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Mode detuning in systems of weakly coupled oscillators
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A system of weakly magnetically coupled oscillating blades is studied experimentally,
computationally, and theoretically. It is found that when the uncoupled natural frequencies of the
blades are nearly equal, the normal modes produced by the coupling are almost impossible to find
experimentally if the random variation level in the system parameters is on the order of~or larger
than! the relative differences between mode frequencies. But if the uncoupled natural frequencies
are made to vary~detuned! in a smooth way such that the total relative spread in natural frequency
exceeds the random variations, normal modes are rather easy to find. And if the detuned uncoupled
frequencies of the system are parabolically distributed, the modes are found to be shaped like
Hermite functions. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

Many phenomena in physics involve the simple harmo
oscillator, and the most interesting cases involve system
coupled oscillators. One such system@experimentally ob-
served by Weimeret al., at the National Institute of Stan
dards and Technology~Boulder! and numerically modeled by
Mason et al., at Brigham Young University# serves as the
inspiration for this investigation.1,2 Weimer’s experiment in-
volved a non-neutral electron plasma in a Penning trap.
cause of the radial expansion of the cloud, at late times in
experiment the plasma became a very thin pancake-like d
behaving like a collection of charged rings in a quadra
potential well with weak repulsive coupling between t
rings. Distinct frequencies were observed in the experim
when the external potential was ‘‘detuned,’’ meaning that
harmonic oscillation of uncoupled electrons at different ra
had different frequencies in the external well.

In this paper we model the basic dynamics of this situat
by considering many neighboring oscillators with almost
same natural frequency. Their frequencies differ sligh
from neighbor to neighbor due to random variations, or th
may also vary because they have been purposely detune
addition, the oscillators are weakly coupled. Figure 1 sho
a photograph of a system having these properties. It con
of 20 hacksaw blades weighted by modeling clay and wea
coupled by ring magnets arranged with parallel dipole m
ments so that their interaction force along the line of mot
of the blades is repulsive. The lumps of clay at the top of
blades all have equal masses, but their shapes~moments of
inertia! have been changed so that each oscillator has
same frequency. The ring magnets about half-way down
blades provide the coupling and the lumps of clay pres
onto the ring magnets allow the system to be systematic
detuned.

This system is described in Sec. II and computationa
studied in Sec. III. Section IV discusses the experimen
results, Sec. V discusses an analytic approximation to
system, and Sec. VI concludes the paper.
1191 Am. J. Phys.69 ~11!, November 2001 http://ojps.aip.or
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II. THE COUPLED-OSCILLATOR SYSTEM

Consider a system of harmonic oscillators consisting
nearly identical blades evenly spaced in a row and bend
perpendicular to the line connecting them~see Fig. 1!. The
blades are 26 cm long hacksaw blades and are attached
wooden plank by screws and washers. To avoid coupling
blades caused by motion of the plank, two lead bricks
placed on the plank to hold it securely to the floor. T
blades were not designed for precision oscillation studies
turn out to have elastic constants that vary from blade
blade by about 6%. The lumps of modeling clay at the top
each blade all have the same mass, but their shapes
been carefully adjusted so that each blade has the same
ral frequency as all the rest~within about 2%!. Once the
blades have been tuned in this way they are coupled by
taching ring magnets with neighboring magnets parallel
each other. When the blades are undisturbed, the mag
exert no forces in the direction of motion of the blades. B
when neighboring blades are displaced, the magnets r
each other with a force that is linear in the relative displa
ment ~for sufficiently small displacements!. Finally, the os-
cillators can be systematically detuned by pressing lump
clay onto the ring magnets, as shown in Fig. 1.

A. Dynamics of a single blade

The first thing to consider is the oscillatory behavior of
single blade. We especially wish to determine the dep
dence of the oscillation frequency on the extra massM at-
tached to the blades at the ring magnets so that we can
derstand how changing these masses detunes the sy
~The top masses have tuned the blades and are not co
ered to be adjustable.! A simple model that predicts the be
havior of the oscillator is to approximate the blade-mass s
tem~without the extra masses! as a pendulum with a momen
of inertia I 0 , and a net torsional spring constantk ~elasticity
and gravity acting on the masses combined!. The displace-
ment angleu is measured from the base of the blade to
center of the ring magnet, which is a distanceL above the
base of the blade. The extra massM then contributesML2 to
1191g/ajp/ © 2001 American Association of Physics Teachers
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the moment of inertia and the gravitational torque exerted
the system byM is given byMgL sinu. This then leads to
the small-angle equation of motion

ü52S k2MgL

I 01ML2D u. ~1!

