ,z) using a grid and Weimer’s geom
etry, then make separate least-squares polynomial fits to
midplane potentialfe(r ,0) and to the axial bounce fre
quencyvz(r ) in the form

TABLE I. The difference between the numerically obtained eigenval
@see Eqs.~27!–~28!# for a thin spheroid and those predicted by Dubin
theory~taken to first order ina!. The number of grid points in the numerica
calculation isN, the numerical eigenvalue isl and the first-order eigenvalue
from Dubin’s theory isl* . The subscripts on the eigenvalues are Dubi
notation for the axisymmetric modes. The computation was carried out
ing the eigenvalue routine in Matlab 6.

N l102l10* l302l30* l502l50* l702l70*

10 210215 2.331023 9.231022 4.431021

20 24310215 2.031024 1.431022 9.331022

40 4310215 22.931024 1.431023 1.531022

80 21.5310214 22.431024 22.431024 1.531023

160 21.3310213 21.331024 23.131024 2.831024
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 This a
fe~r ,z50!5 (
n51

`

a2nr 2n ~31!

and

vz
2~r !5 (

n51

`

b2nr 2(n21). ~32!

In passing we note that if the usual description of t
potential in terms of vacuum harmonics with spherical rad
R and polar angleu,

fe~R,u!5 (
n51

`

C2nR2nP2n~cosu! ~33!

does converge; then we have

a2n5C2nBn ; b2n52
4q

mp
C2nBnn2, ~34!

where

Bn[P2n~0!5
~21!n~2n!!

@n! #24n . ~35!

In Appendix B of Paulson and Spencer the surfa
charge density functions that produce polynomial potent
are found:

f~r !5Vn

r 2n

r p
2n is produced by

s~r !5
4e0Vn

pr p
sn~r /r p!, ~36!

where the functionsn(x) is given by

sn~x!5 (
m50

n21
~21!m11

uBnBm11u S n
m11D ~12x2!m11/2, ~37!

where (m11
n ) is the binomial coefficient. These relations a

the condition of global thermal equilibrium then lead to t
following two equations that determines(r ), given the ex-
ternal field coefficientsa2n and the number of particlesN in
the cloud:

s~r !5
4e0

pr p
F V̄s1~r /r p!2 (

n52

`

a2nr p
2nsn~r /r p!G , ~38!

N5
8r pe0

q
F 2

4

3
V̄1 (

n52

`

(
m50

n21

a2nr p
2n

3

~21!mS n
m11D

uBnBm11u~2m13!
G . ~39!

Note that Eq.~39! determines the voltageV̄ which is needed
to makes(r ) in Eq. ~38! determinate.

In a trap where onlyC2 andC4 are important, the equi
librium plasma surface charge distribution is given by
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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s

e
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s~r !5
3Nq

2pr p
2 F12

64C4r p
5e0

9Nq
~2/52r 2/r p

2!GA12r 2/r p
2.

~40!

As discussed in Paulson and Spencer, there are limits on
valuesC4 may have if the surface charge distribution is to
of one sign, as it must be in a Penning trap. These limits

2
15

64
<

C4r p
5e0

Nq
<

45

128
, ~41!

where at the upper limits(0)50; for C4 beyond this limit
the center of the plasma would be oppositely charged. At
lower limit the outside edge of the plasma makes the tra
tion to being oppositely charged. Exceeding the upper li
probably means that the plasma becomes hollow, wit
space near the center that has no charge. Dropping below
lower limit is rather problematic in the case of a cold plasm
but with finite temperature Paulson and Spencer show
the state of global thermal equilibrium in this case would
for the plasma to condense on the ring electrode, so perh
this negative limit gives the radius beyond which a plas
with C4 andq of opposite sign can no longer be confined
thermal equilibrium.

We also note@see Ref. ~20!# that for plasmas cold
enough that the Debye length is small compared to the a
plasma thickness, the surface charge densitys(r ) is the
same as the plasma thickness.

