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Mode detuning in systems of weakly coupled oscillators
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A system of weakly magnetically coupled oscillating blades is studied experimentally,
computationally, and theoretically. It is found that when the uncoupled natural frequencies of the
blades are nearly equal, the normal modes produced by the coupling are almost impossible to find
experimentally if the random variation level in the system parameters is on the or@mrlafger

than the relative differences between mode frequencies. But if the uncoupled natural frequencies
are made to varydetunedl in a smooth way such that the total relative spread in natural frequency
exceeds the random variations, normal modes are rather easy to find. And if the detuned uncoupled
frequencies of the system are parabolically distributed, the modes are found to be shaped like
Hermite functions. ©2001 American Association of Physics Teachers.
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[. INTRODUCTION Il. THE COUPLED-OSCILLATOR SYSTEM

Consider a system of harmonic oscillators consisting of
arly identical blades evenly spaced in a row and bending
perpendicular to the line connecting thésee Fig. 1 The
blades are 26 cm long hacksaw blades and are attached to a

served by Weimeet al, at the National Institute of Stan- : -
' . wooden plank by screws and washers. To avoid coupling of
dards and Technologigouldey and numerically modeled by ages caused by motion of the plank, two lead bricks are

Masonet al, at Brigham Young Universifyserves as the placed on the piank to hold it securely to the floor. The
inspiration for this investigatioh” Weimer's experiment in-  plades were not designed for precision oscillation studies and
volved a non-neutral electron plasma in a Penning trap. Beturn out to have elastic constants that vary from blade to
cause of the radial expansion of the cloud, at late times in thglade by about 6%. The lumps of modeling clay at the top of
experiment the plasma became a very thin pancake-like disleach blade all have the same mass, but their shapes have
behaving like a collection of charged rings in a quadraticbeen carefully adjusted so that each blade has the same natu-
potential well with weak repulsive coupling between theral frequency as all the regwithin about 2%. Once the
rings. Distinct frequencies were observed in the experimenplades have been tuned in this way they are coupled by at-
when the external potential was “detuned,” meaning that theaching ring magnets with neighboring magnets parallel to
harmonic oscillation of uncoupled electrons at different radii€ach other. When the blades are undisturbed, the magnets
had different frequencies in the external well. exert no forces_ln the direction o_f motion of the blades. But

; ituationvhen neighboring blades are displaced, the magnets repel

by considering many neighboring oscillators with almost theeach other with a force that is linear in the relative displace-

same natural frequency. Their frequencies differ slightly”.mnt(for sufficiently sma_ll displacemer)tsFinaIIy,_ the os-
from neighbor to neighbor due to random variations, or the cillators can be systematically detuned by pressing lumps of

Yclay onto the ring magnets, as shown in Fig. 1.
may also vary because they have been purposely detuned. In y g mag ’ g

addition, the oscillators are weakly coupled. Figure 1 shows
a photograph of a system having these properties. It consisé&s Dynamics of a single blade
of 20 hacksaw blades weighted by modeling clay and weakly The first thi der is th i behavior of
coupled by i magnets arange wih parall diole mor, YhE 1S 1 10 conside s e osclatoy beior of o
ments so that their interaction force along the line of motiony S ¢ the oscillation frequency on the extra misisat-
. Qached to the blades at the ring magnets so that we can un-
blades all have equal masses, but their shapesnents of  jerstand how changing these masses detunes the system.
inertia) have been changed so that each oscillator has therhe top masses have tuned the blades and are not consid-
same frequency. The ring magnets about half-way down thgred to be adjustableA simple model that predicts the be-
blades provide the coupling and the lumps of clay pressegjavior of the oscillator is to approximate the blade-mass sys-
onto the ring magnets allow the system to be systematicallyem (without the extra massgas a pendulum with a moment
detuned. of inertial 3, and a net torsional spring constantelasticity