Note thatk.MgL so that the force on each blade is alwa
restoring.

To determine the parameters of the system we did
following experiments.~i! With M50 and the neighboring
coupling magnets removed, the frequency of an isola
blade/magnet oscillator was determined to bev0516.4 s21

~accurate to about 2%!. This determines the ratio ofk to I 0

throughv25k/I 0 . ~ii ! MassM50.075 kg was added at th
position of the ring magnet and a new oscillation frequen
was measured. These two frequency measurements an
~1! give two equations that determinek and I 0 . Solving
these two equations and usingg59.8 m/s2 and L50.11 m
yields k51.0 kg m2/s2 and I 053.731023 kg m2. ~Note that
due to differences between the blades, these values ofk and
I 0 vary from blade to blade by about 6%, even though th
ratio, which determines their frequencies, are consisten
within about 2%!. The detuning massesM were placed at
L50.11 m and have values ranging from 0.001 kg up
0.075 kg.

B. Magnetic coupling

The second matter to study is the magnetic coupling. C
sider two dipoles oriented side-by-side with parallel dipo
moments, constrained to move only in the direction of
dipoles. The force on a magnetic dipole is

FW 5“~mW •BW !. ~2!

If the first dipole is at the origin and is oriented in thez
direction, its field~in spherical coordinates! is

BW dip5
m0m

4pr 3 ~2 cosu r̂ 1sinuû!. ~3!

Fig. 1. The coupled oscillator system. Twenty hacksaw blades attache
screws and washers to a wooden plank are weighted at the top by 30-
lumps of clay whose shapes have been adjusted to make each blade v
at the same frequency~when uncoupled from its neighbors.! The ring mag-
net pairs provide coupling and extra mass, while lumps of clay pres
against the ring magnets systematically detune the system. To preven
plank from moving, it is pressed against the floor by two lead bricks.
1192 Am. J. Phys., Vol. 69, No. 11, November 2001
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Since we are determiningmW •BW and mW 5mẑ, we are only

concerned with theẑ components ofBW . Thus,

mW •BW 5
m0m1m2

4pr 3 ~3 cos2 u21!

5
m0m1m2

4p~x21z2!3/2 S 3
z2

x21z221D , ~4!

where x is the equilibrium distance between the magne
Hence

Fz5
]

]z
~mW •BW !

5
m0m1m2

4p

]

]z F ~x21z2!23/2S 3
z2

x21z221D G . ~5!

Performing the differentiation and doing a Taylor expa
sion then yields

Fz5
m0m1m2

4p

3z~3x222z2!

~x21z2!7/2

5
m0m1m2

4p S 9

x5 z2
75

2x7 z31¯ D , ~6!

giving a linear~repulsive! coupling constant

k5
Fz

z
5

9m0m1m2

4px5 . ~7!

If we require that the cubic term be less than 6% of the lin
term, then we are restricted to relative displacementsuzj

2zj 11u,x/6'0.01 m in our system~ j denotes the numbe
of the oscillator!.

Determining the constantk is quite difficult because, as
can be seen in the formula above, it depends on the inv
fifth power of the magnet separation. In our system t
means that changing this separation by a millimeter shifk
by nearly 10%. To deal with this problem, and also to g
another determination of the uncoupled blade frequencyv0 ,
we did the following.

With no extra masses attached, we measured the frequ
of each blade while holding its nearest neighbors fixed. A
suming constantk for each pair of oscillators, the equation o
motion for a blade with two neighbors would be

ü52v0
2u12dv2u, ~8!

which predicts an oscillation frequencyv given by

v25v0
222dv2, ~9!

where

dv25
kL2

I 0
. ~10!

The value ofv was found by measuring it for each blad
with two neighbors, then averaging. This average value
v515.5 s21.