B. Equilibria in Weimer’s experiment

We now apply this equilibrium theory to the plasmas
Weimer’s experiment. But Eq.~38! is the surface charge den
sity of a zero-temperature plasma in thermal equilibrium,
the question now arises as to whether it makes sense to u
to describe experiments on thin plasmas with finite tempe
ture. Paulson and Spencer show that the cold formula
s(r ) is a good approximation to warm distributions provid
that

uDu5
p

8

zpr p

lD0
2 *40, ~42!

where

lD0
2 5

kT

mpvz
2 ~43!

and wherer p andzp are the plasma radius and half thickne
of a cold spheroid with density given by Eqs.~24! and~25!.
Since the total number of particles in such a spheroid
given by

N5
4

3
pr p

2zpncold, ~44!

we may convert the condition in Eq.~42! into a condition on
the plasma radius:

r p&
3Nq2

1280kBTe0
. ~45!
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

17 Mar 2014 22:32:11



m

i-

ex
u
on
th

th
tr

-
e

ex
n

fi
th

II.

t a
io

ex
f

ay
th
o
d
ui

th
ro
d

e

o-

on
the
r

e-
in

-
ers
re

of

,

ng

in
e

sma
effi-

nd-

al
t

2902 Phys. Plasmas, Vol. 9, No. 7, July 2002 T. G. Jenkins and R. L. Spencer

 This a
In the experimentN543000 andT54 K, giving the condi-
tion

r p&5.3 mm. ~46!

The ring electrode in the experiment had a radius of 5 m
so we expect this calculation ofs to work for the plasmas in
the experiment.

But applying this equilibrium theory to Weimer’s exper
ment requires more than just the extraC4 coefficient. The
plasma radii in this experiment were so large that a full
pansion is necessary, and, indeed, the expansion in vac
harmonics does not even converge for plasma radii bey
about 3.5 mm. But least-squares fitting a polynomial to
midplane potentialfe(r ,0) and tovz

2(r ) to obtaina2n and
b2n does work, and was accomplished by representing
electrodes in the experiment on a grid and doing an elec
static solve to calculatef(r ,z). ~The non-neutral plasma
equilibrium code of Spenceret al.24 was used for this calcu
lation. It has the ability to specify potentials on arbitrary lin
segments in ther ,z plane and hence can handle compl
electrode structures like those used in Weimer’s experime!
The midplane potentialfe(r ,0) andvz(r ) were then passed
into Matlab 6, which was used to make the least-squares
With the guard ring voltage set to 2.9 V, as was done in
published experiments, the coefficientsa2n and b2n in Eqs.
~31! and ~32! were found to be the values given in Table
Using thesea2n coefficients in Eq.~38! allows us to calculate
the surface charge density profile in Weimer’s experimen
a function of plasma radius. The results of this calculat
are shown in Fig. 3 together with two profiles ofs(r ) com-
puted with a global thermal equilibrium code that uses
grid.19,24 The agreement between the two is quite good
cept at the outer edge of the plasma, where the lack o
thermal tail in the cold equilibria causes disagreement.@Re-
call that this good agreement was predicted by Eqs.~42!–
~45!.#

V. GENERAL BEHAVIOR OF THE MODES

With a method for calculating plasma equilibria, we m
now use the methods described in Sec. III to calculate
normal modes of these equilibria. To do so we need to kn
the functionss(r ) andvz(r ), whose calculation is discusse
in Sec. IV. The calculations presented here will involve eq
libria described by Eq.~38!, but the method will work on
other equilibria as well. We report, however, that when
outer radius of the plasma is ill-defined, as it is for the p
files of s with thermal tails calculated by Paulson an

TABLE II. Fitting coefficients for the midplane potential and the axi
bounce frequency in Weimer’s experiment with the guard ring voltage se
2.9 V.

n a2n b2n

1 2.043105 1.4331017

2 4.093102 3.8131020

3 1.383107 23.5031025

4 27.4531012 21.0631031

5 2.6131017 6.9131035
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Spencer,20 the method of Sec. III gives poor results. But th
method seems to work well as long ass(r ) goes to zero at a
finite radius and should work equally well for analytic pr
files and fits to experimental profiles.

We now discuss briefly the mode labeling conventi
used by Dubin and employed by Weimer in discussing
results of his experiment.13,18 We then discuss the behavio
of the normal modes in simple nonideal confining fields~C2

andC4 only!, and finally discuss the normal modes for W
imer’s experiment using the equilibrium sequence shown
Fig. 3 and the values in Table II.