This system is described in Sec. Il and computationallyand gravity acting on the masses combinékhe displace-
studied in Sec. Ill. Section IV discusses the experimentaient angled is measured from the base of the blade to the
results, Sec. V discusses an analytic approximation to theenter of the ring magnet, which is a distaricabove the
system, and Sec. VI concludes the paper. base of the blade. The extra madshen contributed1L? to

Many phenomena in physics involve the simple harmonic
oscillator, and the most interesting cases involve systems
coupled oscillators. One such systdexperimentally ob-
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Since we are determiningh-B and m=m?z we are only
concerned with th& components oB. Thus,

= MoMiMmy
m-B=——5-(3cog 6—1
4arr3 ( )
2
oMMy z 1 @
Am(x>+22)%2\"x2+ 22 )
where x is the equilibrium distance between the magnets.
Hence
F=2 (B
= — m.
;= (M-B)
- - mym, 4 z?
Fig. 1. The coupled oscillator system. Twenty hacksaw blades attached by _ Mol 2, _2\—3/2
. =—— —|(X*+29) 3——=—1]]. (5)
screws and washers to a wooden plank are weighted at the top by 30-gram A4 9z X2+ 7
lumps of clay whose shapes have been adjusted to make each blade vibrate ) ) o )
at the same frequendyhen uncoupled from its neighborhe ring mag- Performing the differentiation and doing a Taylor expan-
net pairs provide coupling and extra mass, while lumps of clay pressed&jon then yields
against the ring magnets systematically detune the system. To prevent the ) 5
plank from moving, it is pressed against the floor by two lead bricks. F MHomMmimy 3z(3x“—22°)
z— A (X2+22)7/2
. . L mym, [ 9 75
the moment of inertia and the gravitational torque exerted on Fo™h ™ (_52 - 234, (6)
the system byM is given byMgL siné. This then leads to 4m X 2X
the small-angle equation of motion giving a linear(repulsivé coupling constant
o k—MgL . 2 K= Fz_g,uomlmg 7
lo+ML? Tz 4w @)
Note thatk>MgL so that the force on each blade is alwaysf we require that the cubic term be less than 6% of the linear
restoring. term, then we are restricted to relative displacements

To determine the parameters of the system we did the_ zj+1|<x/6%0.01m in our systentj denotes the number

following experiments(i) With M=0 and the neighboring ¢ the oscillatoy.

coupling magnets removed, the frequency of an |sglated Determining the constark is quite difficult because, as
blade/magnet oscillator was determined todag=16.4s can be seen in the formula above, it depends on the inverse
(accurate to about 26 This determines the ratio ofto I, fifth power of the magnet separation. In our system this
throughw?= /1. (ii) MassM =0.075kg was added at the means that changing this separation by a millimeter shifts
position of the ring magnet and a new oscillation frequencyby nearly 10%. To deal with this problem, and also to get
was measured. These two frequency measurements and Emother determination of the uncoupled blade frequengy

(1) give two equations that determine and l5. Solving  we did the following.

these two equations and usimg=9.8 m/€ and L=0.11m With no extra masses attached, we measured the frequency
yields k=1.0kgnt/s* and1,=3.7x10 2kg m?. (Note that of each blade while holding its nearest neighbors fixed. As-
due to differences between the blades, these valugsaofl ~ Suming constark for each pair of oscillators, the equation of

I, vary from blade to blade by about 6%, even though theifmotion for a blade with two neighbors would be

ratio, which determines their frequencies, are consistent to - _ 2 2

within about 2%. The detuning massdd were placed at 0=~ wpf+260°0, ®)
L=0.11m and have values ranging from 0.001 kg up towhich predicts an oscillation frequenaygiven by
0.075 kg 2 2

w =w0—25w2, 9
where
B. Magnetic coupling kL2
Sw?=—— (10

The second matter to study is the magnetic coupling. Con-
sider two dipoles oriented side-by-side with parallel dipole o
moments, constrained to move only in the direction of thelhe value ofw was found by measuring it for each blade