We then measured the beat frequency between two ne
boring blades with their other neighbors held fixed. This w
done by setting one blade in motion and measuring the t
Tb between successive instants of zero amplitude in the
tion of the other blade. The beat frequency is then define
be vb52p/Tb and is related to the two natural modes
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oscillation of the pair@~i! both blades moving together atv t

and ~ii ! both blades moving oppositely atvopp# by vb5v t

2vopp. ~Note that the opposite mode haslower frequency
than the together mode because the coupling is repulsive! As
might be expected from the sensitivity ofk on magnet sepa
ration, the beat periods varied by 10–20 % from pair to p
~The coupling is so weak that this rather large variation d
not affect the consistency of the single blade measureme!
On the other hand, because of this sensitivity the separat
can be adjusted by moving the blades slightly closer or
ther apart without appreciably changing the other parame
of the system. So we measured all of the beat periods
then averaged them to get a target beat period. We
started at the middle pair of masses and worked our way
to the ends, moving blades closer or further apart to get
desired common beat period. This average value was
used to findvb50.98 s21.

Once we have approximately the same coupling for e
pair, we may write for any pair of blades~their other neigh-
bors are fixed!

ü152v0
2u11dv2~2u12u2!,

~11!
ü252v0

2u21dv2~2u22u1!.

A normal mode analysis of these coupled equations lead
the following expression for the beat frequency:

Av0
22dv22Av0

223dv25vb . ~12!

Solving Eqs.~9! and ~12! simultaneously then yields

dv25vbAv22vb
2/4, v0

25v212vbAv22vb
2/4,

which then leads, in our system, tov0516.6 s21 ~which is
within 2% of the earlier value of 16.4 s21!, dv2515.2 s22,
andk52.7 N/m. These parameters will now be used to a
lyze the full system.

III. THE COUPLED SYSTEM

With the N blades magnetically coupled together, t
equations of motion for the system are~assuming nearest
neighbor coupling because of the 1/x5 decrease in the cou
pling force between blades!

ü j52S k2M jgL

I 01M jL
2D u j2

kL2

I 01M jL
2 ~u j 1122u j1u j 21!

for 1, j ,N ~13!

for interior blades and

ü152S k2M1gL

I 01M1L2D u12
kL2

I 01M1L2 ~u22u1!

and

üN52S k2MNgL

I 01MNL2D uN2
kL2

I 01MNL2 ~uN212uN! ~14!

at the ends.
Consider first the case where we have no detuning mas

i.e., M j50 for all j. Assuming that we have a normal mod
so thatu j (t)5Aje

ivt, we obtain from this set of equations a
eigenvalue problem which is easily solved numerically~we
used Matlab! using the parameters given in Sec. II. Figure
shows the amplitude distribution of the first 3 modes. T
1193 Am. J. Phys., Vol. 69, No. 11, November 2001
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frequencies corresponding to these modes are 16.40, 1
and 16.37 s21, beginning with the ‘‘flat’’ mode and ending
with the mode with two nodes. There are three import
things to notice. First, unlike spring systems with attract
coupling where frequencies go up with increasing nod
with repulsive coupling the frequencies go down. Seco
these frequencies are very close together. Third, the eig
mode extends across the entire system. The combinatio
the latter two facts means, in practice, that normal modes
very nearly impossible to observe in this system.

To make matters worse, in the system we have built th
are variations of order 6% in the parameters because of
varying elasticity constants of the blades. To study this
fect, we used Matlab’s random number generator to a
variations at the 6% level tok and variations at the 2% leve
to v0 and k. The result for a typical choice of randoml
varying parameters is shown in Fig. 3, with correspond
frequencies 16.58, 16.53, 16.50 s21. Now it’s even worse:

Fig. 2. Computed normal mode eigenfunctions for the first three mode
the system with all blades tuned to the same uncoupled frequency.
shapes are almost, but not quite, sinusoidal because of the boundary c
tions at the end of this finite-length system.