A. Mode labeling convention

In Dubin’s theory, the normal modes of a cold, uniform
density plasma spheroid are labeled by the two integ
( l ,m), satisfying l>umu @because the associated Legend
functionsPl

m(x) are involved#. The integerm belongs to the
familiar angular variation functioneimu, while l describes
the radial variation of the eigenfunction along the surface
the plasma. The modes discussed here all havem50 and our
assumption of rigid displacement inz requires thatl be
odd.18 The number of radial nodes indz(r ) is given by (l
21)/2. For the special casel 51, there are no radial nodes
so the (1,0) mode@for constantvz(r )# is simply the axial
center-of-mass mode of the plasma, i.e., a rigid shift alo
the ẑ-direction.

B. Behavior of the modes in nonideal fields

We first study the behavior of the~1,0! mode~fundamen-
tal mode! of a zero-temperature small aspect ratio plasma
a nonideal confining field. For simplicity, we assum
throughout this subsection that only theC4 coefficient is im-

FIG. 3. A sequence of surface charge density profiles for increasing pla
radius is shown by the solid curves. They are calculated from the co
cientsa2n as described in the paper using the geometry of Weimeret al.
~Ref. 18!. The open circles give surface charge density profiles correspo
ing to two of the cases in the paper of Masonet al. ~Ref. 19!. They were
computed by running the grid equilibrium code of Spenceret al. ~Ref. 24!
~which was also used by Mason!.
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 This a
portant. Equation~40! gives the equilibrium surface charg
density of the plasma under these conditions, while Eq.~41!
gives the allowable range of values ofC4 .

As previously noted, the fundamental mode of a lo
aspect ratio plasma in the ideal quadrupole fields of a P
ning trap is a rigid shift; that is,dz(r ) is a constant. The
entire plasma oscillates axially as a rigid body in the tr
with frequencyvz . If the coefficientC4 is present, then if
C2C4.0, vz(r ) decreases with radius, while ifC2C4,0,
then vz(r ) increases with radius.@See Fig. 4 and Eqs.~32!
and ~34!.# Exploring these two cases by numerical expe
mentation using the method described in Sec. III, we fi
that the fundamental mode frequency moves similarly up
down, having a value intermediate between the extreme
vz(r ) across the plasma~see the dashed lines in the upp
panel of Fig. 4!. In doing these calculations it became app
ent that the eigenfunctions were behaving like evanes
wave functions. For instance, notice in the lower panel
Fig. 4 that the displacement functionsdz(r ) tend to decrease
as they extend into the radial interval where the mode
quency is greater thanvz(r ). ~More dramatic examples o
this effect appear later in the paper.! This behavior is back-
wards from the usual evanescent behavior of waves in a
bidden region where frequencies below some threshold
cut off, but the same physics is actually involved~as dis-
cussed below in Sec. V D!. The reason that it works back
wards is that the coupling between different parts of the m
dium in this problem is repulsive instead of attractive.

Figures 5 and 6 show that attenuation is found for hig

FIG. 4. The properties of the fundamental~1,0! mode are displayed for two
different nonideal cases with onlyC2 and C4 nonzero. Both cases hav
43,000 electrons: 75 grid points in the mode calculation, andr p53 mm;
their surface charge density profiless(r ) are readily calculable from Eq
~40!. The upper frame shows the profiles ofvz(r ) as solid curves and the
fundamental mode frequencies as dashed lines for two different choice
C4 . Case~a! has C2524.25113105 and C4525.633108 ~in SI units!
which is halfway fromC450 to the upper~completely hollow! limit in Eq.
~41!. Case~b! has C2524.25113105 and C453.743108 ~in SI units!
which is halfway fromC450 to the lower limit in Eq.~41!. The lower
frame shows the mode displacement functiondz(r ) for both ~a! and ~b!.
Note that it decays in the region wherev.vz(r ).
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modes as well. In both figures the upper frame displays D
bin’s eigenfunctions, which are given by the formulas

dz~r !(1,0)}1, ~47!

dz~r !(3,0)}12
5

2

r 2

r p
2 , ~48!