_lo_

dipoles. The force on a magnetic dipole is with two neighbors, then averaging. This average value is
R R 0=155s".
F=V(m-B). 2 We then measured the beat frequency between two neigh-
I the first dipole is at the origin and is oriented in tke boring blades with their other neighbors held fixed. This was
direction, its field(in spherical coordinatess done by setting one blade in motion and measuring the time

Ty, between successive instants of zero amplitude in the mo-
tion of the other blade. The beat frequency is then defined to
be wp,=27/Ty, and is related to the two natural modes of

> ,LLOm

dip= 73 (2 COSF +sin 00). 3
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oscillation of the paif(i) both blades moving together at First 3 Modes: Uniform Parameters
and (i) both blades moving oppositely aty,,| by w,= w; —

— wqpp- (Note that the opposite mode hemver frequency 1.25} 1
than the together mode because the coupling is repulgise. 1t
might be expected from the sensitivity bfon magnet sepa- 0.75

ration, the beat periods varied by 10—20 % from pair to pair.
(The coupling is so weak that this rather large variation does 0.5r
not affect the consistency of the single blade measurements3 0.25}
On the other hand, because of this sensitivity the separation= ot
can be adjusted by moving the blades slightly closer or fur-£ _g o5}
ther apart without appreciably changing the other parameter:<

of the system. So we measured all of the beat periods ant -0.51
then averaged them to get a target beat period. We ther -0.75f
started at the middle pair of masses and worked our way ou -1}
to the ends, moving blades closer or further apart to get the _q o5}
desired common beat period. This average value was thel

P

used to findw,=0.98s . 1 3 5 7 9 11 13 15 17 19
Once we have approximately the same coupling for each Blade Number
pair, we ”.‘ay write for any pair of bladétheir other nelgh- Fig. 2. Computed normal mode eigenfunctions for the first three modes of
bors are fixegl the system with all blades tuned to the same uncoupled frequency. The
.o 2 2 shapes are almost, but not quite, sinusoidal because of the boundary condi-
01=—wpb1+ ow(260,—6), tions at the end of this finite-length system.
(12)

.92: —wgﬁz-i- 5&)2(202_ 01)

A normal mode analysis of these coupled equations leads
the following expression for the beat frequency:

ftequencies corresponding to these modes are 16.40, 16.39,
and 16.37 s%, beginning with the “flat” mode and ending
with the mode with two nodes. There are three important
Voi— 80— Jwi—38w?=w,. (12)  things to notice. First, unlike spring systems with attractive
coupling where frequencies go up with increasing nodes,
with repulsive coupling the frequencies go down. Second,
Sw’=wy, w2_w§/4, w§:w2+ zwb‘/wZ_wgm, these frequencies are very close together. Third, the eigen-
. . . o mode extends across the entire system. The combination of
which then leads, in our system, ty=16.6s " (which is  the |atter two facts means, in practice, that normal modes are
within 2% of the earlier value of 16.479), dw?=15.252, very nearly impossible to observe in this system.
andk=2.7 N/m. These parameters will now be used to ana- To make matters worse, in the system we have built there
lyze the full system. are variations of order 6% in the parameters because of the
varying elasticity constants of the blades. To study this ef-
fect, we used Matlab’s random number generator to add
1. THE COUPLED SYSTEM variations at the 6% level tg and variations at the 2% level
to wy and k. The result for a typical choice of randomly
varying parameters is shown in Fig. 3, with corresponding
frequencies 16.58, 16.53, 16.50's Now it's even worse:

Solving Egs.(9) and (12) simultaneously then yields

With the N blades magnetically coupled together, the
equations of motion for the system af@ssuming nearest-
neighbor coupling because of thexd/decrease in the cou-
pling force between bladgs