Fig. 3. Computed normal mode eigenfunctions for the tuned system
random variations in the system parameters at the few-percent leve
discussed in the article. The modes bear no resemblance to those of F
1193R. L. Spencer and R. D. Robertson
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the frequencies are still close together but the mode sh
are not at all smooth. This trouble is easily seen in the m
chine itself. Attempting to excite the fundamental mo
~where all blades move together in the case of uniform
rameters!, for instance, leads to rather chaotic motion,
predicted by Fig. 3, in which it can be seen that the ‘‘fund
mental’’ does not have all oscillators moving together.

Numerical experiments show that this difficulty with th
modes occurs as the level of random variation in the sys
parameters approaches the relative mode spacing. In ou
periment, for example, the relative mode spacing is on
order of 0.15/16.450.1%, so errors at the 6% level shoul
and do, lead to almost randomly shaped eigenfunctions
Weimer’s experiment,1 the mode spacing was about 0.25%
so errors even below the 1% level could have made
modes hard to find.

Detuning the system, however, has dramatic con
quences. Figure 4 shows the numerical result of choosin

Fig. 5. Computed eigenfunctions for the detuned system with random v
tions. Note that the mode shapes still resemble those of Fig. 4.~The third
mode in this figure has the opposite sign of the corresponding mode in
4, but sign is arbitrary.!

Fig. 4. Computed eigenfunctions for the detuned system with no ran
variation in system parameters. The dashed curves are the approximate
mite eigenfunctions discussed in Sec. V.
1194 Am. J. Phys., Vol. 69, No. 11, November 2001
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mass distributionM j that gives a quadratic dependence
uncoupled blade frequency. The two center blades have
extra mass attached, the first and last blades have ra
large, and equal, masses attached, and blades in betwee
weighted in pairs, measured from the center, to give a q
dratic variation inv0 j , symmetric about the center of th
array of blades. The end oscillators have uncoupled frequ
cies 14% lower than the oscillators in the middle. The mod
are now more localized in space, and their frequencies~using
uniform parameters! are more spread out: 16.33, 16.1
16.04 s21. Even if the random variations are put in, th
modes retain their basic shapes, as seen in Fig. 5, and
frequencies don’t shift too much.

Numerical experiments show that this restoration
smooth mode shapes occurs when the detuning varia
~14% here! exceeds the level of random variation~6%!. In
Weimer’s experiment, as analyzed later by Mason,2 the de-
tuning variation was about 2%. This leaves a window
nearly a factor of 10 between the mode spacing at 0.25%

a-

ig.

Fig. 6. The computed highest-order mode for the tuned system with ran
variations.

Fig. 7. The computed highest-order mode for the detuned system, ran
variations included. There is a similar high-order mode localized on
right-hand side.

m
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the detuning at 2% in which to place the unknown er
level, if the physics discussed here describes what was
pening in that experiment.

The higher-order ‘‘zig–zag’’ modes are also affected
the detuning. Figure 6 shows the highest order mode for
caseM j50 and Fig. 7 shows the same mode for the det
ing discussed above~using parameters with random vari
tions in both cases.! As in the case of long-wavelengt
modes, the tuned system has a mode shape that involve
of the blades while the detuned system has a mode loca
near the ends of the device.~Note that this highest-orde
mode is asymmetric because of the lack of symmetry in
random variations. There is a similar high-order mode loc
ized on the right, but its frequency is a bit higher than t
one shown in Fig. 7.!

IV. EXPERIMENTS

Once the blade-mass-magnet system was built accor
to the description given in Sec. II and tuned as describe
Sec. III, a low-frequency magnetic pulser was borrow
from the demonstration stockroom of the Department
Physics and Astronomy at Brigham Young University. Th
device sends a pulse of current through an electromagn
time intervals which can be controlled by turning a dial.
mode of the system is found by using the Matlab calculati
of Sec. III to find the approximate frequency of the desir
mode, and then, by searching in that neighborhood, the
perimental mode frequency. This takes some time beca

Fig. 8. The lowest-order mode in the detuned experimental system~compare
to Fig. 4!. The signal generator and driving electromagnet are also sho

Fig. 9. The first harmonic in the detuned experimental system~compare
with Fig. 4!.
1195 Am. J. Phys., Vol. 69, No. 11, November 2001
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the system has a natural decay time of about 30 seconds
the frequencies are low, but with patience the modes can
isolated.