dz~r !(5,0)}127
r 2

r p
2 1

63

8

r 4

r p
4 , ~49!

dz~r !(7,0)}12
27

2

r 2

r p
2 1

297

8

r 4

r p
4 2

429

16

r 6

r p
6 . ~50!

of

FIG. 5. The attenuation of the first four modes for the hollow plasma@case
~a!# in Fig. 4 is shown. The upper frame shows Dubin’s eigenfunctio
~distinguished from each other by their number of zeros! while the lower
frame shows the numerically computed eigenfunctions~also distinguished
by the number of zeros!. Note that they are substantially attenuated towa
the outside edge of the plasma compared to the ideal eigenfunctions.

FIG. 6. The attenuation of the first four modes for the plasma withC4C2

,0 @case~b!# in Fig. 4 is shown. The upper frame shows Dubin’s eige
functions while the lower frame shows the numerically computed eigenfu
tions. Note the substantial attenuation towardr 50.
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 This a
In the plots these functions have been normalized for con
nient comparison with the corresponding nonideal eig
functions.

Figure 7 shows that this attenuation behavior pers
right up to the extreme limits of Eq.~41!. In these limits, it is
interesting to note that the plasma surface-charge den
s(r ) becomes very small in certain regions of the plasma~at
the plasma center or at the plasma edge, depending on
sign of C2C4!, and that the modes are rapidly attenua
outside the region of space wheres(r ) is small. This con-
centration of displacement toward the thinned-out cente
edges of the plasma probably affects the ability of th
modes to be detected by measurements of induced charg
the Penning trap electrodes~as in Weimer’s experiment18!,
and judging by these extreme-case plots ofdz(r ) one might
think that this would be an important effect. But the ele
tronic signals depend not on the displacement itself, but
the amount of displaced charge. A measure of this quantit
the displaced charge per unit radiusq8(r )5dz(r )s(r )r , and
this quantity is displayed for both of the cases of Fig. 7
Fig. 8. Notice that the concentration effect is greatly reduc
though still present.

As seen in Fig. 3, the profiles in Weimer’s experime
should have been hollow, soq8(r ) should have been concen
trated near the center of the plasma. Weimer reported
when their trap was detuned so thatC4 had the opposite sign
they did not observe modes. In this case the charge displ
ment should have been more peaked near the outside ed
the plasma, but whether this effect has anything to do w
their inability to detect modes with this detuning requir
further study.

C. Radial attenuation of the modes

The physical process which causes the radial attenua
of the modes can be better understood by careful exam
tion of Eq. ~8!, repeated here:

FIG. 7. The profiles of surface charge densitys ~dashed! and axial displace-
ment~solid! of the fundamental mode are shown for the two extreme ca
in Eq. ~41!. The upper frame is for the upper limit and the lower frame is
the lower limit.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

128.187.97.22 On: Mon, 
e-
-

ts

ity

the
d

r
e
on

-
n
is

d,

t

at

e-
of

h

on
a-

v2dz~r !5vz
2~r !dz~r !2

q

mp
E1z~r ,0!. ~51!

In this equation, the last term on the right represents
repulsive coupling between all of the charged rings comp
ing the plasma. The actual behavior of the coupling, as
have seen from Eq.~9!, is quite complicated, and the origi
of the mode attenuation is not easily seen. However, if
consider a similar system where only nearest-neighbor ri
are coupled by a force of formF5kDz ~to give the correct
sign for repulsive coupling! and separated by an infinitesim
distanceDr , Eq. ~51! becomes

v2dz~r !5vz
2~r !dz~r !1

k

mp
@dz~r 1Dr !2dz~r !#

2
k

mp
@dz~r !2dz~r 2Dr !#. ~52!

~Note: a system like this, consisting of hacksaw blades
namically coupled by ring magnets, has recently been b
and studied25 and will be discussed in Sec. V D.! The second
term on the right is the repulsive force of the ring atr 1Dr
acting on the ring atr , while the third term is the repulsive
force of the ring atr 2Dr acting on the ring atr . This equa-
tion can be simplified to obtain

@v22vz
2~r !#dz~r !5

kDr 2

mp

3
@dz~r 1Dr !22dz~r !1dz~r 2Dr !#

Dr 2 .