K— Mng) kL2 First 3 Modes: Variable Parameters
9. =— 5| 6, — 5 (01— 260+ 6;_4) — —
J lo+ ML=/ Tg+ ML= o P
for 1<j<N (13 1t
for interior blades and 0.75p
0.5}
5 k—MgL ; kL2 by 8 0.08h
1= |0+M1L2 1 |0+M1L2( 2 1) :_'E : ol
and E-0.25}
" K—MNgL) . kL2 (0 o) (14 -0.5
==\ vazln T2 (On-1— -0.75}
AR PR VIV R PR VIV ol
at the ends. -1.25} 1
Consider first the case where we have no detuning masses, o
i.e.,M;=0 for all j. Assuming that we have a normal mode 1 3 5 7 9 11 13 15 17 19
so thatd;(t) = A;e'“!, we obtain from this set of equations an Blade Number

elgenvalue pro_blem which is eaS"y ,SOIVQd numence@lrl;e Fig. 3. Computed normal mode eigenfunctions for the tuned system with
used Matlap using the parameters given in Sec. Il. Figure 2random variations in the system parameters at the few-percent level, as
shows the amplitude distribution of the first 3 modes. Thediscussed in the article. The modes bear no resemblance to those of Fig. 2.
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First 3 Modes: Detuned, Uniform Parameters Zig-Zag Mode: Variable Parameters

1.25} : 1.25}
1t 1}
0.75} 0.75}
0.5} 0.5
S o0.25} S 0.25
2 2
5 o 5 O
E-0.25} E-0.25}
-0.5} -0.5
-0.75} -0.75} 1
-1t -1} .
-1.25} 1 -1.25}
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Blade Number Blade Number

Fig. 4. Computed eigenfunctions for the detuned system with no randonfig. 6. The computed highest-order mode for the tuned system with random
variation in system parameters. The dashed curves are the approximate Heariations.
mite eigenfunctions discussed in Sec. V.

fass distributionM; that gives a quadratic dependence of

uncoupled blade frequency. The two center blades have no

chine itself. Attempting to excite the fundamental mode&Xtra mass attached, the first and last bIades_ have rather
large, and equal, masses attached, and blades in between are

(where all blades move together in the case of uniform pa-" < hted i ; d f i ter. 1 ai
rametery, for instance, leads to rather chaotic motion, asvelghted In pairs, measured from the center, o give a qua-
predicted by Fig. 3, in which it can be seen that the «funda-dratic variation inwg;, symmetric about the center of the

mental” does not have all oscillators moving together. array of blades. The end oscillators have uncoupled frequen-
Numerical experiments show that this difficulty with the C1€S 14% lower than the oscillators in the middle. The modes

modes occurs as the level of random variation in the systeri® Now more localized in space, and their frequencising

parameters approaches the relative mode spacing. In our el,{niformilparamet_ebs are more spread out: 16.33, 16.19,
periment, for example, the relative mode spacing is on the6:04 S Even if the random variations are put in, the
order of 0.15/16.40.1%, so errors at the 6% level should, Modes retain their basic shapes, as seen in Fig. 5, and the

and do, lead to almost randomly shaped eigenfunctions. IHequenmes don't shift too much.

Weimer's experiment the mode spacing was about 0.25%, Numerical experiments show that this res_toration_ (_)f
so errors even below the 1% level could have made th mooth mode shapes occurs when the detuning variation