As predicted by the theory, the normal modes were re
tively well separated in frequency and quite easy to find
cause only a few masses were involved in each mode.
ures 8–10 show the first three modes~corresponding to the
calculated modes shown in Fig. 4!, which have measured
frequencies 16.15, 15.95, and 15.77 s21. For comparison, the
theory~with no random variation! predicts mode frequencie
of 16.33, 16.19, and 16.04 s21. The ‘‘zig–zag’’ mode was
also found experimentally and is shown in Fig. 11. Its me
sured frequency was 13.2 s21, compared to the calculate
value ~using uniform parameters! of 13.6 s21. The discrep-
ancies between the experimental and calculated values
within the expected range given the variations in the sys
parameters.

V. APPROXIMATE ANALYTIC THEORY

The apparently Gaussian shape of the fundamental m
in the detuned system~see Fig. 4! made us curious. So whe
we fit a Gaussian to it, and got an almost perfect fit, we w
looking for an analytic theory to explain such a simple resu
The simple theory involves Hermite functions which ob
the differential equation

u91~b22a2j2!u50, u~6`!50, ~15!

.
Fig. 10. The second harmonic in the detuned experimental system~compare
with Fig. 4!.

Fig. 11. The highest-order mode in the detuned experimental system~com-
pare with Fig. 7!.
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whereu95d2u/dj2. This equation is the one that appears
the quantum theory for the energy levels of a particle in
quadratic potential well. Its connection to our problem c
be found by defining a continuous variablej to replace blade
numberj:

j5
2 j 2N21

N21
, D5

2

N21
, ~16!

whereD is the spacing inj between blades. Note thatj(1)
521, j(N)51, andj50 is in the center of the system. Th
massesM j were chosen to make the uncoupled blade f
quencies vary quadratically, which is not quite the same
having the masses vary quadratically. But the mass distr
tion that detuned the masses in our system can be fit by
following quadratic function ofj to within a maximum error
of 7%:

M ~j!5mj2, m50.07 kg. ~17!

Using this approximation, and making the further appro
mation

u j 1122u j1u j 21'D2
d2u

dj2 ~18!

~assuming that we have a long wavelength mode so ne
boring blades move similarly!, turns Eq.~13! into Eq. ~15!
with the parameters given by

a25
m~v21g/L !

kD2 , b25
I 0~v0

22v2!

kL2D2 . ~19!

The end conditions can also be turned into continu
equations in the same way. The symmetry of our sys
about the center means that the modes also have symm
so it is only necessary to look at the right end wherej51.
Solving Eq. ~14! for uN21 and using the result to build
centered-difference approximation tou8/u at the end yields

u8~1!

u~1!
5

2~uN2uN21!

D~uN1uN21!
5

2~vN
2 2v2!

D~2dvN
2 1v22vN

2 !
, ~20!

where

vN
2 5

k2mgL

I 01mL2 , dvN
2 5

kL2

I 01mL2 . ~21!

It is possible to solve the differential equation in terms
Whittaker M and W functions, but dealing with these func
tions is not simpler than doing numerical work. And, in fa
it is not even necessary to solve the problem numerically
our case of weak coupling. For when the coupling is weak
that dvN

2 is small, then Eq.~20! says thatu8/u is a large
negative number, implying thatu is small. But this is basi-
cally the same boundary condition that occurs in the qu
tum simple harmonic oscillator problem where the wa
function vanishes far from the center of the well, so the sa
condition ona and b that leads to the energy levels of th
simple harmonic oscillator3 determines the mode frequenci
in our system:

b25~2n11!a. ~22!

Solving Eqs.~19! and ~22! for v2 leads to a messy solutio
of a quadratic equation, but since we are only intereste
weak coupling, the solution may be expanded in smallk to
obtain
1196 Am. J. Phys., Vol. 69, No. 11, November 2001
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v2'v0
2S 12~2n11!A11

g

Lv0
2

AkmD2L2

v0I 0
D . ~23!