~53!

In this form, the last term in Eq.~53! is a numerical
approximation to the second derivative ofdz with respect to
r , and the equation can be put into the form

s
FIG. 8. For the same extreme cases shown in Fig. 7, the displaced ch
per unit radiusq8(r )5dz(r )s(r )r is displayed as a solid curve while th
profile of s is displayed as a dashed curve. Note that the concentra
effects atr 50 andr 5r p are greatly reduced.
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 This a
mp@v22vz
2~r !#

k
dz~r !5Dr 2dz9~r !. ~54!

This equation is analogous~except for a minus sign! to the
time-independent Schro¨dinger equation in one dimension fo
a particle in a potentialU(r )}vz

2(r ). The mode displace
ment functiondz(r ) corresponds to the particle’s wave fun
tion, andv2 corresponds to the particle’s energyE. In the
quantum mechanical system, the wave function of a part
exhibits oscillatory behavior in regions of space whereE
.U(r ). Likewise, in the classically forbidden region whe
E,U(r ), the particle’s wave function in the quantum sy
tem dies exponentially in most simple cases. In the plas
however, because of the extra minus sign, the mode displ
ment functiondz(r ) exhibits oscillatory behavior whenv2

,vz
2(r ), and attenuates exponentially whenv2.vz

2(r ), as
seen in Figs. 4–6. The oscillatory behavior of the high
order normal modes of the plasma is exactly analogous to
excited states of the quantum particle’s wave function.

Although the coupling in this example is somewhat co
trived, the effect is analogous to the effect which arises fr
the complicated coupling term in Eq.~9!—perturbations in
the trap fields cause the mode displacement function to
tenuate into regions wherev2.vz(r )2.

D. Comparison with the results of Weimer et al .

In Dubin’s theory,13 taken to first-order accuracy in as
pect ratioa, the frequencies of the first four odd, azimutha
symmetric normal modes of cold plasma spheroids sat
the following:

v1,0
2 5vz

2, ~55!

v3,0
2 5vz

2F12
5

8
pa G , ~56!

v5,0
2 5vz

2F12
161

128
paG , ~57!

v7,0
2 5vz

2F12
969

512
paG . ~58!

In Weimer’s experiment,18 these results were used to es
mate the plasma aspect ratio after the frequencies co
sponding to the various modes had been identified. Withv1,0

as an estimate forvz , as in Eq.~55!, Eqs. ~56!–~58! can
each be solved fora using the measured values forv3,0,
v5,0, and v7,0. Weimer et al. found that the experimenta
values ofa obtained through this process always satisfied
inequality

a3,0.a5,0.a7,0 ~59!

~as in Fig. 5 in their paper!, with the difference between
these estimates on the order of 20%:

a3,02a7,0

a3,0
[

Da

a3,0
'0.2. ~60!

To compare our calculation with their experimental r
sults we used the values ofa2n in Table II to generate a
sequence ofs(r ) profiles for many different plasma radii i
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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the range 1 mm–3.94 mm.@At this largest radius the plasm
became completely hollow, i.e.,s(0)50. Notice that ac-
cording to the first two values in Table II,C25a23(21/2)
and C45a43(3/8) should have opposite signs, which do
not make a hollow plasma according to the discussion of
~41!. This simple rule involving the sign ofC2C4 , which
works if only C2 andC4 are important, does not work her
because the other terms are more important at large pla
radius.# These profiles were then used to calculate the
quenciesv1,0, v3,0, v5,0, andv7,0, and these values wer
used in Eqs.~55!–~58! to calculate a3,0(r p), a5,0(r p),
a7,0(r p). This theoretical simulation of the experiment
shown in Fig. 9. The first thing to notice is that the comput
a values are in the correct order of Eq.~59! and that the
computed relative range ofa is about 13%, about the valu
obtained in Mason’s simulations,19 and about a factor of 2
low compared to the experiment.