. 0 o
modes hard to find. V%/4'/0 h(,ere exce_eds ;he level Iof rznld(t)m t\)/arll\?tlggff)).(;n
Detuning the system, however, has dramatic conse: eimers experiment, as analyzed 1ater by Masane de-
tuning variation was about 2%. This leaves a window of

nearly a factor of 10 between the mode spacing at 0.25% and

the frequencies are still close together but the mode shap
are not at all smooth. This trouble is easily seen in the ma

guences. Figure 4 shows the numerical result of choosing

First 3 Modes: Detuned, Variable Parameters

Zig-Zag Mode: Detuned, Variable Parameters
108} e ——————
1} 1.25}
0.75} 1r
0.5 E 0.75¢
g 025 o 9
= 0 © 0.25¢
e =
< —025 i g
~0.5¢ <-0.25f
-0.75¢ -0.5
-1} -0.75}
-1.25} -1
e -1.25¢
1 3 5 7 9 11 13 15 17 19 . . . . . . . . .
Blade Number 1 3 5 7 11 13 15 17 19

9
Blade Number
Fig. 5. Computed eigenfunctions for the detuned system with random varia-
tions. Note that the mode shapes still resemble those of Figlhe third Fig. 7. The computed highest-order mode for the detuned system, random
mode in this figure has the opposite sign of the corresponding mode in Figvariations included. There is a similar high-order mode localized on the
4, but sign is arbitrary. right-hand side.
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Fig. 8. The lowest-order mode in the detuned experimental sy&empare  Fig. 10. The second harmonic in the detuned experimental systmpare
to Fig. 4. The signal generator and driving electromagnet are also shownwith Fig. 4).

the detuning at 2% in which to place the unknown ermory,q sustem has a natural decay time of about 30 seconds and
level, if the physics discussed here describes what was hap;

o . ne frequencies are low, but with patience the modes can be
pening in that experiment. ;
. - y isolated.
The higher-order “zig—zag” modes are also affected by

. X : As predicted by the theory, the normal modes were rela-
the detuning. Figure 6 shows the highest order mode for thﬁvely well separated in frequency and quite easy to find be-

caseM;=0 and Fig. 7 shows the same mode for the detun¢,yse only a few masses were involved in each mode. Fig-
ing discussed aboveusing parameters with random varia- res 8—10 show the first three modesrresponding to the
tions in both casep.As in the case of long-wavelength cajcylated modes shown in Fig),avhich have measured
modes, the tuned system has a mode shape that involves glbquencies 16.15, 15.95, and 15.77.§or comparison, the

of the blades while the detuned system has a mode localizggleory (with no random variationpredicts mode frequencies
near the ends of the devicéNote that this highest-order s 1533, 16.19, and 16.04 & The “zig—zag” mode was
mode is asymmetric because of the lack of symmetry in theyso found experimentally and is shown in Fig. 11. Its mea-
random variations. There is a similar high-order mode localgreq frequency was 13.2°% compared to the calculated
ized on the right, but its frequency is a bit higher than they 4 e (using uniform parametersf 13.6 s*. The discrep-

one shown in Fig. 7. ancies between the experimental and calculated values are
within the expected range given the variations in the system
IV. EXPERIMENTS parameters.

Once the blade-mass-magnet system was built according
to the description given in Sec. Il and tuned as described iy APPROXIMATE ANALYTIC THEORY
Sec. lll, a low-frequency magnetic pulser was borrowed
from the demonstration stockroom of the Department of The apparently Gaussian shape of the fundamental mode
Physics and Astronomy at Brigham Young University. Thisin the detuned systelisee Fig. 4 made us curious. So when
device sends a pulse of current through an electromagnet ®aie fit a Gaussian to it, and got an almost perfect fit, we went
time intervals which can be controlled by turning a dial. A looking for an analytic theory to explain such a simple result.
mode of the system is found by using the Matlab calculationghe simple theory involves Hermite functions which obey
of Sec. Il to find the approximate frequency of the desiredthe differential equation
mode, and then, by searching in that neighborhood, the ex- > oo _
perimental mode frequency. This takes some time because 0" +(B"~a’g")6=0, 6(£=)=0, (19

Fig. 9. The first harmonic in the detuned experimental systeompare Fig. 11. The highest-order mode in the detuned experimental systam
with Fig. 4). pare with Fig. 7.
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whered”=d?6/d&2. This equation is the one that appears in ) g VkuA?L?