The corresponding eigenfunction is given by

un~j!5Hn~Aaj!e2aj2/2, ~24!

whereHn(x) is thenth Hermite polynomial. Figure 4 corre
sponds ton50,1,2, and the dashed curves in this figure sh
un(j) for each mode. The parametera was obtained from
Eq. ~19! and the normalization ofun(j) was obtained by
least-squares fitting to the Matlab eigenfunctions. In our c
a'29, so the Gaussian factore2aj2/2 has dropped below 1%
by aboutj50.6, which means that the motion at the ends
the system is irrelevant; we do not need to worry about
fact that the system is of finite length for these low-ord
modes.

Using this theory to find the mode frequencies gives
the first three modes shown in Fig. 4,v516.31, 16.41, and
15.96 s21, which differs from the discrete theory with un
form parameters by about 1%.

The zig–zag modes can also be approximated by using
same continuous equation. To do so we observe that whilu j

is highly discontinuous for such modes,f j5(21) ju j is
smooth, allowing us to use the same continuous approxi
tion used above. Making this substitution leads to

f92~b2242a2j2!f50. ~25!

Solving Eq.~14! for fN21 and building an end condition fo
f8/f then leads to

f8~1!

f~1!
5

2~fN2fN21!

D~fN1fN21!
5

2~2dvN
2 1v22vN

2 !

D~vN
2 2v2!

. ~26!

Solving this differential equation numerically and shooti
on the boundary condition gives for the lowest-order zig–z
mode v513.9 s21, quite close to the calculated discret
blade result of 13.6 s21. The continuous eigenfunction is als
very much like the experimental one, with only blades b
tweenj50.8 andj51 being involved.

It is of interest to note that the case of attractive coupl
involves just a slight modification of these calculations b
cause the principal effect of switching fromu to f is just to
change the sign of the second derivative in the differen
equation, which is just what changing from repulsion to
traction does. So with attractive coupling, the long wav
length modes are concentrated near the outside edge, an
zig–zag modes have Hermite-function envelopes near
center. Furthermore, note that changing the mass distribu
from increasing to decreasing also switches the repulsive
attractive cases with each other because this, too, change
sign of the second derivative.

Finally, a quick way to see qualitatively what is going o
is to note that the physics of this situation is similar to t
penetration of evanescent waves into a forbidden region~like
FM radio waves reflecting from the ionosphere, or quant
tunneling!. There is a region of oscillation which expone
tially decays into a region of nonpropagation in all of the
cases.

VI. CONCLUSIONS

When dealing with systems of weakly coupled oscillato
in which the relative random variations in the system exce
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the relative mode spacing, the normal modes can be m
cleanly separated both spatially and in frequency by syst
atically detuning the oscillators. All that is required is to ha
the relative level of detuning be larger than the random va
tion level. In our experiments, this effect was used to ov
come the difficulties caused by random variations in the e
ticity constants of hacksaw blades, but the same effect m
also have been at work in the experiments of Weimeret al.,
in which the vibrations of a thin cloud of plasma in a Pe
ning trap were studied. It was found experimentally that
modes were easier to find if the trap was detuned in suc
way that the uncoupled vibration frequency of the electro
decreased with radius.1,2 In their experiment the amount o
detuning was only about 2% across the radius of the plas
but the coupling was so weak~the relative mode spacing wa
0.25%! that even this much detuning could have been s
nificant. But in addition to making the modes easier to fin
detuning also shifts the mode frequencies by amounts gre
than would be expected from the coupling alone. For
stance, in our experiment without detuning, the first th
modes would have frequencies 16.40, 16.39, and 16.3721,
while with detuning, the frequencies were 16.33, 16.19, a
16.04 s21. In Weimer’s experiments these frequency sepa
tions were used to deduce the shape of the plasma, assu
no effect from detuning. This may account for part of t
20% discrepancy they observed in the plasma shapes w
1197 Am. J. Phys., Vol. 69, No. 11, November 2001
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they used the first four mode frequencies to get three dif
ent values for the plasma aspect ratio~thickness to radius
ratio!.

Finally, the observation in our experiments and calcu
tions that detuning makes it easier to find modes when th
are random errors in the system might also have implicati
for experiments like Weimer’s. These traps have construc
errors that introduce electrostatic perturbations, and these
rors might make it hard to find modes when the trap is tun
as perfectly as possible. But since detuning can restore
modes, this might explain why they found the modes m
easily when the trap was detuned.
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