In the experiment the range of values of computeda’s
when all four modes could be measured was only ab
@0.001–0.004#. This range is shown in the inset in the upp
frame of Fig. 9 and is displayed in expanded form in t
lower frame. Notice that this calculation thus predicts th
the experimental plasma radius only varied between ab
3.6 mm and 3.9 mm during the 25 minutes when all fo
modes were measured in Fig. 5 of the experimental pap18

Looking at this range ofs profiles in Fig. 4 of this paper
shows that this calculation also predicts that the experime
plasma was quite hollow during the measurable period
time. This hollow behavior, when taken together with t
result of Paulson and Spencer20 that the plasma thicknes
cannot be smaller than a distance on the order oflD0 @see
Eq. ~43!#, means that the quantity ‘‘a’’ measured in Weimer’s
experiment was not simply the ratio of the plasma ha
thickness atr 50 to the outer plasma radius.

FIG. 9. Computed values ofa3,0, a5,0, anda7,0 as a function of plasma
radius are shown for a finely-spaced sequence of equilibria following
more coarse pattern of Fig. 3. The upper curve in each frame isa3,0(r ), the
middle curve isa5,0(r ), and the lower curve isa7,0(r ). This is the same
ordering as in the experiment, but the relative spread between the lo
curve and the upper curve is about a factor of 2 too small. The lower fra
is an expanded view of the curves in the inset box in the upper frame.
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Recent work by Spencer and Robertson25 indicates that
in systems comprised of weakly coupled oscillators it is h
to find modes if the individual oscillators all have the sam
frequency~as in an ideal trap!, but that detuning makes th
modes more well defined. They also show evidence tha
the presence of perturbations to the system~like error fields
due to stray patches of charge on electrodes or machi
errors in Penning traps!, detuning helps the modes reta
their integrity in spite of the perturbations. To test wheth
this idea has relevance for the modes in the experiment
added random perturbations of various strengths to thevz(r )
profile in our mode calculations. We find that when errors
added at a relative level of about 0.25%, the curves in Fig
are changed substantially, as shown in Fig. 10. We were
prised to find that this effect not only makes the curves
computeda’s be more like the jagged curves of the expe
ment ~which was expected!, but also thatDa went up. In
fact, by choosing the perturbation level properly it is easy
get curves that look about like those of the experiment
that have about the right value forDa/a3,0 of about 20%. In
the simulations of Masonet al., the factor of two discrepancy
in the spread could be accounted for by increasing the t
perature by a factor of 4, but this error field estimate provid
an alternative explanation for the increased spread. It is
ficult to pursue this idea further without some knowledge
the level of error fields in the experiment, but it does sugg
that error fields may have played a role in what was obser
in the experiment.~Note: we do not study image charge e
fects here, but their magnitude was estimated in Ma
et al., and it was found that their inclusion probably d
creases the spread. This would require perturbation le
even higher than 0.25% to account for the spread.!

VI. CONCLUSION

When a finite-temperature plasma is confined in a P
ning trap, transport and radial expansion lead to a stat

FIG. 10. These curves are just like those of Fig. 10 except thatvz(r ) has
been randomly perturbed at the 0.25% level in an attempt to assess the
of electrostatic field errors. This effect makes the curves look more
those of the experiment and also increases the relative spread, in this c
a level about the same as the experiment.
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global thermal equilibrium in which the plasma is very thi
A mode equation for the azimuthally symmetric, incompre
ible fluid modes of such a plasma has been derived
solved numerically in the limit that the plasma can be d
scribed as a thin layer of surface charge densitys(r ). When
the plasma temperature is zero and the trap fields are id
near-perfect agreement with Dubin’s zero-temperat
theory13 is obtained to first order ina. Our mode equation
however, can be solved for arbitrary confining fields a
temperatures provided the functionss(r ) andvz(r ) ~surface
charge density and axial bounce frequency profiles! are
known. Additionally, the computation time required by th
method is significantly less than that required for a parti
simulation.