the quantum theory for the energy levels of a particle in a ~ w?~w§| 1—(2n+1)/1+ T2 ol | (23
. . . (DO (.00'0

quadratic potential well. Its connection to our problem can

be found by defining a continuous varialgléo replace blade The corresponding eigenfunction is given by

berj: g
numberj On(£)=Hy(Vag)e 7, (24

&= % A= & (16)  whereH,(x) is thenth Hermite polynomial. Figure 4 corre-
sponds tan=0,1,2, and the dashed curves in this figure show
whereA is the spacing ir¢ between blades. Note thé(1) 0,(¢) for each mode. The parametarwas obtained from
=—1,¢&(N)=1, and¢é=0 is in the center of the system. The Eq. (19) and the normalization of,(£) was obtained by
massesM; were chosen to make the uncoupled blade fredeast-squares fitting to the Matlab eigenfunctions. In our case
quencies vary quadratically, which is not quite the same ag~29, so the Gaussian facter “¢2 has dropped below 1%
having the masses vary quadratically. But the mass distribuoy abouté= 0.6, which means that the motion at the ends of
tion that detuned the masses in our system can be fit by thge system is irrelevant; we do not need to worry about the
following quadratic function of to within a maximum error - act that the system is of finite length for these low-order
of 7%: modes.
M(&)=pé?, w=0.07kg. (17) U§ing this theory to find the mode frequencies gives for
] ) o . _the first three modes shown in Fig. 4=16.31, 16.41, and
Using this approximation, and making the further approxi-15 96 s which differs from the discrete theory with uni-
mation form parameters by about 1%.
d2e The zig—zag modes can also be approximated by using the
d_gz (18 same continuous equation. To do so we observe that while
is highly discontinuous for such modeg,;=(—1)"6; is
(assuming that we have a long wavelength mode so neigtsmooth, allowing us to use the same continuous approxima-
boring blades move similarly turns Eq.(13) into Eqg. (15  tion used above. Making this substitution leads to
with the parameters given by

0l'+1_20]'+ Hj,lwAz

"—(BP—4—a”E) ¢=0. 25
(w4 glL) (o) ¢"—(B a’§%) ¢ (25
a2=’“ 29 ' 32:0%‘ (19 Solving Eq.(14) for ¢y_, and building an end condition for
kA kL°A ¢'l ¢ then leads to

The end conditions can also be turned into continuous — 41(1)  2(py—dy_q1) 2(28wi+ w2~ w?)
equations in the same way. The symmetry of our system = = >
about the center means that the modes also have symmetry, (1) Alpntdn-1) Aloy— o)
so it is only necessary to look at the right end whérel.  Solving this differential equation numerically and shooting
Solving Eq.(14) for 6y_; and using the result to build a on the boundary condition gives for the lowest-order zig—zag
centered-difference approximation &/ 6 at the end yields mode w=13.9s !, quite close to the calculated discrete-

, > 9 blade result of 13.6 8. The continuous eigenfunction is also
0'(1) _ 2(6n—On-1) _ 2(wn— o) (20  Vvery much like the experimental one, with only blades be-
6(1) A(Oyt6On1) A2owi+w?—wd)' tween&=0.8 andé=1 being involved.
It is of interest to note that the case of attractive coupling

(26)

where involves just a slight modification of these calculations be-
k—pupgl kL? cause the principal effect of switching frofto ¢ is just to
2 _KTH 2_ . 9 U ; .
wN= 2, OwN= 3 (21)  change the sign of the second derivative in the differential

equation, which is just what changing from repulsion to at-
It is possible to solve the differential equation in terms oftraction does. So with attractive coupling, the long wave-
Whittaker M and W functions, but dealing with these func- |length modes are concentrated near the outside edge, and the
tions is not simpler than doing numerical work. And, in fact, zig—zag modes have Hermite-function envelopes near the
it is not even necessary to solve the problem numerically ircenter. Furthermore, note that changing the mass distribution
our case of weak coupling. For when the coupling is weak sérom increasing to decreasing also switches the repulsive and
that 6w§| is small, then Eq(20) says thatd’/@ is a large attractive cases with each other because this, too, changes the
negative number, implying that is small. But this is basi- sign of the second derivative.
cally the same boundary condition that occurs in the quan- Finally, a quick way to see qualitatively what is going on
tum simple harmonic oscillator problem where the waveis to note that the physics of this situation is similar to the
function vanishes far from the center of the well, so the sam@enetration of evanescent waves into a forbidden regios
condition ona and g that leads to the energy levels of the FM radio waves reflecting from the ionosphere, or quantum
simple harmonic oscillatddetermines the mode frequencies tunneling. There is a region of oscillation which exponen-
in our system: tially decays into a region of nonpropagation in all of these

B?=(2n+1)a. (22) cases.

Solving Eqgs.(19) and(22) for w? leads to a messy solution VI. CONCLUSIONS

of a quadratic equation, but since we are only interested in

weak coupling, the solution may be expanded in srkdt When dealing with systems of weakly coupled oscillators
obtain in which the relative random variations in the system exceed
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the relative mode spacing, the normal modes can be morhey used the first four mode frequencies to get three differ-
cleanly separated both spatially and in frequency by systenent values for the plasma aspect ratibickness to radius
atically detuning the oscillators. All that is required is to haveratio).

the relative level of detuning be larger than the random varia- Finally, the observation in our experiments and calcula-
tion level. In our experiments, this effect was used to overiions that detuning makes it easier to find modes when there
come the difficulties caused by random variations in the elasare random errors in the system might also have implications
ticity constants of hacksaw blades, but the same effect mafpr experiments like Weimer’s. These traps have construction
also have been at work in the experiments of Weieteal., errors that introduce electrostatic perturbations, and these er-
in which the vibrations of a thin cloud of plasma in a Pen-rors might make it hard to find modes when the trap is tuned
ning trap were studied. It was found experimentally that theas perfectly as possible. But since detuning can restore the
modes were easier to find if the trap was detuned in such modes, this might explain why they found the modes more
way that the uncoupled vibration frequency of the electrongasily when the trap was detuned.

decreased with radids’ In their experiment the amount of

detuning was only about 2% across the radius of the plasma,ckNOWLEDGMENT

but the coupling was so wedihe relative mode spacing was

0.25% that even this much detuning could have been sig- This research was supported by a grant from the National
nificant. But in addition to making the modes easier to find,Science Foundation, Research Experience for Undergradu-
detuning also shifts the mode frequencies by amounts greatétes Grant No(PHY9721397.

than would be expected from the coupling alone. For in-

stance, in our experiment without detuning, the first three'C. S. Weimer, J. J. Bollinger, F. L. Moore, and D. J. Wineland, “Electro-
modes would have frequencies 16.40, 16.39, and 16‘_37 g static modes as a diagnostic in Penning-trap experiments,” Phys. Rev. A
while Wigh detuning, the frequencies were 16.33, 16.19, and24gyv\?\’/8éll\lzla?s?;8r15:{ngl?4)é encer, and J. A. Bennett, “Simulations of electro
].'6'04 s . In Weimer's experiments these frequency SeDara‘._ static modes ’of non-nzutral |’olasmas with smaII’aspect ratio in a Penning
tions were used to deduce the shape of the plasma, assuming,, » pnys plasmas, 1502—1511(1996.

no effect from detuning. This may account for part of the 3. |  shiff, Quantum Mechanic§McGraw-Hill, New York, 1968, pp.

20% discrepancy they observed in the plasma shapes whem@6-71.

1197 Am. J. Phys., Vol. 69, No. 11, November 2001 R. L. Spencer and R. D. Robertson 1197