We have also examined the dependence of the pla
shape and the normal mode eigenfunctions on nonideal c
ponents of the trap fields. We find that the amplitudes of
normal modes tend to be large in regions of the plas
where s(r ) is small @equivalent to regions wherev
,vz(r )# and that the amplitude is evanescent in regio
where v.vz(r ) @corresponding to larger values ofs(r )#.
The equilibrium and mode calculations have also been
plied to the experiments of Weimeret al.18 and we find that
their plasmas were probably hollow. We also reproduce
ordering of thea-values they calculated, but we cannot r
produce the amount of spread in these values unless we
random perturbations to the equilibrium fields in an ad h
manner.
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APPENDIX: THE MATRICES

The representation of Eq.~15! as a sum of matrix opera
tors is discussed in this appendix. Each of the 8 terms co
sponding tog i for i 50,1,..,7 in this equation can be writte
as a matrix, with the top and bottom rows full of zeros b
cause boundary conditions will be applied in these row
corresponding tor 50 andr 5r p . The matrices will be de-
noted by the symbolsGmn

( i ) and each will be discussed in turn
The matrix corresponding tog0 is, of course, simply

Gmn
(0)5dmnvz

2~r m! ~A1!

~except for the top and bottom rows, which are full of zero!.
Theg1 term has a simple interpretation as a matrix m

tiplication Gmn
(1)dz(r n) with

Gmn
(1)5

qDr

e0mpp

s~r n!

~r m1r n!

Emn

~r n2r m!2 r n ; mÞn,

~A2!
Gmn

(1)50; m5n,

i.e., a full matrix~excepting the rows reserved for bounda
conditions! with zeros down the main diagonal.

Using the substitutiondz(r m)5dmndz(r n), the g2 term
can be interpreted as a diagonal matrixGmn

(2) multiplying
dz(r n), where

fect
e
e to
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
gm
(2)5(

k
Gmk

(1) ,

Gmn
(2)53

0 0 0 0 ¯

0 g2
(2) 0 0 ¯

0 0 g3
(2) 0 ¯

0 0 0 g4
(2)

¯

] ] ] ] �

0 0 0 0 ¯

4 . ~A3!

Similarly, the g3 term is written asGmn
(3)dz(r n), where

the substitution,

dz8~r m!'
dz~r m11!2dz~r m21!

2Dr
, ~A4!

leads to

gm
(3)5(

k
~r k2r m!Gmk

(1)

and

Gmn
(3)5

1

2Dr 3
0 0 0 0 ¯

2g2
(3) 0 g2

(3) 0 ¯

0 2g3
(3) 0 g3

(3)
¯

0 0 2g4
(3) 0 ¯

] ] ] ] �

0 0 0 0 ¯

4 . ~A5!

In the g4 term we use

dz9~r m!'
dz~r m11!22dz~r m!1dz~r m21!

Dr 2 , ~A6!

to obtain

gm
(4)5

qDrs~r m!

4e0mpp
,

~A7!

Gmn
(4)5

1

Dr 2 3
0 0 0 0 ¯

g2
(4) 22g2

(4) g2
(4) 0 ¯

0 g3
(4) 22g3

(4) g3
(4)

¯

0 0 g4
(4) 22g4

(4)
¯

] ] ] ] �

0 0 0 0 ¯

4 .

Following similar procedures with theg5 , g6 , and g7

terms yields
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gm
(5)5

qDr

e0mpp (
kÞm

Fs~r k!
Emkr k

~r k
22r m

2 !
2

s~r m!

2~r k2r m!G ,

Gmn
(5)5

1

2Dr 3
0 0 0 0 ¯

2g2
(5) 0 g2

(5) 0 ¯

0 2g3
(5) 0 g3

(5)
¯

0 0 2g4
(5) 0 ¯

] ] ] ] �

0 0 0 0 ¯

4 , ~A8!

gm
(6)5

qDr

e0mpp Fs8~r m!

2
1

s~r m!

4r m
G ,

~A9!

Gmn
(6)5

1

2Dr 3
0 0 0 0 ¯

2g2
(6) 0 g2

(6) 0 ¯

0 2g3
(6) 0 g3

(6)
¯

0 0 2g4
(6) 0 ¯

] ] ] ] �

0 0 0 0 ¯

4 ,

gm
(7)5

qs~r m!

2e0mpp
lnS r p2r m

r m
D ,

~A10!

Gmn
(7)5

1

2Dr 3
0 0 0 0 ¯

2g2
(7) 0 g2

(7) 0 ¯

0 2g3
(7) 0 g3

(7)
¯

0 0 2g4
(7) 0 ¯

] ] ] ] �

0 0 0 0 ¯

4 .
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